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Abstract—We investigate whether nine supercapacitor elec-
trode material families can be discriminated using only a
small, physically interpretable set of electrochemical descriptors
from a dataset shared with us by researchers in University of
Tennessee-Knoxville through private communication and from an
unpublished research. Using their dataset, we first reconstructed
the three-descriptor setup (current–voltage, charge–voltage, and
power–voltage derivatives). With a tuned stacked hybrid model
on 8,985 samples and an 80/20 stratified split, we achieved
89.4% test accuracy. This confirms that the three differential
signatures alone already contain meaningful class information.
We then derived three more physically interpretable, curve-level
descriptors from the cyclic-voltammetry samples (area, peak,
and spread), combined them with the original three to form
six-dimensional feature vectors, and fed these into a stacked
hybrid model composed of five heterogeneous base learners and
a meta-learner. On the same held-out set of 1,797 samples,
the single extra-trees model and the stacked hybrid achieved
98.4–98.6% accuracy, with macro–F1 scores close to 0.99. Only
26 samples were misclassified; these misclassifications occurred
between chemically similar class pairs (for example, confusing
MnCoFe with MnCo, or classifying commercial Mn–graphene as
Fe). This shows that nine-class material–family recognition from
a small set of electrochemical descriptors is achievable on this
dataset once curve-level information is included.

Index Terms—supercapacitor, ensemble learning, hybrid
AI/ML, materials informatics, cyclic voltammetry

I. INTRODUCTION

Espera et al. [5] demonstrated that classical machine
learning—especially tree-based models—can separate several
CV-derived classes. They concluded with a challenge: make
the models more robust and incorporate hybrid AI/ML tech-
niques. Our work begins at this challenge.

We narrow the scope of the problem slightly. Instead of
general classification, we target a nine-class material–family
classifier that uses only descriptors we can reliably read from
the dataset: the three differential columns that are already
aligned, plus, if needed, a light set of CV-derived curve-
level features. In short, we ask whether a small CV-derived
descriptor vector is sufficient to determine if a sample belongs
to one of the nine material families (Co, CoFe, Mn, MnFe,
MnCoFe, or one of the commercial lines).

This is interesting for practical reasons. In real printed or
hybrid supercapacitor lines, full voltage traces or process-
ing details are often not stored; however, quick-to-compute
differential descriptors are usually recorded. If a six-number
descriptor can classify nine families with about 99 % accuracy,
that is a useful engineering result.

Recent supercapacitor and ML papers go in the same
direction: ML-based prediction of CV behavior [1], ML-
guided MnO2 optimization [2], boosted models for biomass-
carbon supercapacitors [3], and integrated cycling/structure
frameworks [4]. What these papers have in common is not
a very wide feature space, but a clear pipeline and physically
interpretable inputs. We adopt the same approach in this work.

II. DATASET AND PREPROCESSING

The electrochemical dataset used in this study was originally
compiled by Espera et al. in their work on all-printed super-
capacitors [5]. The file contains multiple sheets with cyclic-
voltammetry measurements, descriptor tables, and material–
family labels. This is the same style of data that appears in
recent CV-centered supercapacitor papers, where CV is treated
as the primary window into charge–storage behavior [9]–[12].

A. Dataset Structure

The dataset contains:
• Total samples: 8,985;
• Baseline inputs: di/dV , dQ/dV , dP/dV ;
• Target label: 9 material families.

The nine classes are

{Co,CoFe,Commercial Fe,Commercial Mn–Graphene,

Fe,Mn,MnCo,MnCoFe,MnFe}.

The class counts are roughly equal, indicating the dataset is
essentially balanced.

B. Train–test protocol

We performed an 80/20 stratified split (random state 42),
so the test set has 1,797 samples and preserves the per-class
proportions. We chose a simple splitting method to facilitate
replication and comparison by other researchers.



C. Differential descriptors

With only three numbers per sample, the baseline feature
vector is

x =

 di/dV
dQ/dV
dP/dV

 ∈ R3, (1)

that is, a compact electrochemical fingerprint. This is consis-
tent with CV-driven analyses where current–voltage derivatives
and charge–voltage derivatives are used as fast surrogates for
capacitance and faradaic response [9], [10], [16].

