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Abstract—Mapping is essential for the navigation of
Autonomous Mobile Robots (AMRs). However,
conventional single-robot SLAM requires long mapping
time in large-scale environments and suffers from accuracy
degradation as drift accumulates with travel distance. To
address these issues, we propose a multi-robot SLAM
system that automatically merges occupancy grid maps
generated by multiple robots via feature-based matching.
The process operates fully automatically without any initial
pose priors or manual intervention. Experiments with four
robots demonstrate accurate and efficient mapping in
large-scale environments.
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1. INTRODUCTION

For autonomous navigation in GPS-denied indoor
environments, Simultaneous Localization and Mapping
(SLAM) is a critical technology, enabling a robot to
localize itself and simultaneously create a map of its
surroundings. However, using single-robot SLAM to map
a large-scale environment is not only time-consuming, but
it also suffers from continuously accumulating pose
estimation errors as the robot moves. This accumulation
of error, or drift, can lead to significant discrepancies
between the generated map and the actual environment,
causing the robot to fail in determining its correct
position. For example, Fig. 1 shows the result of mapping
an environment of approximately 157 m? in a Gazebo
simulation using the Gmapping [1]. It is evident that over
time, the map becomes distorted from the actual
environment due to accumulated error. This inaccurate
mapping occurs because the Gmapping method selects
incorrect particles as a result of this cumulative error.
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Fig. 1. Inaccuracy of single-robot SLAM.

To mitigate the accumulated error in single-robot
SLAM, loop closure and pose-graph optimization are
widely employed. Notably, Google Cartographer
constructs submaps, performs global loop detection
through scan-to-submap matching, and then corrects drift
via pose-graph optimization to achieve real-time loop
closure in 2D environments [2]. Nevertheless, this
approach has limitations in large-scale indoor settings.
First, robots often traverse large areas only once, reducing
opportunities to revisit past locations. This results in an
insufficient number of global constraints (loop
constraints), making it difficult to effectively suppress
drift. Second, as the scale of the map and the pose graph
increases, the computational and memory requirements
for optimization surge, which can degrade real-time
performance.  Therefore, in large-scale indoor
environments, multi-robot collaboration-based map
merging can be an effective alternative [3, 4].

In this paper, we propose a multi-robot SLAM system
that addresses the problem of inaccurate mapping in large
environments. The system automatically merges maps
created individually by multiple robots, based on feature
point matching, to generate a single, integrated map.
Through the reliability management of the transformation
matrix derived from map feature matching, this system
enables automatic map creation without any prior



information on the robots' initial poses. This approach
allows for the creation of maps of larger environments
more accurately and efficiently compared to single-robot
SLAM.

II. RELATED WORKS

Multi-robot SLAM systems have been actively
researched to overcome the limitations of single-robot
SLAM, such as time inefficiency and the accumulation of
pose estimation errors in large-scale environments. A key
element of the system proposed in this paper is the map
merging method that integrates local maps generated by
individual robots into a single consistent global map.

Recently, Zick et al. [5] proposed a map fusion
technique utilizing ORB (Oriented FAST and Rotated
BRIEF) [6] feature matching to robustly handle variations
in map scale and orientation, and to enhance pairwise
connections through precise position transformation.
However, while this method offers the advantage of fast
computational speed, it presents certain limitations
regarding feature matching accuracy. Consequently, this
study adopts AKAZE (Accelerated-KAZE) [7], which
excels in preserving detailed information within nonlinear
scale spaces and offers superior matching robustness,
replacing the ORB method used by Zick et al. to improve
basic matching performance.

In a similar vein, Zhang et al. [8] presented an efficient
map merging algorithm utilizing AKAZE features for
scenarios with unknown initial poses. Through
experiments, they demonstrated that the AKAZE-based
method outperforms the ORB-based method in terms of
matching robustness and transformation estimation
confidence. While the system proposed in this paper
utilizes AKAZE based on Zhang et al.'s findings, it
distinguishes itself from existing methods that rely on
simple feature matching by introducing a novel
Reliability-Based Transformation Matrix Accuracy
Management technique. This approach ensures more
precise and stable automatic map merging compared to
simple AKAZE-based approaches.

