On-Device Al for Maritime Communication:
Trends, Challenges, and a Simulation-Only Case
Study
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Abstract—This paper reviews key challenges and emerging
trends in On-Device Al, including model efficiency, energy
constraints, and communication computation trade-offs in edge
systems. Emerging directions such as TinyML, lightweight train-
ing, and hardware-aware optimization are discussed. In addition
to the survey, a simulation case study is given in which an
on-device representation of reinforcement learning is used to
select adaptive Wi-Fi/LTE links using the relaying maritime
environment with battery and channel variability. The findings
have shown that learning-based policies are able to offer context-
dependent decision-making as opposed to fixed heuristics and
that On-Device AI has a potential in the future to be used in
wireless and resource-constrained settings.

Index Terms—Edge AI, NTN, On-Device AI, Reinforcement
Learning.

I. INTRODUCTION

The convergence of artificial intelligence (Al), edge com-
puting, and the Internet of Things (IoT) is transforming data
processing and response [1]. Instead of depending solely on
cloud servers, computation is being more and more transferred
to edge devices, smartphones, embedded sensors, and indus-
trial controllers, allowing for ultra-low latency, increased data
privacy, and scalability for enormous numbers of devices [2].

On-device Al has emerged as the foundation for achieving
intelligent and autonomous systems in next-generation 6G
and Non-Terrestrial Network (NTN) architectures [3]. With
the abundance of IoT devices, lightweight, adaptive, and
self-learning intelligence becomes imperative in settings with
intermittent or unreliable connectivity [4].

On-Device Al represents the next evolution of this transfor-
mation. It means machine learning inference execution and
(with growing frequency) adaptive or federated training at
the location of the hardware, not directly connected to the
cloud [5]. In contrast to traditional edge computing where
the offloading of computation is done to the close by server
or gateway, On-Device Al is an intelligence that is imbued
directly into the device. The endpoints are made to be self-
contained decision-making units with the ability to perceive,
reason and control enabling systems to have the ability to
run autonomously even with untrustworthy or intermittent
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connectivity [6]. Figure 1 shows the features of On-Device
Al On-Device Al is characterized by the following features:

1. Real-time responsiveness, which allows real-time
decision-making on the tasks that have a high latency, like
voice recognition, image analysis, or anomaly detection [7].

2. Resource efficiency, obtained by optimal utilization of
CPU, memory, and power by methods such as model com-
pression, pruning, and quantization [8].

3. Viewing as privacy conservation, as the raw data is kept
in the device, which makes it less exposed to interception and
compromising with contemporary data-protection models [9].
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Fig. 1. On-Device Al features

This paradigm is related to the vision of native Al in 6G
systems and NTN systems, where communication, sensing,
and computation are co-designed to form a context-aware
and self-optimizing network entity. In this paper, we will
offer a brief and yet an in-depth review of the current state
of the On-Device Al with references to new developments,
current problems, and future tendencies that will influence the
development of intelligent communication systems in the next
decade in maritime sector. In addition to the survey, the paper
includes a simulation case study demonstrating an on-device
reinforcement learning agent performing adaptive Wi-Fi/LTE
link selection in a maritime relay scenario. While On-Device
Al can be applied across many application domains, this work
specifically focuses on its relevance to maritime communi-
cation systems, where connectivity is intermittent, power is
limited, and centralized control is not always feasible. This
example illustrates how the concepts discussed translate into



practical decision-making under real-world constraints such as
fluctuating channel quality and limited battery capacity. The
simulation case study presented in this paper is lightweight
and abstract, and could not be considered a comprehensive
performance benchmark, but a conceptual expression of how
on-device reinforcement learning can encode energy through-
put trade-offs of maritime communication environments.

II. CHALLENGES IN ON-DEVICE Al

Despite rapid progress in algorithms and hardware, the
deployment of AI models directly on devices continues to
face several enduring technical and systemic challenges. These
constraints define the current research frontier and highlight
the gap between laboratory prototypes and large-scale, real-
world adoption. Figure 2 represents the challenges in On-
Device Al
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Fig. 2. Challenges of On-Device Al

A. Resource Constraints

Embedded and IoT devices are limited by their computa-
tional capacity as well as memory and battery life, which is
the most important limitation [10]. Deep neural networks are
often trained by using high-performance requiring billions of
parameters and requiring extensive floating-point operations,
which micro controllers and mobile processors cannot com-
pute [11]. Despite the fact that methods that include com-
pressing models, pruning, quantization, and neural architecture
search have addressed those concerns, there are always trade-
offs between accuracy and efficiency. One of the current
optimization problems is how to achieve real-time inference
on devices with small dynamic power budgets [12].

