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Abstract—This study proposes a machine learning-based
framework for predicting the drain peak current induced
by a Single Event Upset (SEU) in a Buried Channel Array
Transistor (BCAT) structure. Transient current responses were
obtained through TCAD simulations under various radiation
conditions, with linear energy transfer (LET) values ranging
from 1 to 100 MeV-cm?/mg and trap densities from 1 x 10'°
to 1 x 10'* em™3. These data were used to train and validate
a regression-based learning model capable of quantitatively esti-
mating the drain peak current without additional physical sim-
ulations. The trained model achieved a determination coefficient
(R?) of 0.989 and a mean squared error (MSE) of 3.29 x 1078,
demonstrating high predictive accuracy. The machine learning
model successfully captured the nonlinear interactions between
LET and trap density that govern SEU-induced transient behav-
ior. This approach provides a computationally efficient surrogate
to conventional TCAD analysis, enabling rapid evaluation of
radiation-induced effects in advanced DRAM devices and offer-
ing practical insights for optimizing SEU-tolerant semiconductor
design.

Index Terms—DRAM, BCAT, SEU(Single Event Upset),
LET(Linear Energy Transfer), Trap Density, Drain Total Cur-
rent, Drain Peak Current

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) is a key com-
ponent in modern computing systems due to its high integra-
tion density and fast operation. However, as semiconductor
devices continue to scale down, DRAM becomes increasingly
susceptible to radiation-induced effects, particularly under
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high-energy particle exposure such as space or high-altitude
environments [1] [2] [3] [4]. Among these effects, Single
Event Upset (SEU) caused by heavy-ion strikes has emerged as
one of the most critical reliability concerns. When energetic
ions penetrate the memory cell, they generate dense tracks
of electron-hole pairs, inducing transient current spikes that
may disturb or invert stored data [5]. To accurately ana-
lyze these radiation-induced transient phenomena, device-level
simulation tools such as Technology Computer-Aided Design
(TCAD) are commonly used. However, TCAD simulations
are computationally expensive and time-consuming when con-
sidering multiple physical parameters such as Linear Energy
Transfer (LET) and trap density. To address this limitation,
this study proposes a machine learning-based framework that
predicts the drain peak current induced by SEU in DRAM
structures. By learning the nonlinear relationship between
LET, trap characteristics, and transient current behavior, the
proposed model enables fast and reliable estimation of SEU-
induced current responses without extensive TCAD simula-
tions.

II. RESULTS AND DISCUSSION
A. Simulation Setup

This study used the Synopsys Sentaurus Technology
Computer-Aided Design (TCAD) tool to design and simulate a
2-cell BCAT device. Fig. 1 illustrates the typical 2-Cell BCAT
structure and the simulation setup for heavy-ion incidence [8].
In this setup, a storage node biased at 1.2 V is exposed to
heavy-ion strikes, and the initial bias conditions are set to
Vbs = 1.2 V and V5 = -0.2 V. When heavy ions penetrate
the device, transient leakage currents are generated along the
ion track, which temporarily disturb the normal operation of
the memory cell.

Based on the simulation setup described above, a total of 80
transient TCAD simulation cases were generated by systemat-
ically varying LET and trap density. LET values were selected
as 1, 5, 10, 20, 30, 40, 50, and 100 MeV-ch/mg, while trap
densities ranged from 1 x 10'3 to 1 x 10'* cm™3. For each
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Fig. 1. (a) Typical 2-cell BCAT structure and (b) Simulation of heavy ion
incidence

condition, the transient drain current waveform was simulated
and the drain peak current was extracted as the target output.
This structured sampling strategy ensures uniform coverage of
the parameter space while minimizing the computational cost
of TCAD simulations.

B. Simulation Results and Analysis

The relationship between LET, trap density, and drain peak
current is inherently nonlinear. LET determines the amount of
charge deposited along the ion track, while trap density affects
the transient drain current response. The combined influence
of LET and trap density leads to a nonlinear dependence of
the drain peak current on radiation energy and defect-related
conditions.

Fig. 2 shows the transient drain current response when a
heavy ion impacts the drain region at approximately 11 ns.
When the heavy ion strikes the BCAT device, a large number
of electron—hole pairs are generated along the ion track within
the drain region. These charge carriers rapidly drift under the
influence of the electric field, resulting in a sharp transient
increase in the drain current, followed by a gradual decay as
the transient response relaxes after the ion strike [6] [7]. This
current waveform typically exhibits a narrow, high-amplitude
spike corresponding to the initial charge deposition, and a
subsequent tail as the transient disturbance diminishes. As the
LET of the incident particle increases, the density of generated
electron—hole pairs also increases, leading to a higher peak cur-
rent and a stronger transient response. In addition, variations in
trap density change the magnitude and temporal profile of the

