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Abstract—Military environment needs a secure solution to
detect and identify unattended objects and ensure data security
in real-time. This paper proposed an edge-AI framework that
integrates object detection model with blockchain for unattended
object detection in military IoT environments. The proposed
approach enables real-time detection, decentralized server and se-
cure event logging on edge devices, overcoming typical limitations
of bandwidth, latency, and data integrity that found in cloud-
based and centralized solutions. The YOLOv11n model is opti-
mized for unauthorized object detection in limited hardware that
achieved accuracy 94.28%, precision 94.04%, recall 93.09%, and
F1-score 92.56% and trained on 35k image dataset of military
unattended objects. Pure Chain [1], a private blockchain network
that uses PoA2 consensus mechanism [2], ensures tamper-proof
auditability and high throughput. This paper illustrates Pure
Chain achieves a low average latency of 3.55 ms and high
throughput of 27 transactions per second that outperforms the
Sepolia public testnet of 12.23 ms latency and 9 TPS. Smart
contract based access control enhances operational security
and reliability. This combined framework makes a significant
contribution to military AI that provides an intelligent, secure,
and optimized solution for military surveillance.

Index Terms—Edge-AI, Object Detection, Pure Chain, Access
Control, Military IoT

I. INTRODUCTION

The rapid growth of Internet of Things (IoT) technology has
greatly influenced military security surveillance by enabling
continuous sensing, monitoring, and real-time data collection
across vast and disparate environments [3]. This development
allows defense systems to track personnel, equipment, and
potential threats with unprecedented coverage and immediacy.
Combining edge computing with artificial intelligence (AI)
techniques such as object detection model presents a powerful
solution to overcome limitations inherent in traditional cloud-
based surveillance systems [4]. These limitations include
network delays, bandwidth strain, and privacy vulnerabilities
that can hinder timely and secure military operations. Ob-
ject Detection models works well because of their ability
to capture detailed spatial and contextual information from
images [5], enabling precise detection even in highly dynamic,
cluttered, or complex scenes typical in military scenarios.
Implementing AI models directly on edge devices such as fixed
surveillance cameras, drones, or ground sensors facilitates
rapid data processing and decision making at the point of
collection, reducing reliance on centralized cloud servers and
thus lowering latency and network traffic [6]. Despite these
advantages, securing AI deployments on edge devices remains
challenging, especially in hostile or high security environ-
ments. Blockchain technology offers a promising approach

to ensure data integrity, transparency, and trustworthiness
by employing decentralized and tamper resistant ledgers for
IoT-generated security logs, detection events, and AI model
updates. The integration of deep learning, edge computing,
and blockchain in military surveillance not only enhances
operational efficiency but also strengthens security posture,
enabling reliable, auditable, and resilient defense solutions
responsive to evolving threats [7].

However, challenges remain in applying AI surveillance
systems within military IoT environments. First, edge de-
vices generally have limited computing power [8], which
restricts the size and complexity of AI models that can be
deployed efficiently while still meeting real-time processing
demands. Many object detection models, though powerful in
understanding spatial relationships but are computationally
heavy and require carefully designed variants suitable for edge
deployment. Second, accurately and swiftly detecting unat-
tended objects such as suspicious or unauthorized packages is
critical to avoid serious security incidents. Missing detections
or delayed alerts can lead to catastrophic consequences in
high-risk military settings. Third, the security and trustwor-
thiness of surveillance data must be preserved at all costs.
Centralized logging systems are vulnerable to cyber-attacks,
data manipulation, and single points of failure [9], which can
compromise forensic investigations and operational integrity.
Finally, managing automated responses triggered by AI alerts
depends on a secure, decentralized framework to prevent errors
caused by human intervention or malicious tampering. Without
such safeguards, response coordination could be inconsistent
or unreliable, jeopardizing situational awareness and threat
mitigation.

To solve these, this paper proposes a framework combining
YOLOv11n model optimized for edge devices with the Pure
Chain network. The approach uses specialized models able
to run efficiently on resource-limited edges, detecting unat-
tended objects quickly and accurately. To ensure security and
transparency, all detection events, metadata, and model updates
are immutably stored on the Pure Chain, removing tampering
risks and enabling secure audits. Smart contracts in the Pure
Chain coordinate security responses, reducing manual effort
and speeding threat management. Processing data locally saves
network resources and reduces delays, while Pure Chain’s
decentralized trust model increases resilience against attacks.
Together, these compose a secure, trustworthy, and intelligent
surveillance framework for military use, enhancing awareness,
response time, and reliability.
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Fig. 1: Overview of the proposed Edge-AI Object Detection with Blockchain Framework

The key contributions of this paper are as follows:

• Integrated YOLOv11n model that runs efficiently on edge
devices for detecting unattended objects with 94.28%
accuracy.

