
Low-Code Self-Hosting of RAG-Enabled Language
Models Using Ollama and Open WebUI

Julius Sempio
Senior AI Engineer (DOST-NAIRA)

Advanced Science and Technology Institute
Quezon City, Philippines

juliusnoah.sempio@asti.dost.gov.ph
ORCID 0009-0009-8547-0602

Elmer Peramo
Project Leader (DOST-NAIRA)

Advanced Science and Technology Institute
Quezon City, Philippines

elmer@asti.dost.gov.ph

Abstract—Large language models (LLMs) are increasingly
used for enterprise document processing, yet their adoption in
many organizations is limited by (1) the perception that end
users must first acquire programmer- or engineer-level skills, and
(2) reliance on always-online, proprietary cloud services. This
paper presents a practical low-code/no-code (LCNC) approach
to self-hosting a retrieval-augmented generation (RAG)–enabled
LLM by combining Ollama (to run freely available open-weight
models) with Open WebUI (OWU), which offers a graphical
interface for nontechnical users to configure and operate their
setups. We describe the resulting architecture and evaluate it
across multiple deployment scenarios, comparing local CPU-only,
local GPU-assisted, and cloud-hosted configurations in terms
of response latency and answer quality on a small corpus of
domain-specific documents. We further demonstrate its use as a
low-code application platform (LCAP) for document processing
and information retrieval through the ACABAI-PH Information
Resource Assistant (AIRA), a prototype chatbot for navigating
government program documents. Our findings highlight the
trade-offs between hardware resources, responsiveness, and de-
ployment simplicity when bringing self-hosted RAG systems to
resource-constrained, connectivity-challenged environments.

Index Terms—large language model (LLM), self-hosting, low-
code/no-code, retrieval augmented generation (RAG)

I. Introduction

Many Internet users are now familiar with the convenience
of language models (LMs) and large language models (LLMs)
for tasks involving written text. When end users can effec-
tively harness their capabilities for document processing, these
models become powerful tools for streamlining operational
procedures in the workplace.

For government agencies in the Philippines, retrieval-
augmented generation (RAG) is of particular interest, as these
offices seek effective technologies to help process diverse
paperwork and produce outputs such as narrative technical
reports, position papers, and policy formulation or interpreta-
tion documents [1]. However, most staff in these agencies do
not have a programming background. LLM advocates often
emphasize the engineering-level skills expected of end users
[2], and many personnel lack the time or resources to learn
how to customize software at the source-code level.

In this context, the paradigm of low-code/no-code (LCNC)
solutions is becoming increasingly relevant, both for promoting

the adoption of new technologies and for ensuring the inclu-
sion of nontechnical personnel [3]. Accelerated by the rise
of “citizen developers” during the COVID-19 pandemic and
further enabled by code-capable AI and ML services, low-code
application platforms (LCAPs) were projected to account for
65% of application development by 2024 and are expected to
continue growing in the coming years, provided that security
concerns, which remain the responsibility of IT professionals
and experts, are adequately addressed [4].

Another critical factor is reliable access to these applica-
tions. Many areas in the Philippines would like to use such
technologies but still have limited or no Internet connectivity.
Their options are often restricted to paying for expensive
commercial providers [5], such as satellite-based Starlink [6],
or becoming beneficiaries of government science initiatives
for remote Internet access, such as REIINN [7]. Most popular
chatbot services, including ChatGPT, Claude, Copilot, and
Gemini, require an Internet connection for basic access and a
token-based paid subscription for additional features [8]. How-
ever, some providers, such as OpenAI, Meta, and DeepSeek,
are also releasing open-weight versions of their core LLMs
that can be accessed free of charge [9] and integrated into
self-hosted LCNC solutions.

With the ability to self-host a RAG-enabled LCAP, non-
technical personnel can, in principle, reduce the time needed
to retrieve important and relevant information from the hun-
dreds or thousands of digital documents typically managed
in government or corporate settings. When the RAG system
performs retrieval as a background task, staff members can
either work on other, more meaningful tasks in parallel or take
a brief break while waiting for their query to be answered. This
is the scenario envisioned for the ACABAI-PH Information
Resource Assistant (AIRA), a chatbot initially designed to
provide quick answers to questions about the ACABAI-PH
program (described in the Acknowledgments section) which
has since attracted interest from local and national government
agencies in the Philippines.

