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Abstract— GMapping, a Particle Filter-based SLAM
algorithm, is widely used due to its robustness against odometric
drift. However, in sparse feature environments such as long
corridors, its localization accuracy deteriorates because of scan-
matching ambiguity. To overcome this limitation, we propose an
enhancement to the weight update stage of the Particle Filter
pipeline. Specifically, we introduce a marker matching
evaluation step that measures the consistency between observed
marker data and the map from the previous frame. This
enhancement enables reliable localization even in low-feature
environments. Preliminary experiments demonstrate that the
proposed method improves pose estimation accuracy in
corridor-like indoor settings without requiring additional
sensors or prior maps.
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I. INTRODUCTION

As the demand for indoor autonomous robots continues to
grow, the importance of accurate Simultaneous Localization
and Mapping (SLAM) has become increasingly evident.
GMapping [1], a Particle Filter-based 2D SLAM algorithm
[2], is robust against odometric drift but often struggles in
feature-sparse environments such as long corridors. In Fig. 1,
Robot can recognize the changed position on Fig. 1 (a).
However, on Fig. 1 (b), it cannot recognize the changed
position from LiDAR Data. In such settings, the scan-
matching ambiguity between similar LiDAR scans can
significantly degrade localization accuracy. To overcome this
limitation, we propose a fusion-based SLAM system that
integrates 2D LiDAR and a monocular camera to detect
ArUco markers as artificial landmarks. By incorporating a
marker matching process into the weight update stage, the
proposed method achieves more stable and accurate
localization in simple indoor environments.
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Fig. 1. (a) Environment with features, (b) Environment without features

II.  RELATED WORKS

Recent research on SLAM in sparse feature environments
has increasingly focused on improving robustness in
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situations where conventional geometric or visual cues are
insufficient for reliable localization. Such conditions
commonly arise in large-scale indoor spaces, industrial
facilities, outdoor environments, or planetary-analog terrains,
where limited structural features and reduced observability
often lead to odometry degeneracy and long-term drift [3], [4].

A prominent line of work addresses these challenges
through optimization-based SLAM frameworks with refined
sensor modeling. In particular, recent studies emphasize
improving the observability and stability of state estimation
by enhancing LiDAR, visual, and inertial measurement
models within factor graph or smoothing-based formulations
[5]. By explicitly analyzing degeneracy conditions and
uncertainty propagation, these approaches aim to achieve
robust localization in unstructured or feature-poor
environments through improved backend optimization and
global consistency. Such methods highlight the importance of
accurate sensor modeling and principled optimization in
maintaining SLAM performance over long trajectories.

In parallel, visual-LiDAR fusion approaches have been
widely explored in environments characterized by texture
scarcity and severe illumination variations. By leveraging
LiDAR measurements to complement unreliable visual depth

estimation, and by introducing additional structural
constraints such as ground-plane priors or motion
regularization, these systems demonstrate improved

robustness in challenging conditions [6]. Long-range drift is
typically mitigated through frame-to-map or feature-to-map
optimization strategies that reinforce global consistency [7].

Alongside these developments, recent studies suggest that
improving SLAM robustness does not necessarily require
increasingly complex system architectures. Motivated by this
observation, our work explores an alternative perspective by
focusing on the inference process of Particle Filter-based
SLAM. Rather than introducing additional sensors or relying
on global optimization frameworks, we investigate how
marker-based similarity information can be incorporated
directly into the particle weighting mechanism. This approach
follows recent trends in addressing feature sparsity, while
examining a lightweight and structurally simple modification
to the SLAM inference pipeline.

III.  SYSTEM OVERVIEW

A. Experimental Environment

As Fig. 4, Experiments were conducted in a Gazebo 11
simulation environment using the TurtleBot3 Waffle Pi robot.
Fig. 4 (a) shows the virtual environment consisted of a 50-
meter-long corridor with flat walls devoid of natural features.
ArUco markers were placed at 4-meter intervals along both
walls to serve as artificial landmarks. In Fig. 4 (b), The robot



was equipped with a 2D LiDAR and a monocular camera
positioned at different heights to prevent interference. In Fig.
4 (c), the ArUco markers had a side length of 0.4 m and were
placed near the floor for optimal visibility.
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Fig. 4. (a) Virtual environment with ArUco Markers, (b) The Robot’s
appearance and sensor’s position, (c) Attached ArUco Marker’s appearance

B. Overall Framework

Fig. 5 shows overview of the proposed system. The
proposed system enhances the weight computation process in
the Particle Filter by introducing marker matching. This
process evaluates the similarity between predicted LiDAR
scans and the previously built map using ArUco marker
information. The system pipeline consists of four stages: data
preprocessing, particle propagation, weight update, and map
update.