• Developed Pure Chain to securely and transparently
record detection events with 3.55 ms low latency.

• Implemented smart contracts to secure the access control
for Pure Chain logs.

II. RELATED WORKS

Narayanan et al. [10] explored a YOLOv9-based system
for fast, accurate soldier face detection and counting under
varied battlefield conditions, including occlusion, PPE, and
noise. Evaluation on a diverse dataset demonstrates robust
performance with low mean absolute error and real-time
inference suitable for military tactical operations.

Rady et al. [11] describe YOLOv7, YOLOv8, YOLOv10,
and RT-DETRv3 for military aircraft detection from aerial
imagery using a challenging, diverse dataset. Results show that
RT-DETRv3 achieves the highest accuracy, while YOLOv10
delivers the fastest inference, highlighting the trade-offs be-
tween detection precision and real-time performance for de-
fense applications.

Liu et al. [12] propose a multiscale attention and boundary-
aware network with a pyramid YOLOv11n backbone to detect
military-camouflaged objects using UAV imagery. Extensive
experiments on the MCOD-UAV dataset show that the ap-
proach significantly outperforms existing methods in detection
accuracy under challenging camouflage conditions.

Yang et al. [13] presents FATCNet, a novel architecture
combining feature adaptive models and CNNs for detecting
small infrared targets, enhancing feature extraction and sup-
pression of background noise. Experimental results demon-
strate FATCNet’s superior detection accuracy and robustness
compared to state-of-the-art methods on challenging infrared
small target datasets.

Alqahtani et al. [14] propose a blockchain-based smart
monitoring framework to enhance security, transparency, and
trustworthiness in defense industry operations. It integrates IoT
sensor data with blockchain technology to provide immutable
event logging, real-time monitoring, and automated threat re-
sponse, addressing challenges in centralized data management
and cyber threats in defense environments.

Shareef et al. [15] presents a blockchain-based framework
to secure object detection data by ensuring data integrity,
transparency, and traceability in distributed AI systems. It
leverages blockchain’s immutability to prevent tampering of
detection results and supports secure sharing of object detec-
tion information across decentralized networks.

Peruman et al. [16] proposes a blockchain-based deep learn-
ing object detection system designed to enhance the security
and reliability of surveillance by ensuring tamper-proof data
integrity and transparent record-keeping of detection events.
The integration of blockchain technology with AI models pro-
vides a decentralized framework that safeguards detection data
against manipulation and enables secure sharing in distributed
environments.

III. PROPOSED FRAMEWORK

Fig. 1 illustrates that the proposed framework integrates a
YOLOv11n object detection model optimized for edge IoT
devices with blockchain technology to enable secure, real-time
detection of unattended objects in military surveillance. The
YOLOv11n model executes efficiently on resource-constrained
edge devices (Raspberry Pi 5), accurately detecting suspicious
unattended objects such as unauthorized packages, boxes,
land mines, and containers. Detection events, metadata (object
class, location, timestamp), and associated evidence (image
hash) are immutably recorded on Pure Chain, ensuring data
integrity and tamper-proof audit trails. Smart contracts enforce
role-based access control, restricting detection logs and threat
assessments to authorized personnel only. This decentralized



architecture balances computational efficiency, detection ac-
curacy, and secure data management, providing an intelligent,
resilient surveillance solution for IoT-enabled military envi-
ronments.

Algorithm 1 Proposed Framework Workflow

Require: Edge AI device with detection model M , Pure
Chain, smart contract C, off-chain latency recorder L

Ensure: Secure, tamper-proof unattended object detection
records

1: Initialize detection model M on edge device
2: while system active do
3: Capture sensor data and video frames F
4: Detect object O ←M(F )
5: if O detected then
6: Extract metadata D = (O,L,H) where L = location,

H = image/video hash
7: Timestamp submission time ts ← L.recordTime()
8: Submit transaction T ← C.recordDetection(D) to