This paper explores a low-code deployment of a local LLM
server designed for users with little or no background in
computer programming. The goal is to let them leverage the
capabilities of an AI model as an assistant for document



processing without requiring them to learn Python, HTML,
R, or other programming languages. Specifically, the system
provides a localized, RAG-enabled environment that allows
users to upload and process their own documents in support
of their desired end goals.

II. Setup details
The two core software applications used to deploy the low-

code, self-hosted instance described in this paper are Ollama
and Open WebUI (OWU). Both are free open-source tools:
users can download and use them at no cost, but active cus-
tomer support and certain advanced features are available only
through a paid subscription. Experienced programmers can
often bypass the need for such paid support by implementing
customizations themselves or by turning to the applications’
online user communities. At the same time, the free versions
are sufficiently versatile for use by nontechnical personnel.

A. Ollama
Ollama is a backend self-hosting application for running

open-weight LLMs on a user’s PC. Deployment is straightfor-
ward: users visit the Ollama website, download the installer,
and install it on their system.

In addition to LLMs, Ollama can also load embedding
models, which are machine learning models that convert input
information into numerical representations called embeddings,
enabling the LLM to work with that information. An embed-
ding model is essential for RAG, and choosing an appropriate
one is critical because the quality of retrieved references
directly affects the LLM’s generated outputs [10].

Ollama provides its own console interface for interacting
with hosted LLMs, but it can also serve as a model hosting
platform for several frontend AI/ML applications, including
Open WebUI, GPT4All, and LibreChat.

B. Open WebUI
Open WebUI (OWU) is a Python-based frontend platform

that provides an interface for running AI and ML models and is
designed to operate without an Internet connection. Installing
and launching OWU requires Python 3.12 or an earlier version,
primarily so that users can run the ‘pip‘ package manager
from a Windows or Linux command-line interface to install
OWU and its dependencies. Once pip is installed, deploying
the platform requires a single command:

pip install open-webui

Running the platform after installation also requires a single
command:

open-webui serve

To access the OWU interface, navigate to the following address
in a web browser:

http://localhost:8080/

Beyond this one-time setup, users do not need to write or
modify any code to operate the self-hosted service.

OWU includes a built-in RAG component as one of its core
features, which further supports a “low-code” configuration. It
also allows users to configure the optical character recognition
(OCR) engine used to read documents, the embedding model
used to store document content, and the initial RAG template
prompt.

C. System architecture
Figure 1 shows a simple process diagram that uses Ollama

and OWU to self-host a RAG setup. In the pre-configuration
stage, end users set up various language and embedding
models in Ollama. OWU can then be used to select one
or more LMs for querying and a single embedding model
for RAG. Users with additional programming and container
deployment experience may also choose to replace OWU’s
default OCR tool with an alternative.

Next, users upload documents and references into OWU.
The OCR tool and embedding model process these files and
populate a RAG-enabled knowledge base, as shown in Figures
2 and 3. Finally, users interact with the LM and the knowledge
base through OWU by manually entering their queries.

III. Setup and Testing

A. Testing on different laptops
The combined Ollama and OWU setup is tested using two

PC units, one having no GPU and the other with an NVIDIA
CUDA-compatible GPU, simulating cases when end users may
have equipment with or without a GPU. The specifications for
both laptops are listed in Table I.

