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Abstract—This paper presents ChickOut, an intelligent
poultry retail and inventory system that eliminates the need for
barcodes by integrating deep learning—based object recognition
and automated weighing for real-time checkout and inventory
management. The system was developed to address
inefficiencies in traditional retail operations involving non-
barcoded products such as fresh chicken meat, which typically
require manual logging. A custom dataset of 4,207 images (6,638
annotations) across five chicken parts—breast, leg, thigh, wing,
and quarter—was used to train a YOLOv7 detection model.
After 300 training epochs, the model achieved an mAP@0.5 of
97.8%, mAP@0.5:0.95 of 91.2%, precision of 96.5%, and recall
of 95.8%, enabling reliable real-time detection under varying
lighting and orientation. The weighing module, composed of a
load cell and HX711 amplifier interfaced with an Arduino Uno,
provides 1 g accuracy and an average response time of 0.3
seconds. The Django-based backend automatically computes
prices, updates stock in real time, and issues low-stock alerts,
achieving 100% synchronization accuracy between sensor data
and database records. An integrated web-based analytics
dashboard visualizes sales trends, top-selling items, and vendor
performance with <2-second data refresh latency for multiple
terminals. By removing the reliance on barcodes and combining
Al vision, embedded sensing, and analytics, ChickOut enhances
operational efficiency, transparency, and sustainability in
poultry retail—advancing UN SDGs 9 and 12.

Keywords—  retail automation, inventory management,
YOLOv7, computer vision, barcode-free checkout, Django, deep
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I. INTRODUCTION

Chicken remains one of the most in-demand food products
due to its affordability, versatility, and nutritional value. To
meet high demand, retailers aim to make purchases faster and
more convenient. A promising solution is the self-checkout
system for chicken and other meats, allowing shoppers to
weigh, identify, and pay without queues—ensuring efficiency,
freshness, and proper handling.

Integrating automated inventory with self-checkout
further improves operations. Each transaction updates stock
levels in real time, reducing tracking errors, avoiding
shortages or overstock, and ensuring product freshness.
Together, Al-assisted self-checkout and automated inventory
management streamline both customer transactions and store
logistics [1].

Traditional inventory systems remain manual and error-
prone, often resulting in inaccuracies from spoilage, losses,
or theft [2]. These lead to stockouts or misplaced items, while
lack of real-time data limits responsiveness to demand [1].
Many checkout systems also fail to update inventories
automatically, particularly for non-barcoded products like
meat or produce [3]. Perishables further challenge accuracy,
where timely tracking is vital to reduce waste.

In traditional markets such as palengkes in the
Philippines, shared selling spaces and lack of unified systems
hinder vendor-level tracking and performance monitoring.
Recent advances in computer vision address these gaps by
automating recognition and inventory processes [4]. Al-
powered systems combined with digital weighing and
backend synchronization can update inventory instantly and
minimize human error [5].

This study introduces an Al-based chicken part
recognition and weighing system with a Django backend that
automatically updates inventory, flags low-stock items, and
analyzes sales trends. It minimizes manual audits, enhances
operational efficiency, and aligns with UN SDGs 9 and 12 by
promoting innovation and sustainable consumption through
improved management of perishable goods.

The specific objectives for the study are:

1. Create an image dataset of chicken parts and train a
YOLOvV7 model

2. Build retail and inventory hardware by integration of a
camera and load scale for real-time varied chicken parts
detection and automatic pricing.

3. Develop a dynamic web-based application featuring a
real-time inventory management system with restocking
alerts and inventory status classification.

4. Design a web-based analytics dashboard to visualize
sales trends, identify top-selling chicken parts, and track
inventory movement.

II. REVIEW OF RELATED LITERATURE

A. Stocking of Items in Philippine Supermarket

In the Philippines, the locale of the study, supermarkets
vary significantly in size and operations. Large chains like SM
Supermarket, Puregold, and Robinsons use centralized



warehouses for multiple branches but still rely on manual
reordering methods, such as visual assessments and historical
sales trends. Restocking perishables like produce and proteins
occurs daily or every few days due to perishability and
supplier schedules [7]. Smaller supermarkets and local stores
follow simpler practices, with owners conducting daily visual
inspections to determine restocking needs. The sale of fresh,
unbarcoded goods by weight complicates inventory tracking,
leading to overstocking (resulting in spoilage) or
understocking (causing missed sales and dissatisfied
customers) [8], [9]. Such inefficiencies contribute to food
waste and reduce customer retention [10]. Despite the benefits
of real-time inventory systems, smaller retailers often view
these as too costly or complex, leaving them dependent on
outdated manual methods [11].

