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Abstract—This paper presents ChickOut, an intelligent 

poultry retail and inventory system that eliminates the need for 

barcodes by integrating deep learning–based object recognition 

and automated weighing for real-time checkout and inventory 

management. The system was developed to address 

inefficiencies in traditional retail operations involving non-

barcoded products such as fresh chicken meat, which typically 

require manual logging. A custom dataset of 4,207 images (6,638 

annotations) across five chicken parts—breast, leg, thigh, wing, 

and quarter—was used to train a YOLOv7 detection model. 

After 300 training epochs, the model achieved an mAP@0.5 of 

97.8%, mAP@0.5:0.95 of 91.2%, precision of 96.5%, and recall 

of 95.8%, enabling reliable real-time detection under varying 

lighting and orientation. The weighing module, composed of a 

load cell and HX711 amplifier interfaced with an Arduino Uno, 

provides ±1 g accuracy and an average response time of 0.3 

seconds. The Django-based backend automatically computes 

prices, updates stock in real time, and issues low-stock alerts, 

achieving 100% synchronization accuracy between sensor data 

and database records. An integrated web-based analytics 

dashboard visualizes sales trends, top-selling items, and vendor 

performance with <2-second data refresh latency for multiple 

terminals. By removing the reliance on barcodes and combining 

AI vision, embedded sensing, and analytics, ChickOut enhances 

operational efficiency, transparency, and sustainability in 

poultry retail—advancing UN SDGs 9 and 12.  

Keywords— retail automation, inventory management, 

YOLOv7, computer vision, barcode-free checkout, Django, deep 

learning, grocery, market, chicken, poultry 

I. INTRODUCTION 

Chicken remains one of the most in-demand food products 
due to its affordability, versatility, and nutritional value. To 
meet high demand, retailers aim to make purchases faster and 
more convenient. A promising solution is the self-checkout 
system for chicken and other meats, allowing shoppers to 
weigh, identify, and pay without queues—ensuring efficiency, 
freshness, and proper handling. 

Integrating automated inventory with self-checkout 
further improves operations. Each transaction updates stock 
levels in real time, reducing tracking errors, avoiding 
shortages or overstock, and ensuring product freshness. 
Together, AI-assisted self-checkout and automated inventory 
management streamline both customer transactions and store 
logistics [1]. 

Traditional inventory systems remain manual and error-
prone, often resulting in inaccuracies from spoilage, losses, 
or theft [2]. These lead to stockouts or misplaced items, while 
lack of real-time data limits responsiveness to demand [1]. 
Many checkout systems also fail to update inventories 
automatically, particularly for non-barcoded products like 
meat or produce [3]. Perishables further challenge accuracy, 
where timely tracking is vital to reduce waste. 

In traditional markets such as palengkes in the 
Philippines, shared selling spaces and lack of unified systems 
hinder vendor-level tracking and performance monitoring. 
Recent advances in computer vision address these gaps by 
automating recognition and inventory processes [4]. AI-
powered systems combined with digital weighing and 
backend synchronization can update inventory instantly and 
minimize human error [5]. 

This study introduces an AI-based chicken part 
recognition and weighing system with a Django backend that 
automatically updates inventory, flags low-stock items, and 
analyzes sales trends. It minimizes manual audits, enhances 
operational efficiency, and aligns with UN SDGs 9 and 12 by 
promoting innovation and sustainable consumption through 
improved management of perishable goods. 

The specific objectives for the study are:  

1. Create an image dataset of chicken parts and train a 
YOLOv7 model 

2. Build retail and inventory hardware by integration of a 
camera and load scale for real-time varied chicken parts 
detection and automatic pricing. 

3. Develop a dynamic web-based application featuring a 
real-time inventory management system with restocking 
alerts and inventory status classification. 

4. Design a web-based analytics dashboard to visualize 
sales trends, identify top-selling chicken parts, and track 
inventory movement.  

II. REVIEW OF RELATED LITERATURE 

A. Stocking of Items in Philippine Supermarket 

In the Philippines, the locale of the study, supermarkets 
vary significantly in size and operations. Large chains like SM 
Supermarket, Puregold, and Robinsons use centralized 



warehouses for multiple branches but still rely on manual 
reordering methods, such as visual assessments and historical 
sales trends. Restocking perishables like produce and proteins 
occurs daily or every few days due to perishability and 
supplier schedules [7]. Smaller supermarkets and local stores 
follow simpler practices, with owners conducting daily visual 
inspections to determine restocking needs. The sale of fresh, 
unbarcoded goods by weight complicates inventory tracking, 
leading to overstocking (resulting in spoilage) or 
understocking (causing missed sales and dissatisfied 
customers) [8], [9]. Such inefficiencies contribute to food 
waste and reduce customer retention [10]. Despite the benefits 
of real-time inventory systems, smaller retailers often view 
these as too costly or complex, leaving them dependent on 
outdated manual methods [11]. 

