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Abstract—Optimal placement of multiple LiDAR sensors is
critical for autonomous driving, robotics, and smart city applica-
tions. This study compares three multi-agent coordination strate-
gies—a local-search Greedy baseline, Independent Q-Learning
(IQL), and Deep Q-Network (DQN)—for maximizing coverage
in discrete, obstacle-rich environments. Experiments with 1-5
LiDAR sensors across varying obstacle densities show that IQL
achieves the highest average coverage (89.5%) with low variance,
while DQN exhibits irregular scaling and high sensitivity to
environment changes. Our reward shaping strategy targets 30-
40% sensor overlap to support inter-sensor coordination re-
quirements. We additionally include a zero-shot evaluation for
DQN as a transfer probe; the results suggest that generalization
remains challenging in this discrete coordination setting. Results
indicate that computationally efficient algorithms such as IQL
can outperform complex deep learning approaches in robustness,
scalability, and computational efficiency. These findings provide
practical guidelines for designing multi-sensor systems in dy-
namic environments such as autonomous vehicles and urban
infrastructure.

I. INTRODUCTION

Optimal placement of multiple Light Detection and Ranging
(LiDAR) sensors is fundamental to numerous applications,
including autonomous vehicles, smart city infrastructure, and
robotic systems [1], [2]. The challenge lies in maximizing
environmental coverage while managing sensor overlap and
ensuring robust performance in complex, obstacle-rich envi-
ronments.

Traditional approaches to sensor placement often rely on
heuristic methods or evolutionary algorithms [3]. However,
the emergence of multi-agent reinforcement learning (MARL)
offers promising alternatives for addressing the inherent com-
plexity of coordinated sensor deployment. We investigate
how different MARL paradigms perform for multi-LiDAR
placement optimization, and additionally report a zero-shot
DOQON setting as a transfer experiment to probe behavior across
environmental configurations.

In certain multi-sensor applications, controlled overlap be-
tween adjacent sensors provides operational benefits. For in-
stance, multi-sensor tracking systems require overlap regions
for reliable object hand-off, while safety-critical deployments
may prioritize redundancy. Excessive overlap, however, leads
to inefficient resource utilization. Accordingly, this work in-
corporates a reward shaping strategy that explicitly targets a
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30-40% overlap range to balance coordination potential with
coverage efficiency.

We present a systematic comparison of three representative
approaches: a greedy local-search method as a deterministic
baseline, Independent Q-Learning (IQL) for decentralized co-
ordination, and a Deep Q-Network (DQN) for handling higher-
dimensional state representations with zero-shot transfer eval-
uation.

The experimental results reveal pronounced performance
differences and provide insight into when and why particular
coordination strategies succeed or fail. As the number of
sensors increases, the placement problem rapidly becomes a
high-dimensional coordination task, where balancing coverage
and overlap requires increasingly sophisticated multi-agent
strategies. While MARL offers a principled framework for
learning such coordination through interaction, its effective-
ness varies substantially across algorithmic paradigms and
evaluation settings.

This work presents a comprehensive evaluation framework
for multi-agent LiDAR placement in discrete, obstacle-rich
environments, enabling systematic comparison across coor-
dination strategies and environmental complexities. Through
extensive experiments, we provide a detailed empirical anal-
ysis of decentralized tabular learning and deep reinforcement
learning approaches under identical deployment constraints,
together with a unified evaluation protocol that includes a
supplementary zero-shot DQN analysis to probe robustness
under distribution shift. In addition, we introduce an overlap-
aware reward shaping strategy that explicitly treats con-
trolled redundancy (30-40%) as a tunable design variable for
coordination-aware sensor deployments. Taken together, these
results provide practical insights into the design of robust and
scalable multi-sensor systems for robotics and autonomous
infrastructure.

While IQL and DQN themselves are standard multi-agent
reinforcement learning techniques, the novelty of this work lies
in the explicit formulation of overlap as a band-targeted co-
ordination objective, a discrete visibility-based LiDAR place-
ment formulation tailored to obstacle-rich environments, and
a unified evaluation protocol; as part of this protocol, we
additionally report a DQN zero-shot transfer experiment that
highlights robustness and generalization trade-offs in multi-



agent settings.

II. RELATED WORK
A. Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning has gained significant
attention for coordinating multiple autonomous agents [4].
Independent Q-Learning, despite its theoretical limitations
regarding convergence guarantees in multi-agent settings, has
shown practical success in various domains due to its scala-
bility and simplicity [5]. Recent work has explored the effec-
tiveness of independent learning in multi-agent coordination
tasks, often finding that simple approaches can outperform
more complex centralized methods [6]. In addition, deep RL
baselines such as DQN [9] and value decomposition methods
VDN/QMIX [10], [11] are widely used for cooperative control.