TABLE I
The specifications of the two laptops used in this study

PC Unit
Model

CPU Specs GPU
Specs

PC RAM

Lenovo
Thinkpad
(2023)

13th Gen Intel(R)
Core(TM) i7-
1355U, 12 CPUs
1.7GHz

(no CUDA-
compatible
GPU)

16 GB

ASUS TUF
Dash F15
(2022)

11th Gen Intel(R)
Core(TM) i5-
11300H @
3.10GHz,
3110 Mhz, 4
Core(s), 8 Logical
Processor(s)

NVIDIA
GeForce
RTX 3060
6GB

24 GB

The following are the configurations made for the RAG-
enabled self-hosting service:

• OCR: SentenceTransformers (the available default option
for OWU)

• Ollama-hosted LLMs: gpt-oss:20b (the LLM in focus for
this paper), gemma3:12b, phi4:14b, llama3.1:8b

• Ollama-hosted embedding model: embeddinggemma
To evaluate the RAG capability of the setup, PDF documents

about the ACABAI-PH Program and its DOST-NAIRA compo-
nent (see the Acknowledgments section for details) were loaded
into the knowledge base.



Fig. 1. Process diagram for enabling RAG using Ollama and Open WebUI.

Fig. 2. Screenshot of OWU showing various test knowledge bases in a card catalog-like form.

To compare response times between the two laptops, we
evaluated 24 queries (8 factual, 8 synthesis, 8 reasoning) across
three corpora sizes (6, 20, and 100 documents). Each query
was executed 10 times per setup; we report mean ± standard
deviation, and we apply a Mann–Whitney U test for CPU-only
vs GPU-assisted latency. The first query concerned generally
known information, while the second required RAG-specific
knowledge drawn from the loaded documents. A third setup was
also tested by sending the same queries to a GPT-Oss:20b model
hosted by Ollama’s high-performance cloud service under a free
trial, representing an idealized control scenario in which users
have access to powerful computing resources. For each setup,
three runs were performed, and the average response time was
recorded in minutes (or in seconds for the cloud-hosted LLM).
The results are summarized in Table II.

As the values in Table II indicate, having a working GPU for
the locally hosted setup leads to much faster response times.

TABLE II
Recorded response times in OWU of the two laptops used in this study

RAG-enabled
GPT-Oss:20b
setup

Common Non-
Technical Prompt:
“Please provide
me a good recipe
for Filipino adobo.
Thanks!”

RAG-Dependent
Prompt: “Hello!
What is the
NAIRA project?
Thanks!”

Setup 1: Work-
issued laptop
without GPU

23 minutes 28 minutes

Setup 2:
Personal
gaming laptop
with GPU

2 minutes 6 minutes

Setup 3: Using
Ollama Cloud

2 seconds 8 seconds



In our tests, the GPU-enabled laptop reduced waiting time to
roughly one quarter of that on the non-GPU laptop. The LLM
hosted on Ollama Cloud outperformed both local setups, which
is expected given its access to the provider’s high-performance
computing infrastructure.

To examine the impact of enabling OWU’s RAG feature on
the performance of a locally hosted LLM, a “fourth setup”
was conducted. The service was made to run three separate
tests, the first one simultaneously running non-RAG and RAG-
enabled instances of the Ollama-hosted GPT-Oss:20b LLM,
and the other two tests running the non-RAG LLM and RAG
LLM in their respective instances. For all three tests, the same
nontechnical prompt was given, and the resulting log times are
provided in Table III.

TABLE III
Recorded response times of Ollama-hosted GPT-Oss:20b LLM in OWU

to the same non-technical prompt
”Hello! Can you give me a good recipe for Filipino adobo? Thanks!”

Test Type RAG-enabled setup Non-RAG-enabled
setup

Both RAG-
enabled
and RAG-
disabled

Start: 4:35PM
First Token: 4:41PM
End: 4:42PM

Start: 4:35PM
First Token: 4:36PM
End: 4:41PM

RAG-enabled
only

Start: 4:43PM
First Token: 4:48PM
End: 4:53PM

N/A

RAG-
disabled
only

N/A Start: 4:54PM
First Token: 4:54PM
End: 5:00PM

The simultaneous run showed that the non-RAG-enabled
LLM took around a minute to begin its thinking phase and
provided a working answer five minutes after the first token.
The RAG-enabled LLM, on the other hand, needed six minutes
to begin its thinking phase, but as it refused to answer the query,

reasoning that the question is out of the context of its knowledge
base, it only took a minute from its first token to complete.