B. Retail Identification and Inventory Technologies 

Recent studies highlight a shift towards integrating IoT, 
RFID, and AI to enhance inventory management tracking, 
auditing, and predictive capabilities. Zhou et al. [12] proposed 
an IoT-based system using RFID and blockchain to ensure 
transparency and tamper-proof auditing, improving asset 
traceability and reducing counterfeit risks. Bailkar showed 
that machine learning algorithms can enhance intelligent 
inventory management within the ABC Inventory 
Classification framework [13]. Klasson et al. developed a 
dataset for grocery environments, addressing challenges like 
cluttered backgrounds and inconsistent lighting in training 
models [14]. Convolutional Neural Networks (CNN) have 
also improved retail experiences, with applications in 
augmented reality (AR) frameworks for product 
identification, benefiting users with visual impairments. It 
emphasize how computer vision technologies enhance 
shopping experiences for the visually impaired. Tonioni and 
Stefano proposed a hierarchical embedding framework to 
improve item recognition accuracy under real- world 
conditions [18], while Roslan and Saad demonstrated the 
efficiency of CNNs for real-time item recognition at checkout, 
expediting the shopping process and reducing errors [19]. 

C. Dashboard for Analytics 

Dashboards convert raw inventory data into actionable 
insights, supporting agile decision-making for store managers. 
While tools like D3.js and Plotly handle frontend 
visualization, Django is key for backend data processing and 
logic [7]. Our system uses Django to manage data and 
integrate seamlessly with D3.js, enabling visualizations of 
inventory movement, payment trends, order history, and item 
popularity [20]. These real-time dashboards, powered by 
Django, optimize supply chain operations and enhance the 
customer experience [21]. While dashboards are well- 
explored in fields like healthcare and smart cities, there’s a gap 
in grocery retail, especially for managing non-barcoded 
inventory. Our solution fills this gap by combining Django’s 
backend with real-time analytics and visual techniques. 

III. SYSTEM FLOW  

The system architecture of ChickOut, shown in Fig.1  an 
automated chicken part checkout and inventory management 
system, illustrates how image recognition, weight sensing, and 
data analytics are integrated to streamline poultry retail 
operations. The process begins when a user initiates a 
checkout, placing chicken parts on the system’s weighing 
platform. Upon placement, both the camera and the load 
sensor are activated: the camera captures an image of the item 

and sends it to the microcontroller for object identification 
using a trained deep learning model, while the load sensor 
measures its weight. The microcontroller then computes the 
corresponding price based on the identified part and transmits 
the transaction details—including item type, weight, and 
price—to the connected tablet or PC. 

The tablet or PC functions as the main user interface and 
management hub, handling remote storage, automatic stock 
updates, and data visualization. It also provides real-time 
analytics on stock performance, sales trends, and inventory 
levels. Users can access the system through a terminal to 
check out products, review data, or add new stocks, ensuring 
a continuous and synchronized flow of information across all 
system components. Once a chicken part is identified, the 
inventory is automatically updated in real time, ensuring 
accurate product tracking. Any discrepancies between stock 
levels and sales are immediately reflected in the database, and 
the system generates restocking alerts for items running low 
on supply. 

 

Fig. 1. Process flow of ChickOut retail and inventory system 

 The physical setup of the system, shown in Fig. 2, 
integrates the camera, load sensor, and display monitor for 
efficient customer interaction. 

 

Fig. 2. Physical set up of the monitor  
 

The system also supports multiple-item transactions, 
allowing several chicken parts to be detected and processed 
sequentially on the same weighing platform. Each time an 
item is placed, the system identifies the part, determines its 
weight, and computes the price accordingly. Customers can 
continue adding parts—whether of the same or different 



type—and the system updates the running total in real time. 
This feature enables mixed combinations of chicken parts 
with varying prices per kilogram to be processed in a single 
transaction, a capability not typically found in existing retail 
systems. Once all items are processed and payment is 
completed, the inventory database is automatically updated, 
and the transaction is logged for record-keeping and 
analytics. 

