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Abstract— GMapping, a Particle Filter-based SLAM 

algorithm, is widely used due to its robustness against odometric 

drift. However, in sparse feature environments such as long 

corridors, its localization accuracy deteriorates because of scan-

matching ambiguity. To overcome this limitation, we propose an 

enhancement to the weight update stage of the Particle Filter 

pipeline. Specifically, we introduce a marker matching 

evaluation step that measures the consistency between observed 

marker data and the map from the previous frame. This 

enhancement enables reliable localization even in low-feature 

environments. Preliminary experiments demonstrate that the 

proposed method improves pose estimation accuracy in 

corridor-like indoor settings without requiring additional 

sensors or prior maps. 

Keywords—SLAM, Particle Filter Localization, Marker 

Matching 

I. INTRODUCTION 

As the demand for indoor autonomous robots continues to 
grow, the importance of accurate Simultaneous Localization 
and Mapping (SLAM) has become increasingly evident. 
GMapping [1], a Particle Filter-based 2D SLAM algorithm 
[2], is robust against odometric drift but often struggles in 
feature-sparse environments such as long corridors. In Fig. 1, 
Robot can recognize the changed position on Fig. 1 (a). 
However, on Fig. 1 (b), it cannot recognize the changed 
position from LiDAR Data. In such settings, the scan-
matching ambiguity between similar LiDAR scans can 
significantly degrade localization accuracy. To overcome this 
limitation, we propose a fusion-based SLAM system that 
integrates 2D LiDAR and a monocular camera to detect 
ArUco markers as artificial landmarks. By incorporating a 
marker matching process into the weight update stage, the 
proposed method achieves more stable and accurate 
localization in simple indoor environments. 

 

Fig. 1. (a) Environment with features, (b) Environment without features 

II. RELATED WORKS 

Recent research on SLAM in sparse feature environments 
has increasingly focused on improving robustness in 

situations where conventional geometric or visual cues are 
insufficient for reliable localization. Such conditions 
commonly arise in large-scale indoor spaces, industrial 
facilities, outdoor environments, or planetary-analog terrains, 
where limited structural features and reduced observability 
often lead to odometry degeneracy and long-term drift [3], [4]. 

A prominent line of work addresses these challenges 
through optimization-based SLAM frameworks with refined 
sensor modeling. In particular, recent studies emphasize 
improving the observability and stability of state estimation 
by enhancing LiDAR, visual, and inertial measurement 
models within factor graph or smoothing-based formulations 
[5]. By explicitly analyzing degeneracy conditions and 
uncertainty propagation, these approaches aim to achieve 
robust localization in unstructured or feature-poor 
environments through improved backend optimization and 
global consistency. Such methods highlight the importance of 
accurate sensor modeling and principled optimization in 
maintaining SLAM performance over long trajectories. 

In parallel, visual–LiDAR fusion approaches have been 
widely explored in environments characterized by texture 
scarcity and severe illumination variations. By leveraging 
LiDAR measurements to complement unreliable visual depth 
estimation, and by introducing additional structural 
constraints such as ground-plane priors or motion 
regularization, these systems demonstrate improved 
robustness in challenging conditions [6]. Long-range drift is 
typically mitigated through frame-to-map or feature-to-map 
optimization strategies that reinforce global consistency [7]. 

Alongside these developments, recent studies suggest that 
improving SLAM robustness does not necessarily require 
increasingly complex system architectures. Motivated by this 
observation, our work explores an alternative perspective by 
focusing on the inference process of Particle Filter-based 
SLAM. Rather than introducing additional sensors or relying 
on global optimization frameworks, we investigate how 
marker-based similarity information can be incorporated 
directly into the particle weighting mechanism. This approach 
follows recent trends in addressing feature sparsity, while 
examining a lightweight and structurally simple modification 
to the SLAM inference pipeline. 

III. SYSTEM OVERVIEW 

A. Experimental Environment 

As Fig. 4, Experiments were conducted in a Gazebo 11 
simulation environment using the TurtleBot3 Waffle Pi robot. 
Fig. 4 (a) shows the virtual environment consisted of a 50-
meter-long corridor with flat walls devoid of natural features. 
ArUco markers were placed at 4-meter intervals along both 
walls to serve as artificial landmarks. In Fig. 4 (b), The robot 



was equipped with a 2D LiDAR and a monocular camera 
positioned at different heights to prevent interference. In Fig. 
4 (c), the ArUco markers had a side length of 0.4 m and were 
placed near the floor for optimal visibility. 