The challenge in multi-agent reinforcement learning lies in
the non-stationary environment each agent faces due to other
agents’ simultaneous learning. This non-stationarity can lead
to convergence issues and suboptimal solutions. However, in
practice, independent learning approaches often demonstrate
robust performance when combined with appropriate reward
shaping and environmental structure.

B. Zero-Shot Transfer Learning

Zero-shot learning in reinforcement learning focuses on
transferring learned policies to unseen environments without
additional training [8]. This approach is particularly relevant
for sensor placement optimization where deployment envi-
ronments may differ significantly from training conditions.
The effectiveness of zero-shot transfer depends on the sim-
ilarity between training and testing environments, as well as
the generalization capabilities of the learned representations.
Approaches such as Other-Play aim to induce conventions that
transfer across partners and seeds [15].

Recent advances in deep reinforcement learning have shown
promise for transfer learning across different domains, but
the effectiveness in multi-agent discrete coordination tasks
remains underexplored. The discrete nature of sensor place-
ment problems presents unique challenges for neural network
generalization compared to continuous control tasks.

C. Sensor Placement Optimization

Classical sensor placement approaches include integer pro-
gramming formulations [7] and evolutionary algorithms [3].
These methods typically require known environment models
and may not scale well to dynamic or complex environments.
Recent advances have incorporated deep learning methods,
though their effectiveness varies significantly across problem
domains and environmental conditions [8].

LiDAR coverage optimization has been addressed in various
contexts, from autonomous driving applications [2] to smart
city monitoring systems [1]. Ye et al. [3] proposed methods
for roadside LiDAR placement that account for blind spots and
overlapping coverage regions, noting that strategic overlap can
reduce detection dead zones. However, these works primarily

focus on maximizing coverage without explicitly controlling
overlap ratios as a coordination parameter.

Comprehensive comparisons of reinforcement learning ap-
proaches for multi-LiDAR coordination remain limited, par-
ticularly regarding the trade-offs between different algorithmic
approaches, zero-shot transfer capabilities, and their robustness
across varying environmental conditions.

III. METHODOLOGY
A. Problem Formulation

We consider an M x N discrete grid with obstacle cells Ogps
and free cells F. Each LiDAR pose is represented by (p, d),
where p € F is a cell location and d € D is a discretized
orientation.

a) Deterministic visibility-based coverage: We use a
binary, deterministic visibility model. A free cell ¢ € F is
covered by a pose (p,d) if it satisfies range, field-of-view
(FOV), and line-of-sight (LOS):

C(p,d) = {c € F | inRange(c; p) ANinFOV (¢; p, d)ALOS(¢;p) }.
(1)
Here, inRange(c;p) denotes |[¢ — p|| < 7max and
inFOV(¢; p, d) denotes that the bearing of ¢ from p lies within
the LiDAR FOV centered at d. LOS is computed by discrete
ray-casting (DDA): a ray from p is traversed cell-by-cell and
terminates at the first obstacle (or at the maximum range).
Cells behind the first obstacle are occluded.
b) Objective: The goal is to select K LiDAR poses to
maximize the fraction of covered free cells:

K
Ui:l C(pi,di) )
max —_—
{(pi,di) Y, CFxD 2

where {p;}X, C F are sensor locations, {d;}X, C D

are their orientations, and C(p;,d;) C F denotes the set of

free cells visible from the i-th LiDAR under the deterministic
model in Eq. 1.

B. Multi-Agent Algorithms

1) Independent Q-Learning (IQL): We adopt Independent
Q-Learning (IQL) as a decentralized baseline, where each
LiDAR sensor ¢ € {1,..., K} maintains and updates its own
tabular action-value function @;(s,a) to maximize a shared
team objective.

State and Action Space: The state s; = (7, ¢, d) represents
the discrete sensor pose, comprising the grid coordinates (r, ¢)
and a discretized orientation index d € {1,...,|D|}. The
action space .A; is discrete and low-dimensional (11 actions to-
tal): translation to one of the 8 neighboring cells (Moore neigh-
borhood), rotation by one step (clockwise/counter-clockwise),
or remaining stationary.