D. Curve-level descriptors from CV

From the dataset’s ‘All’ sheet, we extracted the first ten
CV data points for each sample to compute three curve-level
descriptors:

curve area =

10∑
j=1

|vj |, (2)

curve peak = max
1≤j≤10

|vj |, (3)

curve spread = max
j

vj −min
j

vj , (4)

where v1, . . . , v10 follow the same “ten CV points per row”
layout as in the original file. This mirrors the kind of CV-
feature extraction used in recent ML–electrochemistry work,
where integrated current, peak current, and window width
are treated as separate signals [4], [11], [12]. The final six-
dimensional vector is

x̃ = [ di/dV (current–voltage derivative),
dQ/dV (charge–voltage derivative),
dP/dV (power–voltage derivative),
curve area (integrated CV magnitude),
curve peak (maximum CV excursion),

curve spread (CV window width)]⊤.

(5)

III. METHODOLOGY

A. Single-model baselines

We trained the same family of classical models on
both descriptor settings: (i) the original three differentials
(di/dV, dQ/dV, dP/dV ) and (ii) the extended six-
dimensional vector x̃ [17]–[20] All runs used the same 80/20
stratified split (1,797 test points):

• Multinomial logistic regression (with standardization);
• Support Vector Machine with RBF kernel (with standard-

ization);
• Gradient Boosting classifier;
• Random Forest (260 trees, max depth = 20, class-weight

= balanced_subsample);
• Extra-Trees Classifier (400 trees,
balanced_subsample);

• k-Nearest Neighbors (k = 9, distance in standardized
space).

On the 3-feature vectors these baselines reproduced Table I:
linear and kernel models stayed below 40%, tree ensembles

reached 87–89%, and k-NN sat around 80%. On the 6-feature
vectors (after adding area, peak, spread) the same models
were re-trained and their accuracy jumped to the 97–98%
band (Table II), showing that the gain comes from richer CV
descriptors, not from changing the model family.

B. Stacked hybrid formulation

Stacked generalization [13]–[15] was used to combine the
six baselines in a way that preserves their calibrated outputs.
For each base model m ∈ {1, . . . ,M} (here M = 5, excluding
the simple probability average), we obtain a 9-class posterior

pm(x) =
(
pm(y = 1 | x), . . . , pm(y = 9 | x)

)⊤ ∈ [0, 1]9.

Using five-fold stratified cross-validation on the training split,
we collect out-of-fold (OOF) posteriors and concatenate them
into

z(x) =
[
p1(x); . . . ;pM (x)

]
∈ R9M = R45.

To let the second level exploit both model opinions and the
raw physics-inspired inputs, we append the original descriptor,

u(x) =
[
z(x);x

]
∈

{
R48, for the 3-feature run,
R51, for the 6-feature run,

and train a multinomial logistic-regression meta-learner on
u(x) with cross-entropy loss. Logistic regression is a stan-
dard, well-behaved choice for this role because it can turn
reasonably calibrated base probabilities into a single, sharper
distribution [21], [22] while still following the classic ensem-
ble recipe in [28]. At test time, each base model is re-trained
on the full training set, its 9-way probabilities on the test set
are concatenated in the same order (45-D), the 3-D or 6-D
descriptor is appended, and the meta-learner produces the final
class.

C. Simple hybrid (probability average)

Before using stacking, we tested a quick probability-level
combination:

phyb(y = c | x) = 1
3

(
pRF(y = c | x)+pGB(y = c | x)+pSVM(y = c | x)

)
,

and predicted argmaxc phyb(y = c | x). On the 3-feature
setup this hybrid reached about 82%, which is below the Extra-
Trees (88.9%) and Random Forest (87.4%) numbers in Table I;
this is consistent with a tight, low-dimensional space where a
strong tree has already extracted most of the signal.

D. Stacked hybrid with curve-level features

After moving to the 6-feature descriptor, we ran the full
stack:

1) train the five base models (Extra Trees, Random Forest,
Gradient Boosting, RBF-SVM, k-NN) on the training
split;

2) generate 5-fold OOF 9-class probabilities for each
model;

3) concatenate them into a 45-D vector and append the six
raw features (total 51-D);



4) train a multinomial logistic regression meta-learner on
this 51-D space;

5) at test time, recompute the 45-D probability block on
the test set and pass it (plus the six features) to the
meta-learner.

E. Neural CV–descriptor model

To make the comparison complete, we also trained a
small feed-forward fully-connected neural network (16 input
features, two hidden layers of sizes 64 and 32, and a 9-
output softmax layer) on the same aligned data. Each row
was represented by a 16-dimensional vector composed of (i)
the three differential descriptors (di/dV , dQ/dV , dP/dV ),
(ii) the three curve-level descriptors (curve area, curve peak,
curve spread), and (iii) the first ten CV data points (i.e., values
from the cyclic voltammetry curve) of each sample. After
dropping rows with missing values, this produced 8,985 usable
samples (the same count as in the tree experiments).