The real-time inventory management component plays a 
vital role in maintaining operational efficiency. Low-stock 
items are automatically flagged, triggering restocking 
notifications to prevent shortages. Every transaction is 
recorded and visualized through a web-based analytics 
dashboard that allows store managers to analyze sales trends, 
monitor inventory movement, assess product popularity, and 
identify both high-performing and unsold items. The 
dashboard also supports user-based logins, enabling 
individual cashier performance tracking and transaction 
auditing per terminal or vendor. Through the seamless 
integration of real-time inventory updates, multi-item 
transaction handling, and intelligent data visualization, 
ChickOut ensures accurate stock records, optimized 
restocking, and data-driven decision-making. This enhances 
transparency, operational efficiency, and customer 
convenience in poultry retail operations. 

IV. DATASET CREATION AND MODEL TRAINING 

A custom dataset was created featuring five commonly 
sold chicken cuts in the Philippines: breast, leg, thigh, wing, 
and quarter. Images and videos were captured at varying 
distances and angles against different backgrounds to enhance 
contrast and improve model learning. Detection experiments 
were conducted under both controlled and realistic conditions. 

For the final setup, a dark background was intentionally 
used to increase contrast between the chicken products and the 
background, allowing the chicken part to stand out. While the 
model is capable of operating under varied background 
conditions, the controlled background was selected as a 
practical system constraint to ensure reliable detection in real-
world retail use.  

The dataset consists of 4,207 images with a total of 6,638 
annotations, averaging 1.6 annotations per image. The median 
image resolution is 1280×720 pixels, with an average size of 
0.92 MP. For model development, the dataset was split into 
85% training, 10% validation, and 5% testing, ensuring a 
balanced distribution across all classes. A visual summary of 
the dataset, including class distributions, is shown in Figure 2 
and summarized in Table I. 

TABLE I.  DATASET ANNOTATION COUNT 

Class Total # of Annotation Sample Image 

Breast 1443 

 

Leg 1353 

 

Thigh 1324 

 

Wing 1281 

 

Quarter Leg 1237 

 
YOLOv7 model was trained using a custom dataset that 

was preprocessed through auto-orientation and resized to 
640×640 pixels. Data augmentation was applied to increase 
dataset variability and improve model robustness. Each 
original image generated four augmented versions using the 
following transformations: 

• Rotation: −15° to +15° 

• Shear: ±10° horizontally and vertically 

• Brightness Adjustment: −15% to +15% 

• Noise Injection: up to 0.1% of pixels 

In this study, the YOLOv7 model was trained under two 
configurations—200 epochs and 300 epochs—to evaluate the 
impact of extended training on detection performance. As 
shown in Figure 3, the model trained for 200 epochs 
demonstrates stable convergence across key training metrics. 
Training and validation losses for bounding box regression, 
objectness, and classification consistently decrease, indicating 
effective learning and reduced prediction error. Precision and 
recall rise steadily and plateau at high values, signifying 
reliable detection performance. Similarly, mAP@0.5 and 
mAP@0.5:0.95 progressively improve and stabilize, 
confirming robust generalization and accurate object detection 
across various IoU thresholds. 

 

Fig. 2. YOLO Performance Metrics results 



 For the extended 300-epoch configuration, the model 
continues to refine performance, with losses exhibiting further 
decline and precision and recall remaining near optimal levels. 
The mAP metrics show slight but consistent improvement 
compared to the 200-epoch results, reflecting marginal gains 
from prolonged training. However, the improvements beyond 
200 epochs are incremental, suggesting that the model has 
nearly converged by this point and that additional training 
yields diminishing returns. 

V. HARDWARE DESIGN AND TESTING 

A. Hardware Setup 

In building the weighing module prototype, the load cell 
was mounted onto a circular acrylic platform using screws and 
adhesive to ensure stability and prevent movement. The 
sensor was directly connected to the HX711 signal amplifier, 
which serves to convert the analog signal from the load cell 
into digital data readable by the microcontroller. As shown in 
Fig. 3, The HX711 was then interfaced with an Arduino Uno, 
through jumper wires, providing both signal input and power 
supply. The system was powered through a USB connection 
to a computer, allowing real-time data monitoring and 
calibration during testing. 

 

Fig. 3. Initial digital scale build  and Real-time load cell monitoring. 

The setup demonstrates a real-time load cell monitoring 
system using an Arduino Uno. Load cell data is transmitted 
via serial communication to a Python script, which plots the 
readings in real time. The plot shows load cell values 
fluctuating around zero, indicating detection of applied force. 
The Arduino code handles tare operations and continuously 
sends sensor values, while the Python interface receives and 
displays these readings dynamically.  

The pySerial library was employed to facilitate data 
transfer from the Arduino to Python. This library enables 
serial communication between the two platforms by 
transmitting data through serial ports. To ensure proper 
synchronization, the baud rate used in the Arduino was 
matched with the one specified in the Python script for weight 
readings — in this case, 115200. Since the Arduino sends 
purely numerical data, Python decodes the byte stream using 
UTF-8, converting it into floating-point values that represent 
the weights. 