Learning Mechanism: The resulting per-agent state—action
space has size |S| x| A| = (M -N-|D|) x 11 (60x60x 24 x 11
in our setup), which makes tabular learning feasible. This
avoids neural function approximation, which can be sensi-
tive to representation and hyperparameter choices in discrete



grid environments. Q-values are updated using the standard
temporal-difference rule:

Qi(st,ar) + (1—a)Qi(se, ar)+a |1y + ’yrr}la/in(gt+1’a’) .

3)
We fix a = 0.10 and v = 0.95 in all IQL experiments. Explo-
ration follows an e-greedy policy with € decayed exponentially
from €y = 0.40 to €pmin = 0.03.

a) Why Independent Q-Learning Works Well in This
Setting: Although Independent Q-Learning (IQL) is known
to suffer from non-stationarity in general multi-agent envi-
ronments, several structural properties of the proposed multi-
LiDAR placement problem mitigate these effects in practice.
First, the environment is fully discrete with a low-dimensional
state and action space, enabling stable tabular learning with-
out function approximation. Second, agents are only weakly
coupled: each LiDAR independently controls its pose, and
inter-agent interaction occurs solely through a shared global
reward signal rather than through direct state transitions or
joint actions. Consequently, policy updates of one agent do
not directly alter the transition dynamics perceived by others.

Moreover, the overlap-aware band-target reward provides an
explicit coordination signal that reduces ambiguity in multi-
agent credit assignment. By softly encouraging overlap within
a predefined range, agents are guided toward complementary
sensing configurations without requiring centralized training,
value decomposition, or inter-agent communication. Empiri-
cally, this design yields stable convergence and low variance
across random seeds, as reflected in Sec. IV. These results
suggest that, for structured discrete deployment tasks with
limited inter-agent coupling, IQL serves as a robust and
computationally efficient coordination baseline.

2) Deep Q-Network (DQN): Map-Specific and Zero-Shot
Settings: We implement Deep Q-Network (DQN) agents using
the MATLAB Reinforcement Learning Toolbox with optional
GPU acceleration. Unless otherwise stated, training hyperpa-
rameters are fixed across all experiments.

We evaluate DQN under two distinct settings. In the map-
specific setting, a DQN agent is trained from scratch on each
evaluation map and tested on the same map after convergence,
representing within-environment performance. In the zero-shot
setting, DQN agents are pre-trained on a disjoint set of random
maps and evaluated on unseen test maps without any further
learning or fine-tuning; all zero-shot evaluations use frozen
network parameters. For K > 1, we train one DQN policy
per agent using the same action set and a shared team reward.

3) Greedy (Local-Search) Baseline: We use a local-search
greedy baseline. Let the joint state be s, = {(pt,d})} 5.
Define the coverage count map as Crap(c; s) = Zfil 1{c €
C(pi,d;)}, and the normalized coverage and overlap ratio as

_ |U£10(Pi,di)m}—|

- |7 ’

_ |{CE‘F‘Cmap(C§3)>1}|
[{c€F|Cuple;s) =1}

C(s)
“4)
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Note that O(s) = roy(s) in Eq. 10. For sensor ¢ and action
a € A; (move/rotate/stay), the one-step myopic score is

Ji(s,a) =[C(Ti(s,a)) — C(s)]
— Wmove 1m0ve(a) — Wrot 1rot (a)
— Winvalid Linvatia (@) — Weonide Z(7Ti (5, a))
+ Rovesiap(O(Ti(5, ).

where T;(s,a) applies a only to sensor i (others fixed),
1) are penalty indicators, =(-) counts the total number of
colliding sensor pairs (i.e., two sensors occupying the same
grid cell) in the resulting joint state, and Rgﬁgflap is the band-
target overlap reward (Eq. 10). Penalty weights: wpeve = 0.01,
Wror = 0.003, Winyatia = 0.02, weonige = 0.02.

At each time step ¢, we perform coordinate-wise greedy

updates over sensors:

(&)

* (1)
atfi € arg grézi}lf Jl(st , a)7 ©
st =Ti(s{' ™V a5,)

with sio) =s;and s441 = SEK). We stop early if C(sp41) > 7,

where 7 is set to the coverage achieved by the reference static
greedy solution in Eq. 7. This procedure is purely local/myopic
and does not re-optimize previously placed sensors; therefore
we do not claim the set-cover style submodular guarantees that
apply to classic static sequential greedy.

a) Static Greedy (reference only): For context, we also
compute the classic static sequential greedy selection used
only as a reference for setting the early-stop threshold 7:

d = ar max
(Prt1, drs1) 8, max

k (7
o)\ | Cloir i)
i=1

It is not the baseline plotted in our figures.
C. Experimental Framework

1) Environment Setup and Experimental Design: The ex-
perimental environment consists of a 60 x 60 grid, representing
a 3.0m X 3.0m area with Scm resolution. Each LiDAR sensor
has a 70.4° field of view with 15° directional increments, pro-
viding 24 possible orientations. Three obstacle configurations
(1, 2, and 4 obstacles) are evaluated to assess performance
across varying environmental complexities.