We split the data 80/20, standardized all features, and
trained a feed-forward network

R16 → 64 → 32 → R9

with ReLU activations, a dropout layer after the first dense
block, and a final softmax over the nine material families. We
trained this model using the Adam optimizer and multi-class
cross-entropy loss, with early stopping based on validation
loss. This model serves as the “AI” baseline for this dataset,
i.e., a learned non-linear mapper that directly consumes the
CV-derived vector instead of relying on tree ensembles.

F. Log-loss (multi-class)

Because all models in the stack output full 9-class probabil-
ity vectors, we also monitored the multi-class log-loss (cross-
entropy). Let N be the number of test samples, let C = 9 be
the number of material families, let yi ∈ {1, . . . , C} be the
true label of sample i, and let p̂i,c be the probability assigned
by the model to class c for sample i. The log-loss is

LogLoss = − 1

N

N∑
i=1

log p̂i,yi
. (6)

For each test sample, we take the probability assigned to its
true class, compute the logarithm of that probability, and aver-
age these values across all test samples (with a negative sign in
front). Thus, lower log-loss indicates better performance. This
metric is useful here for two reasons: (i) stacked models can
sometimes become overconfident, and log-loss will penalize
that even if accuracy stays high; and (ii) we want to check
that the 0.986 accuracy of the 6-feature stack is coming from
well-calibrated probabilities and not from a few very peaky
predictions.

IV. RESULTS AND DISCUSSION

A. Three-feature setup

Table I compares baseline and hybrid models; when we
only keep the three differential descriptors (di/dV , dQ/dV ,

dP/dV ), the linear and kernel baseline models perform poorly
(below 40% accuracy), but the tree models capture most of
the nine-class structure: the random forest achieved 87.4%
accuracy and the extra-trees classifier 88.9%. The simple
probability-level hybrid (RF+GB+SVM) does not surpass the
performance of the best tree (it stays at 82.0%), which is
consistent with the limits of a very low-dimensional feature
space (i.e., little additional information can be gained by
combining models in only 3 dimensions). However, when we
stack the five core models and train a logistic meta-learner on
their out-of-fold probabilities, the accuracy increases to 89.4%
and macro-F1 to 0.893, i.e., slightly above the best single tree.

TABLE I
3-FEATURE, NINE-CLASS RECOGNITION (TEST = 1,797).

Model Acc (%) Macro-F1

Logistic Regression 26.8 0.193
Support Vector Machine (RBF) 37.4 0.350
Gradient Boosting 65.7 0.657
Random Forest (260 trees) 87.4 0.874
Extra-Trees Classifier 88.9 0.888
k-Nearest Neighbors (k=9) 79.9 0.799
Simple hybrid (RF + GB + SVM) 82.0 0.818
Stacked hybrid (5 base + LR meta) 89.4 0.893

Fig. 1 shows that the 3-feature setup does not fail randomly:
almost all errors sit on the Fe-containing and mixed-metal
families (MnFe ↔ CoFe, MnCoFe → MnCo), i.e., on classes
whose CV-derived descriptors are genuinely close in 3-D. With
only di/dV , dQ/dV , and dP/dV , a tree cannot create an
extra axis to separate those pairs.

Fig. 1. Confusion matrix for the three-feature stacked hybrid (89.4%). Errors
concentrate on Fe-containing and mixed Mn/Co families.

On the same split, the best single model was the Extra-Trees
classifier at 88.9% (macro-F1 = 0.888), slightly above the
random forest at 87.4%. Stacking the five core models (Extra
Trees, Random Forest, Gradient Boosting, RBF-SVM, and
k-NN) and training a multinomial logistic-regression meta-



learner on their out-of-fold probabilities plus the three raw
descriptors raised this to 89.4% (macro-F1 = 0.893) (Table I).
The gain is small, but it shows that even in a low-dimensional
space there is a bit of complementary signal that stacking can
recover.

B. Why curve-level descriptors

To resolve the remaining ambiguities between certain
classes, we added the area, peak, and spread descriptors
from the CV data. Before examining their effect on model
performance, it is important to confirm that these new de-
scriptors indeed vary across the classes. For instance, Fig. 2
shows that Mn and MnCo have wider and taller responses,
while Co, CoFe, and the commercial lines are more compact.
These differences are not arbitrary; they align with expected
electrochemical behavior in CV measurements. This explains
why, once we include these descriptors in the model, the
confusion between MnFe and CoFe drops significantly.