The goal is not only to read the current weight 
measurements but also to identify significant weights — each 
corresponding to an item placed on the scale. Once a 
significant weight is detected, it is stored in the items_weights 
list, where the total number of elements represents the number 
of items currently on the scale. These weights must 
dynamically update in real time, adding or removing entries to 
accurately reflect the items on the scale. 

To achieve this, several key parameters were defined in 
the Python weight-reading code: 

• Zero Threshold – Ensures that the list stays empty 
when near-zero readings are detected. Any reading 

below a minimal threshold (1 gram) signifies an 
empty scale and resets the item list. 

• Stability Threshold – Determines if weight readings 
are stable by checking whether the change between 
consecutive readings is within a small range (0.1 
gram). If so, the reading is considered stable, 
indicating a new item has likely been placed. 

• Stability Count – Defines the number of consecutive 
identical readings (set to 3) required for a weight to 
be recognized as significant. 

• Minimum Item Weight – Filters out insignificant 
variations such as accidental touches or vibrations. 
Only stable weights exceeding 4 grams are 
considered valid and added to the list. 

• Weight Tolerance – Used when an item is removed. 
The system searches for a previously recorded item 
whose weight closely matches (within ±2 grams) the 
observed negative weight change, then removes it 
from the list. 

Fig. 4 shows the final complete setup of ChickOut 
including the weighing platform, a mounted the register and 
inventory dashboard. A black tray was screwed onto the top 
block of wood which would serve as the surface for weighing 
chicken parrts. The tray's color was chosen to ensure sufficient 
contrast against light-colored items, matching dark 
backgrounds seen in the dataset. 

 

 

Fig. 4. Hardware set up of ChickOut 

B. Accuracy and Speed of Weight Estimation 

To evaluate the accuracy of the weight sensor, several 
trials were conducted using different chicken parts, and the 
measured weights were compared with their actual values. 
Table VIII presents the results of the comparison. The 
computed percentage differences across all samples ranged 
from 0.007% to 0.17%, with an overall average deviation of 
only 0.069%. 

The smallest deviation was recorded for the chicken leg 
(0.007%), while the largest was observed for the chicken thigh 
(0.17%). These minor variations may be attributed to slight 
differences in placement on the weighing platform or surface 
irregularities of the samples. Despite these minimal 
discrepancies, all readings were well within a 0.2% margin of 
error, indicating that the sensor consistently delivered precise 
and reliable measurements. 

Overall, the results demonstrate that the load sensor 
exhibits excellent linearity and repeatability when used for 



poultry products. The high degree of accuracy confirms the 
system’s capability to provide dependable weight readings 
necessary for automated checkout and inventory applications. 

TABLE II.  DATASET ANNOTATION COUNT 

Chicken  
Part 

Actual Weight 
(kg) 

Sensor Weight 
(kg) 

Percentage 
Difference 

Breast 0.1799 0.17976 0.078% 
Leg 0.1517 0.15169 0.007% 

Thigh 0.1645 0.16422 0.170% 
Wing 0.0991 0.09911 0.010% 

Quarter 0.3056 0.30584 0.078% 

To evaluate the system’s response time, several trials were 
performed using different chicken parts. The duration from the 
moment an item was placed on the scale until its 
corresponding weight was registered in the Python list was 
measured. Similarly, the time it took for the scale to return to 
zero after the item’s removal was recorded. The system 
required an average of 0.3 sec to stabilize and record a valid 
weight, and approximately 0.3 to reset to zero. These response 
times indicate that the weighing module operates efficiently 
and is well-suited for real-time processing in automated 
checkout applications.  

VI. REAL-TIME INVENTORY IMPLEMENTATION 

For the inventory management component of this system, 
we utilized the built-in admin dashboard and SQLite database 
provided by the Django framework. We customized it by 
enhancing its visual design and integrating graphs to display 
key inventory metrics, such as current stock levels, sales 
trends, and demand patterns. The homepage of the admin 
dashboard prominently features a sales trend chart. This line 
graph illustrates daily sales activity over the course of a week. 
Users can also apply filters to visualize sales trends over a 
specific time period. Below the sales trend chart, the 
dashboard displays the core data models of the system, 
namely: items_price, Order Transaction, and Stock. 

TABLE III.  DIFFERENT PAGES OF ADAPTIVE INVENTORY SYSTEM 

Model or Page Description 

Item Price Model 

 

 stores the price per 
kilogram of each chicken 

part (used to compute the 
total price) 

 records the most recent date 
and time an item’s price 

was changed. 