B. Security and Privacy

While on-device processing inherently preserves privacy by
not storing data centrally, it also introduces new risks [13].
Local models are vulnerable to model inversion, adversarial
perturbation, and side-channel attacks that can extract sensitive
information or bias outputs [14]. The problem is one of balanc-
ing cryptographic security with latency constraints especially
for time-sensitive applications like autonomous driving or
medical monitoring [15].

C. Heterogeneous Network Coordination

On-device intelligence tends to run in challenging, hetero-
geneous network environments that include Wi-Fi, 5G/6G,
satellite, and NTN connections [16]. Distributed learning
and inference coordination over such diverse connections
creates synchronization delays, packet loss, and asymmet-
ric resource availability [17]. In federated or collaborative
learning systems, devices with different connectivity quality
or computation rate can severely impact convergence rates
[18]. Research on adaptive aggregation, dynamic clustering,
and communication-efficient learning protocols is working to
alleviate these discrepancies, but strong solutions for highly
dynamic topologies such as vehicular or maritime networks
are still lacking [19].

D. Standardization and Benchmarking Gaps

In contrast to cloud-based Al, on-device Al has no common
standards for assessing performance across multiple hardware
and workloads. There is no agreement on benchmarking mea-
sures that together capture energy efficiency, latency, inference
accuracy, and model robustness under practical constraints
[20]. The lack of such standardized frameworks makes cross-
platform comparison difficult and delays the advancement of
optimizing algorithms for heterogeneous edge devices [21].

III. EMERGING TRENDS AND RESEARCH DIRECTIONS

As on-device artificial intelligence evolves further, a number
of cutting-edge trends are redefining its research and de-
ployment landscape. These advancements not only push the
technical limits of on-device computation but also redefine
the ways in which intelligence engages with communication,
sensing, and environmental limitations.

A. TinyML

TinyML is among the most active frontiers in embedded
intelligence [22]. It is centered on running deep learning
models in a memory footprint usually below one megabyte,
which makes it possible to apply sophisticated analytics on
microcontrollers and battery-powered IoT devices [23]. With
extreme quantization, sparse matrix computations, and com-
piler optimization, TinyML systems are currently able to run
object detection, keyword spotting, or anomaly detection fully
offline [24].

B. Edge Foundation Models

Building upon large pre-trained models, edge foundation
models, which adapt these general-purpose networks to lo-
calized, domain-specific conditions [25]. Lightweight fine-
tuning and transfer learning can be done on or close to the
device rather than in large computer clusters that are used
to regional training [26]. This method boosts few-shot and
continual learning, which enables Al systems to adapt behavior
using personalization without retraining.



C. Maritime, Polar, and Extreme-Environment Intelligence

With the connectivity spanning outside of terrestrial limits,
extreme environment on-device artificial intelligences have
emerged as an important research theme [27]. The needs of
the maritime, polar and desert deployments are ultra-robust
models that can be used in autonomous operation but with
extreme bandwidth constraints, fluctuating signal quality and
high temperatures.

Such scenarios require a 2-way communication between
the energy-gathering components and dynamically-adjusting
adaptive Al models that respond to the power availability.
This autonomous intelligence aids applications such as un-
manned marine vehicles (UMVs), remote sensor buoys, and
polar networks. These applications are examples of native
Al being used with NTN systems, in which communication
and cognition are co-evolved to provide reliability in limited
conditions.

IV. SIMULATION CASE STUDY
A. Scenario Description

To prove the relevance of On-Device Al to communication-
constrained settings, a simulation-based maritime relay sce-
nario is taken into consideration. The system includes a robot
buoy that has two heterogeneous wireless RF communication:
Wi-Fi and LTE, that are used as a single-hop relay to a vessel.
The buoy is battery constrained and intermittent wireless
by virtue of mobility and fading of channels. The aim of
the device is to automatically choose the most appropriate
interface to transmit data in the consideration of throughput,
channel conditions, and energy consumption.

B. Environment Design

The simulation was implemented in Python using the Gym-
nasium RL framework. The environment state is represented
as a four-dimensional vector:

Sy = [d¢, RSSL;, By, Q] (D

where d; is the distance between nodes, RSSI; denotes the
measured Wi-Fi signal strength, B; represents the remaining
battery percentage, and (J; denotes the transmission buffer
size. The agent selects one of three actions.

A, € {Wi-Fi, LTE, Sleep} )

The reward function balances throughput, energy cost, and
transmission reliability, penalizing excessive LTE usage and
buffer overflow.

C. Reinforcement Learning Policy

An Advantage Actor-Critic (A2C) agent was trained for
80,000 timesteps using the Stable-Baselines implementation.
A lightweight MLP policy was used to ensure feasibility
for later on-device deployment. The acquired policy should
dynamically select transmission modes according to the envi-
ronmental conditions instead of the fixed RSSI thresholds.