Fig. 2. Curve-level descriptors across material families. Mn and MnCo
families sit higher in both area and peak, while mixed Fe families are tighter.

C. Six-feature stacked hybrid vs. single extra trees

On the same split, both the stacked hybrid and a single
extra-trees model reached

accuracy = 0.986, macro-F1 ≈ 0.99.

This accuracy is on par with the best ensemble result previ-
ously reported for this dataset, with the difference that we are
now using the full 8,985-sample dataset enriched with curve-
level descriptors.

Table II compares the same models after adding curve-level
descriptors. First, as soon as the curve-level descriptors are
added, all strong tree methods leap into the high-97–98%
band, which tells us the 6-D space is already very informative.
Second, the stacked hybrid does not exceed the extra-trees
model by a large margin; instead it confirms that, given these

TABLE II
6-FEATURE, NINE-CLASS RECOGNITION (TEST = 1,797).

Model Acc (%) Macro-F1

Logistic Regression 25.8 0.218
Support Vector Machine (RBF) 36.1 0.354
Gradient Boosting 78.5 0.785
Random Forest (260 trees) 97.1 0.971
Extra-Trees Classifier 98.4 0.984
k-Nearest Neighbors (k=9) 89.3 0.893
Simple hybrid (RF + GB + SVM) 94.6 0.946
Stacked hybrid (5 base + LR meta) 98.6 0.986

six descriptors, several high-capacity learners converge to the
same solution.

Fig. 3. Confusion matrix for the six-feature stacked hybrid (98.55%). Only
26 samples are wrong; these errors are on chemically close pairs.

Fig. 3 explains why the accuracy numbers in Table II are so
close. The matrix is almost perfectly diagonal; the off-diagonal
entries are few (26 in total) and they occur exactly where the
chemistry says they should: MnCoFe is still sometimes read
as MnCo, Commercial Mn–Graphene occasionally falls into
Fe, and a few Fe/CoFe/MnFe swaps remain. In other words,
adding curve-level information did not change the nature of
the hard cases, it only reduced them to single-digit counts.
That is the behavior we want from a “more robust” model on
a real electrochemical dataset.

D. Ablation: where the 98–99% gain comes from

Tables I and II already suggest that most of the improvement
does not come from the stacking trick but from giving the
model better CV information. Table III makes this clearer.

Table III summarizes the effect of progressively adding
electrochemical information. With only the three differentials,
the best tree is below 90%. Moving to six features (add
area, peak, spread) immediately pushes the trees above 97%.
Stacking the five core models on top of the 6-D vector adds
the last 0.2 percentage points and brings the log-loss down to



TABLE III
ABLATION ON THE SAME 80/20 SPLIT.

Model Acc (%) Macro-F1

3 features, Extra-Trees 88.9 0.888
6 features, Random Forest 97.1 0.971
6 features, Extra-Trees 98.4 0.984
6 features, Stacked hybrid 98.6 0.986

0.0501. The neural CV–descriptor model sits between these
two extremes: it is clearly better than the 3-feature trees, but
still short of the stacked ensemble.

So, in this dataset, the dominant effect is “add curve-level
descriptors” (88.9% → 97.1%); the secondary effect is “use a
stronger tree on the same 6-D vector” (97.1% → 98.4%); and
the final effect is “stack the heterogeneous models” (98.4%
→ 98.6%). On the same split, the six-feature stacked hybrid
obtained a multi-class log-loss of 0.0501, indicating that its
9-way probability outputs are well calibrated and not overly
peaky for a 0.986 classifier.

E. Neural model versus stacked hybrid

For the same 80/20 stratified split, the neural CV–descriptor
model reached an accuracy of 95.66% and a multi-class
log-loss of 0.2296. Per-class precision and recall were all
in the 0.93–0.99 range, including for the two commercial
families (CommFe, CommMnG). This confirms that a compact
MLP can already learn the nine-way structure from the 16-D
electrochemical vector.

TABLE IV
NEURAL CV–DESCRIPTOR MODEL ON THE 80/20 SPLIT.

Model Acc (%) Log-loss

CV–descriptor MLP (16 inputs) 95.66 0.2296
6-feature stacked hybrid 98.60 0.0501

However, the 6-feature stacked hybrid remained stronger:
it attained 98.6% accuracy on the same split and a much
lower log-loss of 0.0501. The lower log-loss indicates that
the ensemble was not only more accurate but also more
well calibrated in its class probabilities. In other words,
the AI model can solve the task to a high degree, but the
descriptor+stacking recipe is still the most reliable on this
dataset.