 

Fig. 4. (a) Virtual environment with ArUco Markers, (b) The Robot’s 
appearance and sensor’s position, (c) Attached ArUco Marker’s appearance 

B. Overall Framework 

Fig. 5 shows overview of the proposed system. The 
proposed system enhances the weight computation process in 
the Particle Filter by introducing marker matching. This 
process evaluates the similarity between predicted LiDAR 
scans and the previously built map using ArUco marker 
information. The system pipeline consists of four stages: data 
preprocessing, particle propagation, weight update, and map 
update. 

 

Fig. 5. Proposed SLAM System overview 

 

IV. IMPLEMENTATION 

A. Data-Preprocessing 

As Fig. 6, In the preprocessing step, the monocular camera 
detects ArUco markers and estimates their poses using the 
solvePnP algorithm [8], [9]. The detected marker positions are 
projected onto the LiDAR scan to assign marker IDs to 
corresponding beams. If a beam intersects with a marker, its 
ID is recorded; otherwise, a zero value is assigned, indicating 
no marker detection. 

 

Fig. 6. Data preprocessing description 

B. Particle Movement 

Each particle represents a potential robot pose. The 
propagation process follows the standard prediction step of the 
Particle Filter, using wheel encoder data and adding rotational 
noise to ensure diversity among particle hypotheses. In Fig. 7, 
the Particle Movement process is described. By adding 
random error noise, we can ensure the diversity of possible 
particle states. 

 

Fig. 7. Adding rotational error to wheel encoder data 

C. Weight Update 

The weight update is the core process of the system. Each 
particle receives the preprocessed sensor data, and the system 
evaluates the consistency between the particle's predicted 
LiDAR scan and the previously built occupancy grid map. For 
each LiDAR beam, the corresponding grid cell is identified, 
and their marker IDs are compared. As Fig. 8 shows, there are 
three cases to classify the result of comparison. If the marker 
IDs match, a high score is assigned(Strong Reward), or if they 
differ, the score decreases(Penalty). When both are outside 
marker regions, a smaller score is assigned(Weak Reward). 
The total weight for each particle is obtained by summing the 
scores of all beams. 



 

Fig. 8. Comparison between LiDAR scan data and map pixels 

D. Map Update 

After the weight update step, the particle with the highest 
weight is selected as the robot’s estimated pose, shown in Fig. 
9. The occupancy grid map is then updated based on this 
particle’s sensor data, including marker ID and spatial 
information. The updated map is used in the next iteration of 
the weight update process. 

 

Fig. 9. Selecting the highest weight particle 

V. RESULTS AND COMPARISON 

To evaluate the proposed system, we compared its 
mapping accuracy with that of conventional GMapping under 
identical conditions. The robot moved along a 50-meter 
corridor at a speed of 0.1 m/s. Fig. 10 (a) shows the simulated 
environment, (b) the map generated by GMapping, and (c) the 
map generated by the proposed system. According to Table I, 
the results indicate that while GMapping reconstructed only 
20.7 meters of the corridor (41.4% accuracy), the proposed 
method achieved 49.6 meters (99.2% accuracy). 

 

Fig. 10. (a) Experimental corridor environment in Gazebo 11 simulation 

world, (b) Result of GMapping’s case, (c) Result of the Proposed System’s 
case 

 

 

 

TABLE I. The result comparison between GMapping and Proposed SLAM 

System.  

Case 
Pixel 

Length 

Corridor 

Length 

Pixel 

Count 

Map 

Length 
Accuracy 

GMapping 

0.05m/ 

pixel 
50m 

414pixel 20.7m 41.4% 

Proposed 

SLAM 

System 

992pixel 49.6m 99.2% 

VI. CONCLUSION AND FUTURE WORK 

This paper presented a SLAM system that enables a 2D 
LiDAR to perceive visual markers through sensor fusion with 
a monocular camera. By integrating marker matching 
evaluation into the Particle Filter’s weight update process, the 
proposed method achieves accurate mapping even in feature-
sparse corridors. Experimental results demonstrated a 58% 
improvement in mapping accuracy over conventional 
GMapping. This system can be applied to industrial 
environments with repetitive structures or long featureless 
passages. Future work will focus on extending the framework 
to use object detection instead of markers, eliminating the 
need for pre-installed landmarks. 
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