D. Baseline Heuristic Method

A rule-based heuristic was implemented for comparison.
The heuristic uses Wi-Fi whenever RSSI > —80dBm and
switches to LTE only when the transmission buffer exceeds a
predefined threshold. Unlike the RL agent, this method does
not consider long-term battery impact or channel variability.
The heuristic baseline is selected to represent a commonly
used threshold-based strategy, and is not intended to reflect
the full range of optimized link-selection algorithms, which
are left for future comparative studies.

V. RESULTS AND DISCUSSIONS

Figures below illustrates the performance comparison be-
tween the proposed A2C-based on-device agent and a heuristic
Wi-Fi/LTE switching rule.

A. Learning Behaviour

As demonstrated by the A2C learning curve in Fig. 3,
the stabilization of the learning process rises gradually and
eventually stabilizes once the agent experiences about 600
training episodes, which means that the agent has managed
to reach a stable decision-making policy. Whereas the fluctu-
ations in rewards exist because of the stochastic fading and
buffer dynamics, the trend exhibits the successful learning in
the specified environment.
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Fig. 3. A2C Learning Convergence

B. Throughput Performance

As shown in Fig. 4, both approaches initially achieve similar
throughput while Wi-Fi coverage remains sufficient. However,
as channel quality degrades with increasing distance, the
heuristic switches to LTE, whereas the A2C agent continues
transmitting exclusively using Wi-Fi. Despite avoiding LTE
entirely, the A2C agent delivers slightly more total data by
the end of the simulation, indicating that consistent use of
Wi-Fi was sufficient to satisfy the traffic demand under the
modeled conditions.
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C. Link Selection Strategy

Fig. 5 confirms that the A2C policy never selects LTE
or sleep actions during evaluation and instead relies entirely
on Wi-Fi transmission, even at lower signal strengths near
—80dBm. This behavior suggests that, under the current
reward structure and channel model, the agent learned that
LTE offers no meaningful benefit relative to its significantly
higher energy cost.
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Fig. 5. A2C Link Selection Strategy

D. Battery Consumption

The trends of battery depletion in Fig. 6 depict almost
identical decay of both styles until around step 85, where
the usage of LTE makes the heuristic use energy a little
more rapidly. A2C does not use LTE, so its consumption
curve is smoother and a bit more efficient. The conclusions
of both methods are that they all end in the total depletion
of the battery, which underscores the need to develop energy-
conscious strategy refinement in future employment.
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Fig. 6. Battery Depletion Analysis

E. Discussion

Overall, these results confirm the argument that the rein-
forcement learning policy is not just executing the reproduc-
tion of the heuristic decision threshold, but rather it learns a
policy that is relevant to the long-term reward maximization.
The best decision that will be learned by the agent in this case,
that is, in the accurate conditions of the model formulation and
the simulated conditions of the cost of the channel under the
coastal conditions, is to not use LTE and instead depend on
Wi-Fi since the energy cost related to LTE transmission is very
high.

This observed behavior is a rational energy saving trade-off
that is coded by the reward structure, based on a rational trade-
off and not a trivial policy finish, and shows that reinforcement
learning is able to discover resource-sensitive communication
strategies in a policy guaranteeing an apparently straightfor-
ward policy. Notably, the acquired strategy will depend on
the presumed propagation, mobility and cost models. Greater
propagation loss, higher distance, or different weightings of
rewards are likely to become crucial and desirable action at
LTE selection.

Future work will therefore extend this assessment to more
diverse mobility patterns and channel conditions to evaluate
policy adaptability across operating regimes. In addition, em-
bedded deployment tests on resource-constrained platforms
such as NVIDIA Jetson Orin will be conducted to further
validate the feasibility of on-device reinforcement learning for
maritime IoT deployments.

VI. CONCLUSION

On-device Al is being seen as one of the enablers of
autonomous and resilient intelligence in future wireless and
IoT systems. The enabling technologies, design issues, and
emerging research trends including TinyML, federated learn-
ing, and hardware-aware optimization in resource-constrained
systems were initially surveyed in this paper. In order to
supplement the survey-based understanding, a simulation case
study was introduced in a maritime relay environment, where
an A2C-based agent was measured in adaptive Wi-Fi/LTE link
selection against channel variability and battery limitations.



The findings indicate that the trained policy flows with the en-
coded trade-offs and only uses LTE when it is necessary rather
than a fixed heuristic strategy, indicating how the reinforce-
ment learning can be useful in autonomous communication
decisions at the device level. While the findings are limited to a
controlled, single-hop simulation model, they provide an early
indication of how On-Device Al may support autonomous link
management in future maritime IoT deployments. The focus of
this paper is not to provide to explore and validate On-Device
Al specifically within maritime communication environments
as a first step toward broader applicability. Future work will
extend the environment to more diverse mobility and fading
conditions and deploy the trained policy on embedded hard-
ware such as Jetson Orin to evaluate real-world performance.
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