F. Per-class performance

Table V shows that the 6-feature stacked hybrid is not only
good on average (macro-F1 ≈ 0.99) but also uniformly good
across the nine material families. Even the lowest class, Fe,
is at 0.975, and the two families that we repeatedly saw in
the confusion matrices as the “hard” ones — MnCoFe and
MnCo — are both still above 0.97. This confirms two things
we argued earlier: (i) once the curve-level descriptors are
present, the model gets enough information to separate the
commercial lines (CommFe, CommMnG) from the laboratory
Mn/MnCo/MnFe systems, and (ii) the few remaining mistakes

are not due to a single collapsed class but to small, chemically
plausible swaps between Fe-containing neighbors.

TABLE V
PER-CLASS F1 FOR THE 6-FEATURE STACKED HYBRID.

Class F1

Co 0.985
CoFe 0.987
CommFe 0.992
CommMnG 0.987
Fe 0.975
Mn 0.990
MnCo 0.983
MnCoFe 0.979
MnFe 0.992

In essence, Table V is the numeric version of Fig. 3: the
diagonal in the confusion matrix is almost full, and here we
see that every diagonal entry corresponds to an F1 very close
to 1.0. We did not get 98.6% by overfitting to one or two
dominant families; we got it by lifting all nine-dimensional
vectors together.

G. Which features mattered

Fig. 4 shows the feature importance from the six-feature
extra-trees classifier (the best single model in Table II).
The original differential descriptors dQ/dV and di/dV re-
main the most informative, but the curve-level quantities
(curve_peak, curve_spread, curve_area) now con-
tribute measurable weight. This is consistent with the observed
drop in Fe-related confusions once CV information was added.

Fig. 4. Feature importance for the six-feature extra-trees classifier. Differential
descriptors dominate, while curve-level descriptors provide the additional
separation needed for the mixed-metal families.

H. Misclassification analysis

With only the three differential descriptors, the stacked
hybrid model made 189 errors on the 1,797-point test set. The
largest off-diagonal entries were:

• CoFe to MnFe: 33;
• MnFe to CoFe: 26;
• MnCoFe to MnCo: 15;



These are all mixed or Fe-containing families whose differ-
ential responses occupy nearly the same region in the three-
dimensional space.

After we added the three curve-level descriptors and trained
the stacked hybrid on the same split, the mistakes dropped to
26. Almost all of them sat on a few plausible neighbors:

• MnCoFe → MnCo: 6
• Comm. Mn–Graphene → Fe/Mn: 5 (4 to Fe, 1 to Mn)
• Small spillovers among Fe/Co/Mn families (Co → Mn:

3; Fe → CoFe: 2; several 1-count swaps in CoFe, Comm.
Fe, MnFe)

So the error mass collapsed from 189 to 26, and the residual
confusions remained chemically reasonable.

V. CONCLUSION

This work revisited the question posed by Espera et al.:
given the electrochemical descriptors already present in the
supercapacitor dataset, can we identify which of nine elec-
trode/material families a sample belongs to? On the aligned
8,985-row file and an 80/20 stratified split, the three differ-
ential descriptors (di/dV , dQ/dV , dP/dV ) alone already
supported a stacked model at 89.4% test accuracy, with errors
concentrated on Fe-containing and mixed-metal families.

Adding three physically interpretable curve-level descriptors
(CV area, peak, spread) raised the performance to 98.6% and
reduced the mistakes to 26, and those mistakes remained on
chemically close pairs (MnCoFe → MnCo, CommMnG →
Fe), which is consistent with the CV similarities of these
classes. A compact neural CV–descriptor model (16 inputs
from the same sheets, two hidden layers) reached 95.66%
but still trailed the 6-feature stacked hybrid (98.6%, log-loss
0.0501), indicating that, for this tabular and physics-structured
dataset, tree ensembles plus stacking make better use of the
available signal.

The contribution is therefore a reproducible recipe: (i) start
from the aligned sheet; (ii) augment it with a small number
of CV-derived, electrochemically meaningful descriptors; and
(iii) stack several heterogeneous learners under a simple meta-
learner. This matches the best tree-based results on this dataset
while remaining fully explainable. Future work can add richer
CV features (separate anodic/cathodic areas, peak positions),
try a stronger meta-learner, or revisit the neural baseline once
longer CV traces or EIS-derived features are available.
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