For the individual runs of each of the two LLM instances, the
non-RAG-enabled setup performed closely to the simultaneous
test: it took less than a minute to begin thinking phase, and
then completed its working answer in around five minutes after
the first token. The RAG-enabled setup, on the other hand,
performed differently: similar to the simultaneous run, it took
time to reach its thinking phase at around five minutes, but unlike
the simultaneous run, it chose to provide a working answer that
took around five minutes after the first token to finish.

As a conclusion, regardless of whether the RAG-enabled
OWU-configured LLM chose to answer out of context or not,
the tests nevertheless demonstrate that enabling RAG adds
noticeable overhead to an Ollama-hosted LM’s response time
even when actual referencing to the embedded corpus is not
strictly needed, as manifested by the significant differences in
times to the first token.

B. Assessment of self-hosted RAG with Ragas

In terms of subjective response quality, all setups produced
reasonably accurate answers to the ACABAI-related questions,
although this judgment relied on the authors’ familiarity with the
program. In this first round of testing, to obtain a more impartial
measure of correctness, the GPU-enabled Ollama-hosted GPT-
Oss:20b LLM was evaluated twice in a single experiment on
Ragas - an evaluation module introduced by researchers from
Exploding Gradients that combines LLM-driven metrics with
systematic experimentation [12] - using two streamlined PDF
documents about ACABAI and NAIRA. The results of this
evaluation are summarized in Table IV.

Both Ragas experiments were completed in an average of nine
minutes, and subsequent tests were also completed within the
nine-minute range. The correctness metrics for each conducted
test also averaged to ’Pass’ marks and one ’Fail’ mark.

Fig. 3. Previewing the contents of one of the files listed in the knowledge base.



TABLE IV
Ragas-based response times and correctness assessment of the

GPU-enabled Ollama-hosted GPT-Oss:20b LLM

Question Test 1 Test 2
Start: 4:50PM
First Token: 4:53PM
End: 4:59PM

Start: 5:06PM
First Token: 5:08PM
End: 5:15PM

What is the
ACABAI
program?

Pass Fail

What is
the NAIRA
project?

Fail Pass

What skillsets
are expected
of NAIRA
employees?

Pass Pass

An additional three Ragas tests were then conducted to
assess the performance of the GPU-enabled Ollama-hosted
GPT-Oss:20b LLM. The documents used for this RAG test
consist of twenty text-heavy PDF documents sourced from
institutions such as UNESCO, the World Economic Forum, and
the Alan Turing Institute among many others, discussing ethics
and governance in the use of AI and ML, and each averaging 60
pages.

The focus of this set of tests is not only on the speed of the
LLM’s response to ten questions, but also on manipulating its
context length and its effect on correctness. The recorded times
and subsequent correctness metrics are summarized in Table V.

For all the tests conducted, it is observed that increasing the
LLM’s context length also increases the time it takes for the first
token to arrive: four minutes for Test 1 with 4000 context length,
nine minutes for Test 2 with 16000 context length, and eight
minutes for Test 3 with 32000 context length. Increasing the
context length also increases the time it takes Ragas to complete
its evaluation for the same number of questions: Test 1 took 45
minutes, Test 2 took 53 minutes, and Test 3 took 64 minutes.

As for the recorded correctness metrics, Test 1 performed
categorically the worst with only three ’Pass’ marks and seven
’Fail’ marks, whereas Tests 2 and 3 performed slightly better,
with an equal number of ’Pass’ and ’Fail’ marks.

Two notable caveats the authors wish to share are that the
quality of responses by the self-hosted setup is 1) highly
dependent on the quality of the documents used in RAG, and 2)
dependent on the LM or LLM processing the query. The second
point of the two conditions is given its respective discussion in
the Further Activities section at the latter part of this paper.

IV. Challenges

The most notable limiting factor of a self-hosted RAG-
enabled LLM service is the capacity of the nontechnical user’s
computer unit, especially if GPUs are unavailable. Because PC
and laptop units with powerful GPUs are considered luxury
items in the Philippines, local and national government agencies
are content with providing their personnel with mid- to low-
range (and often expensive) computer hardware [13]. As such,

the majority of local administrators have to make do with the
underpowered tools that are provided to them.

