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Abstract—Mapping is essential for the navigation of 

Autonomous Mobile Robots (AMRs). However, 

conventional single-robot SLAM requires long mapping 

time in large-scale environments and suffers from accuracy 

degradation as drift accumulates with travel distance. To 

address these issues, we propose a multi-robot SLAM 

system that automatically merges occupancy grid maps 

generated by multiple robots via feature-based matching. 

The process operates fully automatically without any initial 

pose priors or manual intervention. Experiments with four 

robots demonstrate accurate and efficient mapping in 

large-scale environments. 

Keywords—SLAM (Simultaneous Localization and 

Mapping), Multi-Robot, Map merging, Feature matching, 

AKAZE 

 

I. INTRODUCTION 

For autonomous navigation in GPS-denied indoor 
environments, Simultaneous Localization and Mapping 
(SLAM) is a critical technology, enabling a robot to 
localize itself and simultaneously create a map of its 
surroundings. However, using single-robot SLAM to map 
a large-scale environment is not only time-consuming, but 
it also suffers from continuously accumulating pose 
estimation errors as the robot moves. This accumulation 
of error, or drift, can lead to significant discrepancies 
between the generated map and the actual environment, 
causing the robot to fail in determining its correct 
position. For example, Fig. 1 shows the result of mapping 
an environment of approximately 157 m² in a Gazebo 
simulation using the Gmapping [1]. It is evident that over 
time, the map becomes distorted from the actual 
environment due to accumulated error. This inaccurate 
mapping occurs because the Gmapping method selects 
incorrect particles as a result of this cumulative error. 

 

Fig. 1. Inaccuracy of single-robot SLAM. 

To mitigate the accumulated error in single-robot 
SLAM, loop closure and pose-graph optimization are 
widely employed. Notably, Google Cartographer 
constructs submaps, performs global loop detection 
through scan-to-submap matching, and then corrects drift 
via pose-graph optimization to achieve real-time loop 
closure in 2D environments [2]. Nevertheless, this 
approach has limitations in large-scale indoor settings. 
First, robots often traverse large areas only once, reducing 
opportunities to revisit past locations. This results in an 
insufficient number of global constraints (loop 
constraints), making it difficult to effectively suppress 
drift. Second, as the scale of the map and the pose graph 
increases, the computational and memory requirements 
for optimization surge, which can degrade real-time 
performance. Therefore, in large-scale indoor 
environments, multi-robot collaboration-based map 
merging can be an effective alternative [3, 4]. 

In this paper, we propose a multi-robot SLAM system 
that addresses the problem of inaccurate mapping in large 
environments. The system automatically merges maps 
created individually by multiple robots, based on feature 
point matching, to generate a single, integrated map. 
Through the reliability management of the transformation 
matrix derived from map feature matching, this system 
enables automatic map creation without any prior 



information on the robots' initial poses. This approach 
allows for the creation of maps of larger environments 
more accurately and efficiently compared to single-robot 
SLAM. 

 

II. RELATED WORKS 
Multi-robot SLAM systems have been actively 

researched to overcome the limitations of single-robot 
SLAM, such as time inefficiency and the accumulation of 
pose estimation errors in large-scale environments. A key 
element of the system proposed in this paper is the map 
merging method that integrates local maps generated by 
individual robots into a single consistent global map. 

Recently, Zick et al. [5] proposed a map fusion 
technique utilizing ORB (Oriented FAST and Rotated 
BRIEF) [6] feature matching to robustly handle variations 
in map scale and orientation, and to enhance pairwise 
connections through precise position transformation. 
However, while this method offers the advantage of fast 
computational speed, it presents certain limitations 
regarding feature matching accuracy. Consequently, this 
study adopts AKAZE (Accelerated-KAZE) [7], which 
excels in preserving detailed information within nonlinear 
scale spaces and offers superior matching robustness, 
replacing the ORB method used by Zick et al. to improve 
basic matching performance. 