III. MULTI-ROBOT SLAM SYSTEM ARCHITECTURE

As illustrated in Fig. 2, the proposed system proceeds
in the following order: (1) Feature Extraction and
Matching, (2) Reliability-Based Transformation Matrix
Accuracy Management, and (3) Map Merging and Robot
TF Merging.

First, in the Feature Extraction and Matching step,
when the maps generated by each robot via SLAM are
input, feature extraction and matching are performed.
Second, in the Reliability-Based Transformation Matrix
Accuracy Management step, a transformation matrix is
calculated and its reliability is evaluated based on the
results from the previous step. In this step, the
transformation matrix with the highest reliability is stored
by iteratively comparing it against previous reliability

values. Finally, using the stored transformation matrix,
the map merging and the merging of the robot's TF
(Transform) are executed.
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Fig. 2. System Flowchart.

A. Image Feature Extraction and Matching

For image matching, the LIDAR Map, which is in
Occupancy Grid format, is first converted into an image.
Then, image feature extraction and matching are
conducted.

Since image feature extraction and matching are
processed using only two images at a time, it is not
possible to match multiple maps simultaneously.
Therefore, it is necessary to establish a reference map to
merge multiple maps. As shown in Fig. 3, a method was
adopted where Map 1 is set as the reference, and the
feature points of the remaining maps are matched against
1t.
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Fig. 3. Feature point matching against a reference map.

For feature extraction, the AKAZE (Accelerated-
KAZE) [7] was used, as it offers faster computation
speeds than SIFT [9] or SURF [10], making it
advantageous for real-time matching. For matching, the
Brute Force Matcher (BFMatcher) was employed.

After image matching, the transformation matrix for
the images is calculated. As illustrated in Fig. 4, since
matching is performed against Map 1 (the reference),
merging four maps results in the calculation of three
transformation matrices.
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Fig. 4. Calculation of transformation matrices for n maps.

The transformation matrix is calculated using the
RANSAC (Random Sample Consensus) method [11]
based on the matching points obtained from feature
matching. This allows for the estimation of a consistent
transformation even if some incorrect matches are
included.

B. Reliability-Based Transformation Matrix Accuracy
Management

Directly using the transformation matrix calculated in
the previous step for map merging can cause instability,
as the matrix may fluctuate frequently depending on the
feature matching results. For this reason, our system
manages the transformation matrix by utilizing inlier and
outlier matches from the RANSAC method. As illustrated
in Figure 5, matches that align well when the maps are
merged are classified as inliers, while those that do not
align well are classified as outliers
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Fig. 5. Inlier and Outlier Matching.

The reliability is calculated using the ratio of inlier
matches to the total number of matches (Inlier Ratio), as
shown in (1). We define this ratio as the reliability score.

Ninlier
Inlier Ratio = ———— (D
Ninlier + Noutlier

Niniier: The number of inlier matching pairs

Noytiier: The number of outlier matching pairs

Based on this score, the system manages the accuracy
of the transformation matrix by only adopting matrices
that yield a higher reliability score. This process ensures
the consistency and continuity of the map merging
process.

C. Map Merging and Robot TF Merging

Using the high-reliability transformation matrix, the
images of the remaining maps are transformed relative to
Map 1 (the reference map). For overlapping regions, pixel
values are determined based on priority: Occupied
(black), Free (white), and Unknown (gray).
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Fig. 6. Merging the remaining maps onto Map 1.

The odometry of each robot, calculated via SLAM, is
only valid within the local map created by that specific
robot. Consequently, the odometry information within the
merged global map is unknown. Therefore, to ascertain
the robot's odometry in the merged map, the robot's TF
(Transform) is merged using the image transformation
matrix.
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Fig. 7. TF merging from local maps to the merged map.