B. Retail Identification and Inventory Technologies

Recent studies highlight a shift towards integrating IoT,
RFID, and Al to enhance inventory management tracking,
auditing, and predictive capabilities. Zhou et al. [12] proposed
an loT-based system using RFID and blockchain to ensure
transparency and tamper-proof auditing, improving asset
traceability and reducing counterfeit risks. Bailkar showed
that machine learning algorithms can enhance intelligent
inventory management within the ABC Inventory
Classification framework [13]. Klasson et al. developed a
dataset for grocery environments, addressing challenges like
cluttered backgrounds and inconsistent lighting in training
models [14]. Convolutional Neural Networks (CNN) have
also improved retail experiences, with applications in
augmented reality (AR) frameworks for product
identification, benefiting users with visual impairments. It
emphasize how computer vision technologies enhance
shopping experiences for the visually impaired. Tonioni and
Stefano proposed a hierarchical embedding framework to
improve item recognition accuracy under real- world
conditions [18], while Roslan and Saad demonstrated the
efficiency of CNNss for real-time item recognition at checkout,
expediting the shopping process and reducing errors [19].

C. Dashboard for Analytics

Dashboards convert raw inventory data into actionable
insights, supporting agile decision-making for store managers.
While tools like D3.js and Plotly handle frontend
visualization, Django is key for backend data processing and
logic [7]. Our system uses Django to manage data and
integrate seamlessly with D3.js, enabling visualizations of
inventory movement, payment trends, order history, and item
popularity [20]. These real-time dashboards, powered by
Django, optimize supply chain operations and enhance the
customer experience [21]. While dashboards are well-
explored in fields like healthcare and smart cities, there’s a gap
in grocery retail, especially for managing non-barcoded
inventory. Our solution fills this gap by combining Django’s
backend with real-time analytics and visual techniques.

III. SYSTEM FLOW

The system architecture of ChickOut, shown in Fig.1 an
automated chicken part checkout and inventory management
system, illustrates how image recognition, weight sensing, and
data analytics are integrated to streamline poultry retail
operations. The process begins when a user initiates a
checkout, placing chicken parts on the system’s weighing
platform. Upon placement, both the camera and the load
sensor are activated: the camera captures an image of the item

and sends it to the microcontroller for object identification
using a trained deep learning model, while the load sensor
measures its weight. The microcontroller then computes the
corresponding price based on the identified part and transmits
the transaction details—including item type, weight, and
price—to the connected tablet or PC.

The tablet or PC functions as the main user interface and
management hub, handling remote storage, automatic stock
updates, and data visualization. It also provides real-time
analytics on stock performance, sales trends, and inventory
levels. Users can access the system through a terminal to
check out products, review data, or add new stocks, ensuring
a continuous and synchronized flow of information across all
system components. Once a chicken part is identified, the
inventory is automatically updated in real time, ensuring
accurate product tracking. Any discrepancies between stock
levels and sales are immediately reflected in the database, and
the system generates restocking alerts for items running low
on supply.
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Fig. 1. Process flow of ChickOut retail and inventory system

The physical setup of the system, shown in Fig. 2,
integrates the camera, load sensor, and display monitor for
efficient customer interaction.
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Fig. 2. Physical set up of the monitor

The system also supports multiple-item transactions,
allowing several chicken parts to be detected and processed
sequentially on the same weighing platform. Each time an
item is placed, the system identifies the part, determines its
weight, and computes the price accordingly. Customers can
continue adding parts—whether of the same or different



type—and the system updates the running total in real time.
This feature enables mixed combinations of chicken parts
with varying prices per kilogram to be processed in a single
transaction, a capability not typically found in existing retail
systems. Once all items are processed and payment is
completed, the inventory database is automatically updated,
and the transaction is logged for record-keeping and
analytics.

The real-time inventory management component plays a
vital role in maintaining operational efficiency. Low-stock
items are automatically flagged, triggering restocking
notifications to prevent shortages. Every transaction is
recorded and visualized through a web-based analytics
dashboard that allows store managers to analyze sales trends,
monitor inventory movement, assess product popularity, and
identify both high-performing and unsold items. The
dashboard also supports user-based logins, enabling
individual cashier performance tracking and transaction
auditing per terminal or vendor. Through the seamless
integration of real-time inventory updates, multi-item
transaction handling, and intelligent data visualization,
ChickOut ensures accurate stock records, optimized
restocking, and data-driven decision-making. This enhances
transparency, operational efficiency, and customer
convenience in poultry retail operations.