In a similar vein, Zhang et al. [8] presented an efficient 
map merging algorithm utilizing AKAZE features for 
scenarios with unknown initial poses. Through 
experiments, they demonstrated that the AKAZE-based 
method outperforms the ORB-based method in terms of 
matching robustness and transformation estimation 
confidence. While the system proposed in this paper 
utilizes AKAZE based on Zhang et al.'s findings, it 
distinguishes itself from existing methods that rely on 
simple feature matching by introducing a novel 
Reliability-Based Transformation Matrix Accuracy 
Management technique. This approach ensures more 
precise and stable automatic map merging compared to 
simple AKAZE-based approaches. 

 

III. MULTI-ROBOT SLAM SYSTEM ARCHITECTURE 

As illustrated in Fig. 2, the proposed system proceeds 
in the following order: (1) Feature Extraction and 
Matching, (2) Reliability-Based Transformation Matrix 
Accuracy Management, and (3) Map Merging and Robot 
TF Merging. 

First, in the Feature Extraction and Matching step, 
when the maps generated by each robot via SLAM are 
input, feature extraction and matching are performed. 
Second, in the Reliability-Based Transformation Matrix 
Accuracy Management step, a transformation matrix is 
calculated and its reliability is evaluated based on the 
results from the previous step. In this step, the 
transformation matrix with the highest reliability is stored 
by iteratively comparing it against previous reliability 

values. Finally, using the stored transformation matrix, 
the map merging and the merging of the robot's TF 
(Transform) are executed. 

 

Fig. 2. System Flowchart. 

 

A. Image Feature Extraction and Matching 

For image matching, the LiDAR Map, which is in 
Occupancy Grid format, is first converted into an image. 
Then, image feature extraction and matching are 
conducted. 

Since image feature extraction and matching are 
processed using only two images at a time, it is not 
possible to match multiple maps simultaneously. 
Therefore, it is necessary to establish a reference map to 
merge multiple maps. As shown in Fig. 3, a method was 
adopted where Map 1 is set as the reference, and the 
feature points of the remaining maps are matched against 
it. 

 

Fig. 3. Feature point matching against a reference map. 

For feature extraction, the AKAZE (Accelerated-
KAZE) [7] was used, as it offers faster computation 
speeds than SIFT [9] or SURF [10], making it 
advantageous for real-time matching. For matching, the 
Brute Force Matcher (BFMatcher) was employed. 

After image matching, the transformation matrix for 
the images is calculated. As illustrated in Fig. 4, since 
matching is performed against Map 1 (the reference), 
merging four maps results in the calculation of three 
transformation matrices. 



 

Fig. 4. Calculation of transformation matrices for n maps. 

The transformation matrix is calculated using the 
RANSAC (Random Sample Consensus) method [11] 
based on the matching points obtained from feature 
matching. This allows for the estimation of a consistent 
transformation even if some incorrect matches are 
included. 

 

B. Reliability-Based Transformation Matrix Accuracy 

Management 

Directly using the transformation matrix calculated in 
the previous step for map merging can cause instability, 
as the matrix may fluctuate frequently depending on the 
feature matching results. For this reason, our system 
manages the transformation matrix by utilizing inlier and 
outlier matches from the RANSAC method. As illustrated 
in Figure 5, matches that align well when the maps are 
merged are classified as inliers, while those that do not 
align well are classified as outliers 

 

Fig. 5. Inlier and Outlier Matching. 

The reliability is calculated using the ratio of inlier 
matches to the total number of matches (Inlier Ratio), as 
shown in (1). We define this ratio as the reliability score. 
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Based on this score, the system manages the accuracy 
of the transformation matrix by only adopting matrices 
that yield a higher reliability score. This process ensures 
the consistency and continuity of the map merging 
process. 

 

C. Map Merging and Robot TF Merging 

Using the high-reliability transformation matrix, the 
images of the remaining maps are transformed relative to 
Map 1 (the reference map). For overlapping regions, pixel 
values are determined based on priority: Occupied 
(black), Free (white), and Unknown (gray). 