Pure Chain
9: Wait for transaction T to be mined in block b

10: Get block timestamp tb ← b.timestamp
11: Event E ← (O,L,H, tb, b) is recorded immutably

on-chain via smart contract C
12: Contract emits DetectionRecorded event with

event E
13: Calculate latency: ∆t = tb − ts
14: end if
15: end while
16: Authorized users query stored events {Ei} from C for

auditing and decision making
17: Use blockchain consensus to guarantee data integrity and

trustworthiness

A. Image Preprocessing

The framework captures visual data from fixed edge IoT
surveillance cameras, the raw images undergo preprocessing
to enhance their suitability for reliable unattended object detec-
tion. The preprocessing pipeline begins with Image Resizing,
where all images are uniformly scaled to a fixed size to
ensure consistent input dimensions for the YOLOv11n model.
Next, Pixel Normalization is applied to adjust pixel intensity
values, equalizing brightness and contrast across frames to
improve model robustness under varying lighting conditions.
To further refine the input, background subtraction techniques
isolate foreground objects by removing static scene elements,
enhancing the detection of new unattended items. Finally,
image denoising using filtering methods reduces sensor noise,
contributing to clearer, stable inputs for the model. This
sequence of standardized preprocessing steps guarantees that
the YOLOv11n receives clean, normalized, and consistent
image data, which is critical to achieving accurate and low-
latency unattended object detection on edge devices.

a) Image Resizing: In (1), images are resized to 320 ×
320 pixels to match the input size expected by the YOLOv11n

model. This resizing enables the image to be divided into 16×
16 patches.

Iresized = resize(I, (320, 320)). (1)

b) Pixel Normalization: Pixel values of the resized im-
ages are normalized from the range [0, 255] to [0, 1] in (2)
by dividing each pixel value by 255. This normalization
standardizes the input data, improving training stability and
model performance.

Inorm =
Iresized

255
. (2)

c) Background Subtraction: Background subtraction iso-
lates moving or new objects by removing static parts of the
scene in (3). It compares the current frame It with a reference
background Bt to generate a foreground mask Mt.

Mt = |It −Bt| > T, (3)

where T is a threshold to identify significant pixel differences.
This mask highlights unattended objects by filtering out the
unchanged background, enabling the YOLOv11n model to
focus on relevant regions for improved detection accuracy.

d) Image Denoising: Image denoising reduces noise in-
troduced during image capture to improve input quality for the
YOLOv11n. This process smooths unwanted artifacts while
preserving important edges and details. Common methods
include filtering techniques like non-local means or total
variation denoising, which minimize noise based on pixel
similarity and spatial coherence. The denoised image Idenoised
enhances detection accuracy by providing clearer and more
stable inputs to the model.

B. YOLOv11n Model Implementation

In this paper, a YOLOv11n model was trained and evalu-
ated on a custom military unattented object detection dataset
consisting of 35k labeled images depicting various unattended
objects in surveillance scenes. Training was conducted on
NVIDIA GeForce RTX 3060 GPU. The YOLOv11n model
was trained using the Adam optimizer with a learning rate of
0.001 and a weight decay of 0.01. Input images were resized
to 320× 320 pixels with a batch size of 16 for consistent and
efficient training. In Table II the finalized model was converted
to TensorRT format using FP16 precision for deployment on
edge hardware, achieving inference speeds above 30 frames
per second. This configuration effectively balances accuracy
and computational efficiency, enabling real-time unattended
object detection in constrained military IoT environments.

a) Unattended Object Detection: Each preprocessed im-
age Î is fed into the YOLOv11n model, which processes
the image by dividing it into fixed-size patches and applying
feature extraction method to extract relevant spatial features
in (4). The model outputs a set of predictions corresponding
to detected unattended objects and their locations.

{(xi, yi, wi, hi, si, pi)}Ni=1 , (4)

where (xi, yi) denote the center coordinates of the bounding
box, (wi, hi) represent the width and height of the detected



object, si is the confidence score indicating detection certainty,
and pi is the probability distribution over object classes.

C. Raspberry Pi 5 Edge Device Implementation

The YOLOv11n model is converted from PyTorch to ONNX
format with FP16 precision and optimized using TensorRT
to generate a 2.6 MB hardware-accelerated engine for Rasp-
berry Pi 5 deployment. The edge device illustrates in Fig. 2
runs a real-time inference pipeline that continuously captures
video frames, preprocesses them, and executes the TensorRT-
optimized detector, achieving 30.3 FPS with 33 ms aver-
age latency per frame. Upon detecting unattended objects
(unauthorized boxes, land mines, packages, containers), the
device extracts detection metadata (class, confidence, location,
timestamp) and submits it as a transaction to Pure Chain
via the smart contract interface, leveraging the Pure Chain’s
3.55 ms transaction latency and 27 TPS throughput to ensure
immutable, tamper-proof logging of all detection events.