IV. DATASET CREATION AND MODEL TRAINING

A custom dataset was created featuring five commonly
sold chicken cuts in the Philippines: breast, leg, thigh, wing,
and quarter. Images and videos were captured at varying
distances and angles against different backgrounds to enhance
contrast and improve model learning. Detection experiments
were conducted under both controlled and realistic conditions.

For the final setup, a dark background was intentionally
used to increase contrast between the chicken products and the
background, allowing the chicken part to stand out. While the
model is capable of operating under varied background
conditions, the controlled background was selected as a
practical system constraint to ensure reliable detection in real-
world retail use.

The dataset consists of 4,207 images with a total of 6,638
annotations, averaging 1.6 annotations per image. The median
image resolution is 1280x720 pixels, with an average size of
0.92 MP. For model development, the dataset was split into
85% training, 10% validation, and 5% testing, ensuring a
balanced distribution across all classes. A visual summary of
the dataset, including class distributions, is shown in Figure 2
and summarized in Table 1.

TABLE L DATASET ANNOTATION COUNT
Class Total # of Annotation Sample Image
Breast 1443
Leg 1353

Thigh 1324
Wing 1281
Quarter Leg 1237

YOLOvV7 model was trained using a custom dataset that
was preprocessed through auto-orientation and resized to
640%640 pixels. Data augmentation was applied to increase
dataset variability and improve model robustness. Each
original image generated four augmented versions using the
following transformations:

. Rotation: —15° to +15°

. Shear: +£10° horizontally and vertically
. Brightness Adjustment: —15% to +15%
. Noise Injection: up to 0.1% of pixels

In this study, the YOLOv7 model was trained under two
configurations—200 epochs and 300 epochs—to evaluate the
impact of extended training on detection performance. As
shown in Figure 3, the model trained for 200 epochs
demonstrates stable convergence across key training metrics.
Training and validation losses for bounding box regression,
objectness, and classification consistently decrease, indicating
effective learning and reduced prediction error. Precision and
recall rise steadily and plateau at high values, signifying
reliable detection performance. Similarly, mAP@0.5 and
mAP@0.5:0.95 progressively improve and stabilize,
confirming robust generalization and accurate object detection
across various IoU thresholds.
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Fig. 2. YOLO Performance Metrics results




For the extended 300-epoch configuration, the model
continues to refine performance, with losses exhibiting further
decline and precision and recall remaining near optimal levels.
The mAP metrics show slight but consistent improvement
compared to the 200-epoch results, reflecting marginal gains
from prolonged training. However, the improvements beyond
200 epochs are incremental, suggesting that the model has
nearly converged by this point and that additional training
yields diminishing returns.

V. HARDWARE DESIGN AND TESTING

A. Hardware Setup

In building the weighing module prototype, the load cell
was mounted onto a circular acrylic platform using screws and
adhesive to ensure stability and prevent movement. The
sensor was directly connected to the HX711 signal amplifier,
which serves to convert the analog signal from the load cell
into digital data readable by the microcontroller. As shown in
Fig. 3, The HX711 was then interfaced with an Arduino Uno,
through jumper wires, providing both signal input and power
supply. The system was powered through a USB connection
to a computer, allowing real-time data monitoring and
calibration during testing.

Fig. 3. Initial digital scale build and Real-time load cell monitoring.

The setup demonstrates a real-time load cell monitoring
system using an Arduino Uno. Load cell data is transmitted
via serial communication to a Python script, which plots the
readings in real time. The plot shows load cell values
fluctuating around zero, indicating detection of applied force.
The Arduino code handles tare operations and continuously
sends sensor values, while the Python interface receives and
displays these readings dynamically.

The pySerial library was employed to facilitate data
transfer from the Arduino to Python. This library enables
serial communication between the two platforms by
transmitting data through serial ports. To ensure proper
synchronization, the baud rate used in the Arduino was
matched with the one specified in the Python script for weight
readings — in this case, 115200. Since the Arduino sends
purely numerical data, Python decodes the byte stream using
UTF-8, converting it into floating-point values that represent
the weights.

The goal is not only to read the current weight
measurements but also to identify significant weights — each
corresponding to an item placed on the scale. Once a
significant weight is detected, it is stored in the items_weights
list, where the total number of elements represents the number
of items currently on the scale. These weights must
dynamically update in real time, adding or removing entries to
accurately reflect the items on the scale.