The environment setup incorporates realistic constraints
including line-of-sight occlusion, sensor range limitations, and
discrete positioning. Line-of-sight is computed via grid-based
ray casting (DDA), where rays are cast uniformly across
each sensor’s field of view and terminate upon encountering
an obstacle or reaching the maximum range. While we use
explicit grid-based ray casting (DDA) for LOS evaluation,
recent work has explored occupancy grid mapping approaches
that reduce or avoid explicit ray casting for efficiency [13].
We do not use such alternatives in this work. To reduce
runtime, we precompute and cache the visibility set C(p, d)
for each candidate pose (p, d) and reuse it during training and
evaluation.



2) Zero-Shot Learning Framework: To evaluate transfer
learning capabilities and generalization robustness, we im-
plement a comprehensive zero-shot experimental framework
specifically for DQN agents:

Training Phase: DQN agents are pre-trained on 5 randomly
generated training maps with obstacle sizes ranging from
5x5 to 12x12 cells. The training environments use random
obstacle placement with controlled density to ensure diverse
learning experiences.

Testing Phase: Pre-trained agents are evaluated without
additional training on two distinct test scenarios: (1) fixed
deterministic maps with 3 different obstacle configurations,
and (2) random test maps with obstacle sizes ranging from
6x6 to 18x18 cells to assess generalization to different
obstacle scale distributions.

Evaluation Protocol: The framework uses disjoint random
seeds between training and testing phases to ensure no over-
lap between training and evaluation scenarios. Performance
is measured using best coverage achieved on fixed maps
and mean =+ standard deviation across multiple random test
scenarios. We follow common cooperative MARL evaluation
practices (multiple seeds, fixed episode budgets) popularized
by SMAC [12].

3) Reward Structure with Overlap Control: We define
Roverage as the incremental increase in the normalized covered
area between consecutive time steps. The reward function is
designed to balance coverage maximization with controlled
overlap:

K
1
Rtotal == Rcoverage - ? Zl ; wj 1j (a’) + RESQS]'&P' (8)
=17

where P = {move, rot, invalid, collide} denotes penalty
types and 1;(a;) is the indicator that agent i executed a
penalty-triggering action of type j. All penalty terms are
averaged over K agents. We use wpove = 0.01, w = 0.003,
Winvatid = 0.02, and weepige = 0.02 in all experiments.

Rcoverage = C(St—i-l) - C(St), )

To maintain overlap within the target range [Giow, Ohigh) =
[0.30,0.40], we adopt a band-target reward:

Olow —"Tov 1
—0.05 - ax (Orn ) if 7oy < Blow
band 2|rey—0.35 .
Rosgrlap =4 +0.10- (1 - ‘To'lo ‘> if elow <oy < ehigh

_010 . "'ov_ehigh

T—Ohigh if Toy > ehigh

(10)
where 7oy(s) = O(s) denotes the overlap ratio (multi-covered
cells divided by covered cells). This design encourages overlap
near the 35% midpoint while penalizing both insufficient
overlap (limiting coordination potential) and excessive overlap
(wasting resources). We set a small constant € = 1075, We

apply Ry, only when K > 2.

For completeness, we define an optional soft minimum-
separation penalty to discourage sensors from being placed
too close:

1
Poox() = g > max(0,duin — [pi = p51), (D)
(2) =
with minimum separation dp;, = 0.6m (12 cells at Scm
resolution). In all experiments, we set wpox = 0, as

collision/invalid-action penalties were sufficient in our discrete
grid setting.

4) Evaluation Protocols: Train/Val/Test maps are disjoint
for DQN pre-training. DQN (zero-shot) is frozen at test time.

IQL is trained independently on each evaluation map under
the same environment-step budget and is evaluated after train-
ing on that map. Unless noted, per-episode step budgets and
the number of random seeds are matched across methods. We
use A-coverage as Rcoverage in all learning runs.