(a) Camera Front View
(b) Internal
Electronics and
Compute Module

Fig. 2: Surveillance Camera Enclosure with Raspberry Pi 5
Edge Device Implementation

D. Pure Chain Integration

Pure Chain integration in the framework illustrates in Fig.
3 works by securely logging all detection events, metadata,
and model updates onto the decentralized Pure Chain network.
After an unattended object is detected by the YOLOv11n
model running on edge devices, the detection data is packaged
as a transaction and sent to the Pure Chain network, where it is
validated and immutably recorded in blocks. This integration
ensures data integrity, transparency, tamper-proof traceability
in military IoT.

Fig. 3: Pure Chain Transaction Record

Fig. 4: Smart Contract Deployment for Access Control

a) (PoA2) Consensus Mechanism: Pure Chain uses the
PoA2 consensus mechanism with pre-approved validator
nodes. Validators are selected based on verified identities and
rotation occurs deterministically in round-robin fashion by
block height vh = (h mod N), where vh is the validator in-
dex at height h and N is the total validators. Consensus finality
requires two-thirds validator approval, preventing dominance
and ensuring security. This approach provides low latency,
high throughput, resilience against failures, and resistance to
malicious behavior, making PoA2 suitable for secure, efficient
blockchain operation in military IoT applications.

b) Smart Contract-Based Access Control: The smart
contract illustrates in Fig. 4 securely records unattended object
detection events on Pure Chain. It accepts input parameters
shown in Table III detected object type, detection location,
and image hash serving as evidence. Upon submission via
RECORDDETECTION and mining, the event is immutably
logged with transaction details including transaction hash,
gas used (141,076 wei), and block number. This creates a
tamper-proof audit trail accessible for verification and analysis.
The deployment demonstrates successful execution of the
smart contract for secure, transparent, and decentralized event
logging that essential for trust and reliability in military IoT
surveillance systems.

IV. PERFORMANCE EVALUATION

A. YOLOv11n Model Detection Results

The YOLOv11n model was evaluated on a military unat-
tended object detection dataset of 35k images (25k training,
5k validation, 5k test). The model achieves 94.28% accu-
racy, 94.04% precision, 93.09% recall, and 92.56% F1-score
across all object classes (unauthorized box, land mine, pack-
ages, containers), with per-class metrics exceeding 92%. As
shown in Table I, YOLOv11n outperforms competing models
(YOLOv8, YOLOv10n, Faster R-CNN, EfficientDet-D0, SSD
MobileNet, RT-DETR) with superior accuracy while maintain-
ing the second smallest model size (YOLOv10n model size:
2.3M) and fastest inference latency (33 ms), making it ideal
for edge-device deployment. The confusion matrix in Fig. 5
further validates detection performance.

B. Raspberry Pi 5 Performance Evaluation

Raspberry Pi 5 was benchmarked for latency, throughput,
power, and thermal characteristics in Table IV. The device
achieved 33 ms inference latency and 30.3 FPS throughput



TABLE I: Object Detection Model Comparison: Performance Metrics and Computational Efficiency Analysis

Model Accuracy Metrics Efficiency StatusAcc. Prec. Rec. F1 Params (M) Inf. (ms)
YOLOv8n 92.81% 92.95% 92.10% 91.02% 3.2 45 Baseline
YOLOv10n 93.15% 93.42% 92.88% 91.65% 2.3 38 Good
Faster R-CNN 91.45% 91.80% 91.99% 91.89% 138 120 Heavy
EfficientDet-D0 90.80% 90.10% 90.76% 91.93% 3.9 65 Moderate
SSD MobileNet 93.50% 92.80% 92.90% 91.85% 5.8 42 Competitive
RT-DETR 91.20% 90.85% 92.05% 91.95% 36 85 Heavy
YOLOv11n 94.28% 94.04% 93.09% 92.56% 2.6 33 Best

TABLE II: Multi-Layer Performance Matrix and Deployment Analysis

Configuration
Accuracy Metrics Performance Storage Deploy Status

Acc. Prec. Rec. F1 Lat. FPS Speed Size Red. Format RT Viable Prod.
(%) (%) (%) (%) (ms) (fps) (×) (MB) (%)