@ Data Particle
Preprocessing Movement
Mono Camera 2D LiDAR For All Particles
Marker Detecton | Robot Odometry l
Scan i
Marker Pose
Estimation Adding Noise
Sensor
[ = =
LiDAR Marker Particle Poses
Recogition Prediction |

l () welght update .

Actual Assigned to
Sensor Data | Particle.
I #1 Particle Pose

Marker Matching l

For All Particles
Particle Pose
> Sensor Data
Pixel Information Sensor Information \
- Pose & Marker ID - Pose & Marker ID Marker Match
For All Beams
LiDAR Beam Map Pixel
D=0 »  Check Obstacle >
(No Marker) T Presence LETRmeTE |
Marker ID of >0
Beam (Marker Exist)
v
Accumulatein  __________ The Partide’s
Weight Weight Value

#1 Particle’s
Weight

@ Map Update

Select Best- Map Generated
- Weighted ——  Basedon
Particle Best Particle

#1 Particle’s JJ
Weight }

Fig. 5. Proposed SLAM System overview

IV. IMPLEMENTATION

A. Data-Preprocessing

As Fig. 6, In the preprocessing step, the monocular camera
detects ArUco markers and estimates their poses using the
solvePnP algorithm [8], [9]. The detected marker positions are
projected onto the LiDAR scan to assign marker IDs to
corresponding beams. If a beam intersects with a marker, its
ID is recorded; otherwise, a zero value is assigned, indicating
no marker detection.
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Fig. 6. Data preprocessing description

B. Particle Movement

Each particle represents a potential robot pose. The
propagation process follows the standard prediction step of the
Particle Filter, using wheel encoder data and adding rotational
noise to ensure diversity among particle hypotheses. In Fig. 7,
the Particle Movement process is described. By adding
random error noise, we can ensure the diversity of possible
particle states.
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Fig. 7. Adding rotational error to wheel encoder data

C. Weight Update

The weight update is the core process of the system. Each
particle receives the preprocessed sensor data, and the system
evaluates the consistency between the particle's predicted
LiDAR scan and the previously built occupancy grid map. For
each LiDAR beam, the corresponding grid cell is identified,
and their marker IDs are compared. As Fig. 8 shows, there are
three cases to classify the result of comparison. If the marker
IDs match, a high score is assigned(Strong Reward), or if they
differ, the score decreases(Penalty). When both are outside
marker regions, a smaller score is assigned(Weak Reward).
The total weight for each particle is obtained by summing the
scores of all beams.
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Fig. 8. Comparison between LiDAR scan data and map pixels

D. Map Update

After the weight update step, the particle with the highest
weight is selected as the robot’s estimated pose, shown in Fig.
9. The occupancy grid map is then updated based on this
particle’s sensor data, including marker ID and spatial
information. The updated map is used in the next iteration of
the weight update process.
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Fig. 9. Selecting the highest weight particle

V. RESULTS AND COMPARISON

To evaluate the proposed system, we compared its
mapping accuracy with that of conventional GMapping under
identical conditions. The robot moved along a 50-meter
corridor at a speed of 0.1 m/s. Fig. 10 (a) shows the simulated
environment, (b) the map generated by GMapping, and (c) the
map generated by the proposed system. According to Table I,
the results indicate that while GMapping reconstructed only
20.7 meters of the corridor (41.4% accuracy), the proposed
method achieved 49.6 meters (99.2% accuracy).
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Fig. 10. (a) Experimental corridor environment in Gazebo 11 simulation
world, (b) Result of GMapping’s case, (c) Result of the Proposed System’s
case

TABLE 1. The result comparison between GMapping and Proposed SLAM

System.
Pixel Corridor Pixel Map
Case Accuracy
Length Length Count Length
GMapping 414pixel 20.7m 41.4%
0.05m/
Proposed pixel 50m
SLAM 992pixel 49.6m 99.2%
System

VI. CONCLUSION AND FUTURE WORK

This paper presented a SLAM system that enables a 2D
LiDAR to perceive visual markers through sensor fusion with
a monocular camera. By integrating marker matching
evaluation into the Particle Filter’s weight update process, the
proposed method achieves accurate mapping even in feature-
sparse corridors. Experimental results demonstrated a 58%
improvement in mapping accuracy over conventional
GMapping. This system can be applied to industrial
environments with repetitive structures or long featureless
passages. Future work will focus on extending the framework
to use object detection instead of markers, eliminating the
need for pre-installed landmarks.
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