 

Fig. 6. Merging the remaining maps onto Map 1. 

The odometry of each robot, calculated via SLAM, is 
only valid within the local map created by that specific 
robot. Consequently, the odometry information within the 
merged global map is unknown. Therefore, to ascertain 
the robot's odometry in the merged map, the robot's TF 
(Transform) is merged using the image transformation 
matrix. 

 

Fig. 7. TF merging from local maps to the merged map. 

 

IV. EXPERIMENTS 

In this paper's experiment, four Turtlebot3 Burger 

(ROBOTIS) robots running ROS Noetic were used. Each 

robot was equipped with an LDS-02 LiDAR sensor, and 

the Gmapping algorithm was utilized for SLAM mapping. 

The specifications of the LiDAR sensor are shown in Fig. 

8. 



 

Fig. 8. The Turtlebot3 Burger robot and its LiDAR sensor specifications. 

The mapping was conducted in an environment with a 
total area of approximately 117 m², and the generated 
maps were merged in real-time. The experimental 
procedure is shown in Fig. 9. First, the TurtleBots start 
from the same initial location. Subsequently, they move 

in different directions to map distinct areas (①, ②, ③, ④
). As a result, all robots initially create an identical map of 
the starting area, and then proceed to map different, 
separate areas, ultimately completing a single, 
comprehensive map. 

 

Fig. 9. Experimental Procedure. 

 

V. EXPERIMENTAL RESULTS 

To evaluate the accuracy of the proposed system, this 
paper establishes a "ground truth map" generated using an 
Ouster OS1-128 LiDAR, which is more precise than the 
LiDAR used on the TurtleBots. The evaluation is 
conducted by comparing against this ground truth map. 

The evaluation method involves aligning the ground 
truth map and the experimental map using the ICP 
(Iterative Closest Point) algorithm and measuring the 
Fitness and Inlier RMSE (Root Mean Square Error). 
Fitness indicates the structural correspondence between 
the two maps, while Inlier RMSE represents the average 
distance error between matched inlier points after 
alignment. This paper compares the accuracy of a map 
generated by a single TurtleBot (conventional method) 
with the map generated by four TurtleBots (proposed 
method). 

As shown in Table 1, the Fitness value for the multi-
robot map was measured at 0.9105. This confirms that the 
resulting accuracy of the multi-robot SLAM system is 
over 90%. The RMSE was 0.076m (7.6cm), which is 
considered a very low level of error, accounting for sensor 
noise and minor driving errors. In contrast, the single-

robot map was distorted due to accumulated error, 
resulting in a Fitness of 0.7024, confirming an accuracy 
below 80%. 

 

TABLE 1. FITNESS AND RMSE RESULTS 

 Multi-Robot Single-Robot 

Fitness 
0.9105 

(91.05%) 
0.7024 

(70.24%) 

Inlier 

RMSE 

0.076m 

(7.6cm) 

0.085m 

(8.5cm) 

 

The experimental results show that although there is 
some minor noise in the multi-robot map, it is at a level 
that does not significantly affect the accuracy of the 
overall structure. Therefore, this paper demonstrates that 
the proposed multi-robot SLAM system is capable of 
generating highly reliable maps. 

 

VI. CONCLUSION 

Conventional single-robot SLAM methods for map 
creation are not only time-consuming for large 
environments but also suffer from difficulties in accurate 
mapping due to the problem of accumulating errors. To 
address this, this paper proposed a multi-robot SLAM 
system. This system performs real-time map merging by 
utilizing reliability-based accuracy management of the 
transformation matrix, which is calculated from feature 
point matching. Furthermore, its performance was 
validated through experiments involving mapping a real-
world environment with four robots. Although four robots 
were used in the experiment, it is expected that using more 
robots could enable even faster and more accurate map 
creation. 

For future work, we plan to conduct research on 
methods to further enhance the accuracy of map merging 
by adding sensors that can measure inter-robot 
positioning information, such as UWB (Ultra-Wideband). 
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