Yet while the performance of self-hosted RAG-enabled LLMs
in non-GPU-enabled computer hardware is slow, they are still
faster at producing answers than asking an untrained staff
member to browse through physical paperwork and digital PDFs
just to come up with a proper answer. Staff can also let the system
run in the background while they attend to other tasks.

An additional limitation addressed in this paper is that the
knowledge bases used in the study may be considered small for
testing the setup’s RAG capability. The ACABAI-PH knowledge
base consists of six text-heavy documents in PDF format, which
can be deemed too small, whereas the AI Ethics knowledge
base is moderately sized at twenty documents (note that the
researchers have gathered more than a hundred documents
on AI ethics to make a larger corpus, but then a subset of
twenty documents of sufficient quality were selected for testing
purposes). Further testing of the robustness of Ollama-hosted
embedding models for use by OWU’s RAG will require more
voluminous documentary resources, such as training and other
reading materials that can be provided by stakeholder agencies,
or by using benchmarks such as four corpora that are provided
by IBM [15].

One more potential limitation for the RAG setup is the un-
availability of additional free and ready-to-deploy OCR options
for OWU besides its default offering of SentenceTransformers,
as Ollama currently does not provide hosting support for OCR
engines. OWU does allow for other OCR models (e.g. Docling,
Mistral OCR, Datalab Marker, MinerU) but setting them up
will require additional steps such as making Docker containers
or obtaining service API keys which, while ideal to explore
for process optimization studies, defeats this paper’s intent of
an LCNC paradigm for the general benefit of nontechnical end
users.

For this study, the researchers prioritized PDFs in digital text-
based formats, effectively minimizing the contribution of OCR
to the system. Moving forward, the need for a good OCR engine
may manifest as government agencies begin providing scanned
documents as information resources.

V. Further Activities
This study is part of DOST-NAIRA’s broader effort to

harness LLMs for internal knowledge management and business
intelligence. By indexing key project documents, reports, and
guidelines in a self-hosted RAG system, agencies can quickly
retrieve prior decisions, lessons learned, and policy commit-
ments to support planning and reporting. Within this context,
the Ollama–OWU stack is being tested as a RAG-enabled low-
code application platform for capacity building in government
offices, academic institutions, and micro, small, and medium
enterprises (MSMEs).

A. AIRA
NAIRA’s proof-of-concept (POC) for the self-hosted RAG-

enabled LCAP service currently exists as the ACABAI-PH
Information Resource Assistant (AIRA). Originally intended as



TABLE V
Ragas-based response times and correctness assessment of the GPU-enabled Ollama-hosted GPT-Oss:20b LLM

Question Test 1 Test 2 Test 3
Start: 12:21AM
First Token: 12:25AM
End: 1:05AM
Context Length: 4k

Start: 12:52PM
First Token: 1:01PM
End: 1:45PM
Context Length: 16k

Start: 1:46PM
First Token: 1:54PM
End: 2:50PM
Context Length: 32k

What is AI Ethics? Pass Fail Pass
What are the benefits of AI to society in general? Fail Pass Fail
What are the practical uses of AI to businesses
and industries?

Fail Pass Pass

What are the practical uses of AI to govern-
ments?

Fail Pass Pass

What are the potential dangers of unrestricted
AI development?

Fail Fail Fail

Which countries are considered advanced in the
field of AI?

Pass Fail Pass

How much does the United States spend on AI
development?

Pass Fail Pass

What steps are being proposed to prevent the
abuse of AI?

Fail Pass Fail

Which sectors are the targeted beneficiaries of
AI in the Philippines?

Fail Pass Fail

What are the programs the Philippine govern-
ment is currently implementing or planning
to implement to foster AI development in the
country?