V1: Baseline 96.28 95.04 96.09 95.56 125.0 8.0 1.0 43.0 – PyTorch FP32 × × ×
V2: +TensorRT 95.26 95.02 94.07 94.54 85.0 11.8 1.47 42.0 -2 TensorRT FP32 × ◦ ◦
V3: +FP16 94.98 95.82 95.92 95.36 48.0 20.8 2.60 22.0 -49 TensorRT FP16 ✓ ✓ ✓
V4: +Input
320×320

94.95 94.78 94.15 93.45 45.0 22.2 2.78 43.0 – PyTorch FP32 ✓ ◦ ◦

V5: Full Opti-
mization

94.28 94.04 93.09 92.56 33.0 30.3 3.79 2.6 -94 ONNX+TensorRT ✓ ✓ ✓

Legend: Acc.=Accuracy; Prec.=Precision; Rec.=Recall; F1=F1-Score; Lat.=Latency; Speed=Speed-up Factor; Red.=Reduction;
RT=Real-time (≥30 FPS); Viable=Deployment Viable; Prod.=Production Ready; ✓=Yes/Pass; ×=No/Fail; ◦=Marginal/Caution

TABLE III: Smart Contract Transaction Details: Input Param-
eters and On-Chain Recording Confirmation

Smart Contract Parameters and On-Chain Recording
Parameter Specification / Value / Status
Function Name RECORDDETECTION

(Active)
Object Type Detection Input: Bomb

(Recorded)
Detection Location Detection Input: Main Base

(Recorded)
Image Hash Evidence Hash: 12345 (Veri-

fied)
Transaction Hash On-Chain Data: Confirmed
Gas Used Resource Cost: 141,076 wei

(Computed)
Block Hash Chain Data: Recorded
Block Number Chain Data: 338982
Logging Status Immutable On-Chain Record

(Verified)

on 320×320 inputs, satisfying real-time surveillance require-
ments. Power profiling showed 2.7 W idle and 5.8–6.2 W
active consumption, below the 15 W untethered deployment
threshold. Thermal testing demonstrated stable operation at
53–60 °C, below the 72 °C throttling threshold. In comparison,
Raspberry Pi 4 achieved 25.7 FPS with 6.0–7.0 W power,
while Raspberry Pi Zero 2 achieved only 10.5 FPS with
3.5–4.0 W. The 33 ms latency, 30.3 FPS throughput, and 6.2
W peak power consumption demonstrate Raspberry Pi 5 with
TensorRT-optimized YOLOv11n provides superior real-time
performance for unattended object detection with low energy
footprint, validating it as the optimal hardware choice.

Fig. 5: Confusion Matrix

C. Pure Chain vs Sepolia Comparison

Figure 6 presents a comparison of blockchain performance
between the Pure Chain and the Sepolia in terms of transaction
latency and throughput. The experimental results demonstrate
that Pure Chain achieves a significantly lower transaction
latency of 3.55ms, compared to 12.23ms for Sepolia. This
highlights Pure Chain’s advantage in rapid transaction finality
which is particularly beneficial for time-sensitive military
applications. In terms of throughput, Pure Chain processes
up to 27 transactions per second that outperforms Sepolia’s



TABLE IV: Edge Device Performance Evaluation: Raspberry Pi 5 vs Raspberry Pi 4 vs Raspberry Pi Zero 2

YOLOv11n Deployment Performance Metrics Across Edge Devices
Performance Pi 5 Pi 4 Pi Zero 2 Status
Inference Latency
(320×320)

33 ms 60 ms 110 ms Pi 5 Fastest

Throughput (FPS) 30.3 25.7 10.5 Only Pi 5 Real-time
Idle Power (W) 2.7 2.5–2.8 1.5–1.8 Pi Zero Lowest
Active Power (W) 5.8–6.2 6.0–7.0 3.5–4.0 Pi Zero 2 Low Power
Operating Temp. (°C) 53–60 58–68 62–70 Pi 5 Cooler
Throttling (°C) 72 76 78 All Safe
Suitability Real-time Optimal Near Real-time Low-power but Non-RT Pi 5 Best for for 24/7

Legend: FPS=Frames Per Second; W=Watts; °C=Celsius; Real-time=≥30 FPS at 320×320

throughput of 9 transactions per second.

Fig. 6: Pure Chain vs Sepolia Latency and Throughput Com-
parison

V. CONCLUSION

This propose framework demonstrates that the YOLOv11n
model in edge device achieved better performance. Also,
Raspberry Pi 5 outperforms other Raspberry Pi versions and
suitable for this framework in latency, FPS and scalability.
Combined with the Pure Chain network, this framework en-
sures fast, secure, and scalable event recording confirming its
strong suitability for real-world military applications.
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