To achieve this, several key parameters were defined in
the Python weight-reading code:

e  Zero Threshold — Ensures that the list stays empty
when near-zero readings are detected. Any reading

below a minimal threshold (1 gram) signifies an
empty scale and resets the item list.

e  Stability Threshold — Determines if weight readings
are stable by checking whether the change between
consecutive readings is within a small range (0.1
gram). If so, the reading is considered stable,
indicating a new item has likely been placed.

e  Stability Count — Defines the number of consecutive
identical readings (set to 3) required for a weight to
be recognized as significant.

¢ Minimum Item Weight — Filters out insignificant
variations such as accidental touches or vibrations.
Only stable weights exceeding 4 grams are
considered valid and added to the list.

e  Weight Tolerance — Used when an item is removed.
The system searches for a previously recorded item
whose weight closely matches (within +2 grams) the
observed negative weight change, then removes it
from the list.

Fig. 4 shows the final complete setup of ChickOut
including the weighing platform, a mounted the register and
inventory dashboard. A black tray was screwed onto the top
block of wood which would serve as the surface for weighing
chicken parrts. The tray's color was chosen to ensure sufficient
contrast against light-colored items, matching dark
backgrounds seen in the dataset.
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Fig. 4. Hardware set up of ChickOut

B. Accuracy and Speed of Weight Estimation

To evaluate the accuracy of the weight sensor, several
trials were conducted using different chicken parts, and the
measured weights were compared with their actual values.
Table VIII presents the results of the comparison. The
computed percentage differences across all samples ranged
from 0.007% to 0.17%, with an overall average deviation of
only 0.069%.

The smallest deviation was recorded for the chicken leg
(0.007%), while the largest was observed for the chicken thigh
(0.17%). These minor variations may be attributed to slight
differences in placement on the weighing platform or surface
irregularities of the samples. Despite these minimal
discrepancies, all readings were well within a 0.2% margin of
error, indicating that the sensor consistently delivered precise
and reliable measurements.

Overall, the results demonstrate that the load sensor
exhibits excellent linearity and repeatability when used for



poultry products. The high degree of accuracy confirms the
system’s capability to provide dependable weight readings
necessary for automated checkout and inventory applications.

TABLE II. DATASET ANNOTATION COUNT
Chicken Actual Weight | Sensor Weight Percentage
Part (kg) (kg) Difference
Breast 0.1799 0.17976 0.078%
Leg 0.1517 0.15169 0.007%
Thigh 0.1645 0.16422 0.170%
Wing 0.0991 0.09911 0.010%
Quarter 0.3056 0.30584 0.078%

To evaluate the system’s response time, several trials were
performed using different chicken parts. The duration from the
moment an item was placed on the scale until its
corresponding weight was registered in the Python list was
measured. Similarly, the time it took for the scale to return to
zero after the item’s removal was recorded. The system
required an average of 0.3 sec to stabilize and record a valid
weight, and approximately 0.3 to reset to zero. These response
times indicate that the weighing module operates efficiently
and is well-suited for real-time processing in automated
checkout applications.

VI. REAL-TIME INVENTORY IMPLEMENTATION

For the inventory management component of this system,
we utilized the built-in admin dashboard and SQLite database
provided by the Django framework. We customized it by
enhancing its visual design and integrating graphs to display
key inventory metrics, such as current stock levels, sales
trends, and demand patterns. The homepage of the admin
dashboard prominently features a sales trend chart. This line
graph illustrates daily sales activity over the course of a week.
Users can also apply filters to visualize sales trends over a
specific time period. Below the sales trend chart, the
dashboard displays the core data models of the system,
namely: items_price, Order Transaction, and Stock.

TABLE III. DIFFERENT PAGES OF ADAPTIVE INVENTORY SYSTEM

Model or Page Description
Item Price Model

O memNave ITEM PRICE

=stores the price per

kilogram of each chicken
part (used to compute the
total price)

chicken wing 390
chicken_breast 450
O chicken_quarterleg 740

O chicken thigh 600

=records the most recent date
and time an item’s price
was changed.

chicken_leg 550

Order Transaction Model . .
=visualizes customer orders,

including unique order ID
constructed (using date-
time and cash register ), the
amount, payment
method, and the date and
time of processing.

o ORDER 1D TOTAL AMOUNT FAYTAENT MODE
() TZO0Z5050680008 4617 Online
(s} T202505080007 F4.08 Cashk
11 tzozsosomaocs  siom .

| T202505080005 5265 Cask total
O Teoesesosvoor w1z casn
(1 Tzozsospeagea  1zan Gt

T T202505080002 B255 Cazi-

Current Stock Model
s = monitors both the initial and

- remaining stock of each
item after transactions,
along with the last update

timestamp.