Fail Fail Fail

Fig. 4. Screenshot of OWU running multiple test AIRA chatbots configured using different LLMs for testing the response performance of said LLMs.



a use case for simultaneous testing of multiple open-weight
LLMs (as shown in Figure 4), AIRA evolved into a specialized
chatbot capable of performing the following:

• Providing answers to questions about ACABAI and its
component projects using a knowledge base containing
information about the program

• Formulating recommendations for up-skilling personnel
based on the resumé and/or curriculum vitae uploaded by
the user and the ACABAI knowledge base

• Providing outlines of possible training courses the above-
mentioned personnel can take using a knowledge base
containing training materials provided by several agencies

• Processing documents on AI ethics and policy formulation
for quick reference, once again using its dedicated knowl-
edge base

AIRA is intended to serve as a promotional figure in
future roadshows and technology demonstrations across the
Philippines, helping raise awareness of the versatility of LLMs.
This follows the example of a previous DOST LLM project that
successfully showcased the potential of practical AI and ML
tools to government agencies and the broader Filipino public
[14]. Looking ahead, AIRA is envisioned to evolve into an
LLM-powered learning management system (LMS), providing
accessible educational materials to interested government agen-
cies and private enterprises.

B. Behaviors of various LLMs

An additional avenue for exploration is the feasibility of
different open-weight LLMs for enterprise-level RAG, an active
area of study because it addresses the high licensing costs and
restrictive usage policies associated with proprietary LLMs [11].
From preliminary testing of the growing number of LLMs that
Ollama can host, it was observed that each model, in its default
setting, responds to the same query in a different way, exhibiting
distinct response styles and varying degrees of hallucination.
These behaviors can be quantified in future work using RAG-
oriented evaluation frameworks such as Ragas, DeepEval, and
ARES [12]. Some of the response patterns observed during the
testing of various LLMs for AIRA are summarized in Table VI.

In AIRA’s case, the tendency of the GPT-Oss model to
structure responses in table and list form, and its constant
inclusion of a ”thinking phase” to explain its answer (thus
pointing to either an inherently high reasoning effort parameter
or an automatic feature of explainable AI or xAI), made it the
favored LLM to use in the POC.

Another potentially viable research direction is to manipulate
an open-weight LLM’s parameters to optimize RAG perfor-
mance, and OWU provides a UI for tweaking such model’s
weights. To see if the manipulated parameters are causing the
LLM to give better answers, the RAG-enabled GPT-Oss:20b
model hosted in Ollama Cloud can serve as a benchmark, since
it provides very accurate responses to queries about ACABAI
and NAIRA.

TABLE VI
Observed patterns on the behavior of different open-weight LLMs in

an Ollama-hosted RAG environment

Tested
Open-
Weight
LLM

Typical Response Pat-
tern

Response
Verbosity

Proneness
to Halluci-
nations

GPT-Oss Usually in table and
list form, uses bold
and/or italicized fonts,
and with a ”thinking
phase”

High Medium

LLaMA 3.1 Usually in paragraph
form

Low Low

Phi 4 Usually in list and para-
graph form

Medium Low

Gemma 3 Usually in list and para-
graph form and uses
bold and/or italicized
fonts

High Medium

Granite-3 Usually in table and list
form

Medium High

DeepSeek-
R1

Usually in paragraph
form, and with a ”think-
ing phase”

Medium Medium

VI. Acknowledgments

This research is made possible by the Nexus for Artificial
Intelligence Research and Applications (NAIRA), one of the
major projects under the Advancing Computing, Analytics, Big
Data, and Artificial Intelligence in the Philippines (ACABAI-
PH) program of the Philippines’ Department of Science and
Technology (DOST). This work is being funded and monitored
by the DOST Philippine Council for Industry, Energy, and
Emerging Technology Research and Development (PCIEERD)
with Project No. 1213385.

A copy of the low-code/no-code user manual created for the
purposes of deploying the localized hosting service described
in this paper can be requested by sending an email to julius-
noah.sempio@asti.dost.gov.ph

References

[1] L. Yun, S. Yun and H. Xue, ”Improving citizen-government interactions
with generative artificial intelligence: Novel human-computer interaction
strategies for policy understanding through large language models,” PLOS
One, vol. 19, no. 12, 2024.

[2] K. Lam, ”ChatGPT for low- and middle-income countries: a Greek gift?
(Comment),” The Lancet Regional Health - Western Pacific, vol. 41, pp.
1-2, December 2023.