1024 —— Heavy lon X BCAT
< 1044 —— Heavy lon O BCAT
= 10°4
S 104
E 107 4 A factor of 108
Q 10°4 difference at the peak
© 10°4
0 107,

l; 10" 4
‘© 10724
5 1072 4

10—14_

Heavylon Incidence

1078 T .

5 10 15 20
Time [ns]
Fig. 2. Comparison of Drain Total Current with and without heavy ion

incidence

transient drain current. These trends indicate that the transient
drain current is highly sensitive to both radiation energy and
defect-related conditions. The rapid redistribution of charge
carriers causes a temporary disturbance of the electric field
distribution within the device, which can induce momentary
malfunction or data instability [9]. Understanding this transient
response is essential for evaluating SEU-induced behavior and
forms the basis for constructing a machine learning model
to predict the drain peak current under various radiation
conditions.

Fig. 3 presents the correlation between the predicted and
actual drain peak current values obtained from the Random
Forest regression model trained on the TCAD dataset. Each
data point represents a unique simulation case with different
combinations of LET and trap density. The red diagonal
line indicates the ideal 1:1 agreement between the machine
learning prediction and the TCAD simulation, and most data
points are closely aligned with this line. This strong correlation
demonstrates that the trained model accurately reproduces the
results of physics-based simulations across the entire data
range.

The model achieved a coefficient of determination (R?) of
0.989 and a mean squared error (MSE) of 3.29 x 1078, con-
firming its high predictive performance. This result indicates
that the model successfully learned the nonlinear relationship
between radiation energy deposition and defect-related con-
ditions that govern the transient drain current behavior. In
particular, the Random Forest algorithm effectively captured
how increased LET leads to enhanced charge generation and
larger current spikes, while higher trap density modifies the
drain peak current response and the overall transient behavior.

Random Forest regression was selected due to its robust-
ness in learning nonlinear relationships from relatively small
datasets and its strong resistance to overfitting. A quantitative



Random Forest Regression (All Data via 5-Fold CV)
R?=0.989, MSE=3.29e-08

0.008 4

o

(=]

[=)]

3
.

0.006

0.005 +

0.004

0.003

0.002

Predicted Peak Drain Current (A)

0.001

0.000 1 1 1 1 1 1 \ \
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Actual Peak Drain Current (A)

Fig. 3. Comparison between the predicted and actual drain peak current values
obtained from the Random Forest regression model

comparison with linear regression and support vector regres-
sion is summarized in Table I.

In addition to its predictive accuracy, the proposed machine
learning framework provides a substantial reduction in compu-
tational cost compared with conventional TCAD simulations.
While a single transient TCAD simulation typically requires
tens of minutes to hours depending on mesh resolution and
physical models, the trained model can estimate the drain peak
current within milliseconds for a given input condition. This
corresponds to a reduction in computational time by several
orders of magnitude, enabling efficient large-scale parameter
exploration and reliability-aware design optimization for SEU-
tolerant DRAM structures. These results demonstrate that
data-driven modeling can serve as an effective and practical
complement to physics-based device simulation for radiation
effect analysis.

TABLE 1
COMPARISON WITH OTHER REGRESSION MODELS
Model R? (mean =+ std) MSE
Ridge (Linear)  0.8589 + 0.0502 4.95 x 10~ 7
SVR (RBF) 0.9725 + 0.0256  9.85 x 10~8
Random Forest 0.989 3.29 x 108

Table I compares the performance of different regression
models. Linear regression shows limited accuracy, indicating
that the relationship between LET, trap density, and drain
peak current is strongly nonlinear. SVR improves prediction
accuracy but exhibits relatively large variance across cross-
validation folds, suggesting sensitivity to data distribution.

In contrast, Random Forest achieves the highest prediction
accuracy with stable generalization performance, supporting
its suitability for modeling SEU-induced drain peak current.

III. CONCLUSION

This study analyzed the drain peak current behavior induced
by heavy-ion incidence in a BCAT structure and proposed a
machine learning-based predictive framework. Using TCAD-
generated data under various LET and trap density conditions,
the model achieved high predictive performance with an
R? of 0.989 and an MSE of 3.29 x 1078, The proposed
framework enables rapid estimation of SEU-induced effects
without additional TCAD simulations, serving as a reliable
and computationally efficient surrogate tool for device-level
radiation analysis. It should be noted that the proposed model
is intended for interpolation within the trained LET and trap
density ranges. Predictions outside these ranges may involve
increased uncertainty and are not considered the primary use
case of this framework. In practical DRAM design workflows,
the surrogate model can be used to rapidly screen radiation and
defect conditions prior to detailed TCAD simulations, thereby
reducing the number of required simulation iterations. Future
work will focus on extending the dataset and validating the
approach using experimental radiation test data.
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