Order Transaction Model 

 

 visualizes customer orders, 
including unique order ID 

constructed (using date-
time and cash register ), the 

total amount, payment 

method, and the date and 
time of processing.  

 

Current Stock Model 

 

 monitors both the initial and 
remaining stock of each 

item after transactions, 

along with the last update 
timestamp.  

 displays the stock status  
a. “Good Stock” if the 

remaining quantity is 
above threshold value 

(e.g. 50% ) 

b. “Low Stock” if it is 

 

below threshold. 

c. “Out of Stock” if the 
stock reaches zero. 

• operators can adjust this 

threshold based on their 
operational policies, 

product turnover rates, 

or restocking strategies. 

VII. WEB-BASED DATA ANALYTICS IMPLEMENTATION 

To effectively build a web-based analytics dashboard, we 
leveraged two Django ORM models—history stock and 
expected dryout—that serve complementary roles in 
inventory and sales analytics. Overall, these models facilitate 
the development of an analytics dashboard by exposing 
structured and query-able data fields that enable deeper 
insights into inventory performance.  

TABLE IV.  STOCKS AND PERFORMANCE ANALYTICS 

Model or Page Description 

History of Batch Model 

 

 includes fields for total 
stock, sales, remaining 

items, perishables, and 
losses. 

 offers granular visibility 
into how each batch of 

items is consumed or 
wasted over time. 

 supports historical 
tracking of sales trends, 

stock depletion, and 

wastage patterns of each 
batch delivery 

Expected Dryout Model 

 

 performs predictive 

analytics by computing 
how long the current stock 

will last based on past 

sales velocity. 

 calculates the duration 
from delivery to present 

day, computes average 

sales per day, and 
estimates the expected 

dryout date. 

Terminal Performance Model 

 

 designed for managers and 
owners to effectively 

analyze the performance 
of individual cashiers, 

checkout stations, and 

sellers. 

 

 

 

Top-selling items can be identified using the sales_qty 
field from the history stock model, complemented by 
average_sales data from the expected dryout model. 
Meanwhile, unsold or underperforming batches can be 
determined by analyzing entries with high remaining_qty and 
either low sales_qty or low average_sales, indicating poor 
movement or excess stock.  

Additionally, tracking inventory movement by category or 
batch is made possible through filters applied to fields such as 
batch and date_batch, as well as computed values like 
duration, expected_dryout_date, and perished_qty. These data 



points collectively support dynamic visualizations and reports 
for sales trend analysis and inventory management. 

From testing, the developed inventory system can 
successfully register individual cashier logins, associate’s 
transactions with specific user accounts, and links those with 
designated terminals or checkout stations. The backend 
consistently updates transaction logs in real time, and the 
dashboard accurately reflects sales activity based on the 
logged-in user and terminal ID. The preliminary dashboard 
views confirm that store managers will be able to visualize and 
compare seller or terminal performance through bar graphs, 
pie charts, and filtered reports.  

VIII. CONCLUSION 

This paper presented ChickOut, an innovative deep 
learning–based poultry retail and inventory management 
system that automates the identification, weighing, and 
recording of chicken parts in real time—without the need for 
barcodes or manual input. The integration of computer vision 
and load-sensing technologies enables efficient and accurate 
transaction processing suitable for modern retail 
environments. 

The vision module, powered by a YOLO-based detection 
model, achieved a high recognition accuracy of 97.8% 
mAP@0.5, effectively identifying various chicken parts even 
when multiple and different parts are placed simultaneously 
on the platform. This multi-item detection capability 
distinguishes ChickOut from traditional single-item systems, 
allowing faster processing and improved customer 
throughput. 

The weighing module demonstrated an average response 
time of 0.3 seconds, ensuring rapid stabilization and real-time 
computation of combined weights and prices. This 
responsiveness makes the system ideal for continuous and 
high-traffic retail operations. 

Through its synchronized database and dashboard 
integration, ChickOut maintains accurate, real-time inventory 
updates by automatically logging each transaction’s visual, 
weight, and pricing data. This ensures precise stock tracking, 
reduces manual errors, and provides vendors with actionable 
analytics for sales and supply management. 

Overall, ChickOut introduces a novel and practical 
approach to automating retail transactions in the poultry 
industry—combining multi-item detection, intelligent 
weighing, and seamless inventory synchronization. Future 
work will focus on expanding dataset diversity, enhancing 
robustness under varying market conditions, and 
incorporating mobile payment integration. With its unique 
combination of speed, accuracy, and analytics, ChickOut 
represents a significant step toward smarter, data-driven, and 
fully automated retail systems. 
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