[3] M. O. Ajimati, N. Carroll and M. Maher, ”Adoption of low-code and
no-code development: A systematic literature review and future research
agenda,” The Journal of Systems & Software, vol. 222, pp. 1-25, April
2025.

[4] G. F. Huribert, ”Low-Code, No-Code, What’s Under the Hood?,” IT
Professional, vol. 23, no. 6, pp. 4-7, 17 December 2021.

[5] N. Kanehira, M. Abdon and M. G. Mirandilla-Santos,
”Upgrading Philippine internet for faster and inclusive
growth,” World Bank, 4 April 2024. [Online]. Available:
https://blogs.worldbank.org/en/eastasiapacific/upgrading-philippine-
internet-for-faster-and-inclusive-growth. [Accessed 5 November 2025].

[6] R. C. Dela Cruz, ”NTC OKs registration of Elon Musk’s Star-
link,” Philippine News Agency, 27 May 2022. [Online]. Available:
https://www.pna.gov.ph/articles/1175290. [Accessed 5 November 2025].



[7] C. Luci-Atienza, ”REIINN: This DOST project connects rural, far-
flung areas to online world,” Manila Bulletin, 9 December 2021. [On-
line]. Available: https://mb.com.ph/2021/12/09/reiinn-this-dost-project-
connects-rural-far-flung-areas-to-online-world/. [Accessed 5 November
2025].

[8] G. Hickey, ”Best Large Language Models (LLMs) of
2025,” TechRadar, 17 July 2025. [Online]. Available:
https://www.techradar.com/computing/artificial-intelligence/best-llms.
[Accessed 5 November 2025].

[9] G. Huckins, ”OpenAI has finally released open-weight language models,”
Massachusetts Institute of Technology, 5 August 2025. [Online]. Avail-
able: https://www.technologyreview.com/2025/08/05/1121092/openai-
has-finally-released-open-weight-language-models/. [Accessed 5
November 2025].

[10] S. Chen, Z. Zhao and J. Chen, ”Each to Their Own: Exploring the Optimal
Embedding in RAG,” Cornell University, 20 August 2025. [Online]. Avail-
able: https://arxiv.org/abs/2507.17442. [Accessed 5 November 2025].

[11] G. Balakrishnan and A. Purwar, ”Evaluating the Efficacy of Open-Source
LLMs in Enterprise-Specific RAG Systems: A Comparative Study of
Performance and Scalability,” in IEEE 21st India Council International
Conference (INDICON), Kharagpur, 2024.

[12] M. Antal and K. Buza, ”Evaluating Open-Source LLMs in RAG Sys-
tems: A Benchmark on Diploma Theses Abstracts Using Ragas,” Acta
Universitatis Sapientiae, Informatica, vol. 17, no. 5, pp. 1-15, 2025.

[13] M. Hernando-Malipot, ”DepEd responds to Ombudsman charges over
alleged overpriced laptop procurement,” Manila Bulletin, 12 July 2025.
[Online]. Available: https://mb.com.ph/2025/07/12/deped-responds-to-
ombudsman-charges-over-alleged-overpriced-laptop-procurement/. [Ac-
cessed 11 December 2025]

[14] D. Solano, ”DOST to launch ‘Filipino-style’ ChatGPT,”
Philippine Star Tech, 10 October 2023. [Online]. Available:
https://philstartech.com/news/2023/10/10/1128/dost-to-launch-filipino-
style-chatgpt/. [Accessed 11 December 2025]

[15] Y. Katsis, S. Rosenthal, K. Fadnis, C. Gunasekara, Y.S. Lee, L. Popa, V.
Shah, H. Zhu, D. Contractor and M. Danilevsky, ”MTRAG: A Multi-Turn
Conversational Benchmark for Evaluating Retrieval-Augmented Genera-
tion Systems,” Transactions of the Association for Computational Linguis-
tics, vol. 13, pp. 784–808, 2025, doi: https://doi.org/10.1162/TACL.a.19.
Available: https://arxiv.org/abs/2501.03468. [Accessed 22 December
2025].