IV. EXPERIMENTS

In this paper's experiment, four Turtlebot3 Burger
(ROBOTIS) robots running ROS Noetic were used. Each
robot was equipped with an LDS-02 LiDAR sensor, and
the Gmapping algorithm was utilized for SLAM mapping.
The specifications of the LIDAR sensor are shown in Fig.
8.



LiDAR Spec

Items Specifications
Distance Range 160~ 8,000mm
Distance Accuracy (160 ~300mm)  +10mm
Distance Accuracy(300 ~6,000mm)  +3.0%
Distance Precision(6,000 ~ 8,000 mm) 5.0%

()Scan Frequency 5Hz or above

Angular Range 360°

| (DAngular Resolution 1*
Fig. 8. The Turtlebot3 Burger robot and its LIDAR sensor specifications.

The mapping was conducted in an environment with a
total area of approximately 117 m? and the generated
maps were merged in real-time. The experimental
procedure is shown in Fig. 9. First, the TurtleBots start
from the same initial location. Subsequently, they move
in different directions to map distinct areas (D, @), @), @
). As aresult, all robots initially create an identical map of
the starting area, and then proceed to map different,
separate areas, ultimately completing a single,
comprehensive map.
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Fig. 9. Experimental Procedure.

V. EXPERIMENTAL RESULTS

To evaluate the accuracy of the proposed system, this
paper establishes a "ground truth map" generated using an
Ouster OS1-128 LiDAR, which is more precise than the
LiDAR used on the TurtleBots. The evaluation is
conducted by comparing against this ground truth map.

The evaluation method involves aligning the ground
truth map and the experimental map using the ICP
(Iterative Closest Point) algorithm and measuring the
Fitness and Inlier RMSE (Root Mean Square Error).
Fitness indicates the structural correspondence between
the two maps, while Inlier RMSE represents the average
distance error between matched inlier points after
alignment. This paper compares the accuracy of a map
generated by a single TurtleBot (conventional method)
with the map generated by four TurtleBots (proposed
method).

As shown in Table 1, the Fitness value for the multi-
robot map was measured at 0.9105. This confirms that the
resulting accuracy of the multi-robot SLAM system is
over 90%. The RMSE was 0.076m (7.6cm), which is
considered a very low level of error, accounting for sensor
noise and minor driving errors. In contrast, the single-

robot map was distorted due to accumulated error,
resulting in a Fitness of 0.7024, confirming an accuracy

below 80%.
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Fig. 10. ICP Matching Results.

TABLE 1. FITNESS AND RMSE RESULTS

Multi-Robot Single-Robot
Fitness 0.9105 0.7024
(91.05%) (70.24%)
Inlier 0.076m 0.085m
RMSE (7.6cm) (8.5cm)

The experimental results show that although there is
some minor noise in the multi-robot map, it is at a level
that does not significantly affect the accuracy of the
overall structure. Therefore, this paper demonstrates that
the proposed multi-robot SLAM system is capable of
generating highly reliable maps.

VI. CONCLUSION

Conventional single-robot SLAM methods for map
creation are not only time-consuming for large
environments but also suffer from difficulties in accurate
mapping due to the problem of accumulating errors. To
address this, this paper proposed a multi-robot SLAM
system. This system performs real-time map merging by
utilizing reliability-based accuracy management of the
transformation matrix, which is calculated from feature
point matching. Furthermore, its performance was
validated through experiments involving mapping a real-
world environment with four robots. Although four robots
were used in the experiment, it is expected that using more
robots could enable even faster and more accurate map
creation.

For future work, we plan to conduct research on
methods to further enhance the accuracy of map merging
by adding sensors that can measure inter-robot
positioning information, such as UWB (Ultra-Wideband).
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