=displays the stock status
a.  “Good Stock” if the
remaining quantity is
above threshold value
(e.g. 50%)
b.  “Low Stock” if it is

below threshold.

“Out of Stock” if the

stock reaches zero.
operators can adjust this
threshold based on their
operational  policies,
product turnover rates,

mEm TEM TYPE INTIA
chicken_wing Chicken 15 C.
) chicken_breast Chicken 16
chicken_quarterleg Chicken 15 °
chicken_leg Chicken 18

chicken_thigh Chicken 15

or restocking strategies.

VII. WEB-BASED DATA ANALYTICS IMPLEMENTATION

To effectively build a web-based analytics dashboard, we
leveraged two Django ORM models—history stock and
expected dryout—that serve complementary roles in
inventory and sales analytics. Overall, these models facilitate
the development of an analytics dashboard by exposing
structured and query-able data fields that enable deeper
insights into inventory performance.

TABLE IV. STOCKS AND PERFORMANCE ANALYTICS
Model or Page Description
History of Batch Model

=includes fields for total

stock, sales, remaining
items, perishables, and
losses.

Grange Grich Omrmn

=offers granular visibility

into how each batch of
items is consumed or
wasted over time.

= supports historical

tracking of sales trends,
stock  depletion, and
wastage patterns of each
batch delivery

O wuor sazion [ DAY MUsQY YA

Apr 22,2026

3
2 Ap1 32025 € 2,
1

A 1.2025.€ 2

Expected Dryout Model -
= performs predictive

analytics by computing
how long the current stock
will last based on past
sales velocity.

=calculates the duration
from delivery to present
day, computes average
sales per day, and
estimates the expected
dryout date.

Terminal Performance Model .
= designed for managers and

owners to effectively
analyze the performance

of individual cashiers,
checkout stations, and
‘ ‘ sellers.

D

Top-selling items can be identified using the sales qty
field from the history stock model, complemented by
average sales data from the expected dryout model.
Meanwhile, unsold or underperforming batches can be
determined by analyzing entries with high remaining_qty and
either low sales qty or low average sales, indicating poor
movement or excess stock.

Additionally, tracking inventory movement by category or
batch is made possible through filters applied to fields such as
batch and date batch, as well as computed values like
duration, expected dryout date, and perished qty. These data



points collectively support dynamic visualizations and reports
for sales trend analysis and inventory management.

From testing, the developed inventory system can
successfully register individual cashier logins, associate’s
transactions with specific user accounts, and links those with
designated terminals or checkout stations. The backend
consistently updates transaction logs in real time, and the
dashboard accurately reflects sales activity based on the
logged-in user and terminal ID. The preliminary dashboard
views confirm that store managers will be able to visualize and
compare seller or terminal performance through bar graphs,
pie charts, and filtered reports.

VIII. CONCLUSION

This paper presented ChickOut, an innovative deep
learning—based poultry retail and inventory management
system that automates the identification, weighing, and
recording of chicken parts in real time—without the need for
barcodes or manual input. The integration of computer vision
and load-sensing technologies enables efficient and accurate
transaction  processing suitable for modern retail
environments.

The vision module, powered by a YOLO-based detection
model, achieved a high recognition accuracy of 97.8%
mAP@Q0.5, effectively identifying various chicken parts even
when multiple and different parts are placed simultaneously
on the platform. This multi-item detection capability
distinguishes ChickOut from traditional single-item systems,
allowing faster processing and improved customer
throughput.

The weighing module demonstrated an average response
time of 0.3 seconds, ensuring rapid stabilization and real-time
computation of combined weights and prices. This
responsiveness makes the system ideal for continuous and
high-traffic retail operations.

Through its synchronized database and dashboard
integration, ChickOut maintains accurate, real-time inventory
updates by automatically logging each transaction’s visual,
weight, and pricing data. This ensures precise stock tracking,
reduces manual errors, and provides vendors with actionable
analytics for sales and supply management.

Overall, ChickOut introduces a novel and practical
approach to automating retail transactions in the poultry
industry—combining  multi-item  detection, intelligent
weighing, and seamless inventory synchronization. Future
work will focus on expanding dataset diversity, enhancing
robustness under varying market conditions, and
incorporating mobile payment integration. With its unique
combination of speed, accuracy, and analytics, ChickOut
represents a significant step toward smarter, data-driven, and
fully automated retail systems.
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