IV. EXPERIMENTAL RESULTS

Evaluation note (fairness and intent): To keep the primary
comparison symmetric, we evaluate Greedy, IQL, and DQN
(map-specific) on a per-map basis. Greedy requires no training,
while IQL and DQN (map-specific) are trained and evaluated
on the same map under a fixed step budget. Separately,
we include DQN(zero-shot)—pre-trained on disjoint random
maps and evaluated without adaptation on unseen maps—as
an additional transfer experiment. This transfer experiment is
not intended to replace per-map training in the head-to-head
comparison, but to illustrate how a learned policy behaves
under distribution shift.

Results are reported as meanztstd over Ng g = 5 seeds.
For IQL on fixed maps, each (#obs, K) uses ExMxT =
10 x 5 x 800 = 4.0 x 10* environment steps. DQN(zero-
shot) is pre-trained on Ny, =5 random maps per (#obs, K)
with the same per-episode step budget and kept frozen during
evaluation.

Figs. 1 and 2 demonstrate the effectiveness of IQL-based
LiDAR placement optimization across different complexity
levels. In the single-agent scenario (Fig. 1), the sensor posi-
tions itself to maximize visibility around the central obstacle,
achieving 68.03% coverage. The multi-agent coordination case
(Fig. 2) shows four sensors working together to achieve
comprehensive coverage of 97.06%, with each sensor focusing
on distinct areas to minimize overlap while maximizing total
coverage.

Figure 3 presents a comprehensive performance comparison
across all algorithms and environmental configurations. The
results clearly demonstrate IQL’s consistent superiority across
different sensor counts and obstacle densities. Table I provides
a breakdown of performance across different obstacle densi-
ties, revealing how environmental complexity affects algorithm
performance and the relative advantages of each approach.

Table II presents detailed performance results averaged
across all obstacle configurations in fixed environments. The
results demonstrate clear performance hierarchies and scaling
behaviors across different sensor counts.



TABLE I
PERFORMANCE ANALYSIS BY OBSTACLE DENSITY (% MEAN + STD)

Algorithm 1 Obstacle 2 Obstacles 4 Obstacles Overall
Greedy 56.2 £27.0 72.6 £283 679 £298 65.6+ 29.2
IQL 893 + 121 922 +73 87.0+ 122 89.5 + 11.0
DQN(map-specific) 649 + 17.0 65.6 £20.9 543 £ 127 61.6 + 18.0
DQN(zero-shot) 553 £ 183 555 +£215 628 £205 579 + 205
[IQL][obs=1, L=1] BEST: 68.03% ) Algorithm Performance Comparison
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Fig. 1. Single-agent placement (1 obstacle, 1 LIDAR). Best coverage: 68.03%.

[IQL]jobs=4, L=4] BEST: 97.06%

Fig. 2. Multi-agent coordination (4 obstacles, 4 LiDARs). Best coverage:

97.06%.
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Fig. 3. Comprehensive performance comparison showing coverage
performance across different numbers of LiDAR sensors and obstacle
configurations. IQL (blue) consistently achieves the highest average
coverage across the tested scenarios.

TABLE I

ALGORITHM PERFORMANCE COMPARISON ON FIXED ENVIRONMENTS

(MEAN =+ STANDARD DEVIATION %)

LiDARs Greedy IQL DQN(map-specific)
1 333 £235  69.0 + 6.2 40.6 = 7.8
2 37.8 £ 133 904 + 34 50.6 + 10.1
3 86.1 + 6.0 94.7 + 1.5 599 £ 11.6
4 77.1 £ 189  96.9 + 0.9 73.1 &£ 3.9
5 935+ 1.2 96.5 + 1.2 83.8 + 10.6
Average 65.6 £29.2 89.5 + 11.0 61.6 + 18.0
TABLE III

ADDITIONAL TRANSFER EXPERIMENT FOR DQN UNDER TWO SETTINGS:
(1) DQN(MAP-SPECIFIC), TRAINED FROM SCRATCH ON EACH EVALUATION
MAP, AND (11) DQN(ZERO-SHOT), PRE-TRAINED ON DISJOINT RANDOM
MAPS AND EVALUATED WITHOUT FURTHER LEARNING ON TEST MAPS

(DISTRIBUTION SHIFT) (%).

LiDARs IQL DQN(map-specificc = DQN(zero-shot)
1 69.0 + 6.2 40.6 + 7.8 33.1 £6.3
2 904 + 34 50.6 = 10.1 549 £+ 15.5
3 94.7 + 1.5 59.9 £ 11.6 67.3 £ 0.7
4 96.9 + 0.9 73.1 £ 3.9 55.1 £ 21.8
5 96.5 + 1.2 83.84+ 10.6 78.9 + 13.3
Average 89.5 + 11.0 61.6 + 18.0 57.9 £+ 20.5




Table III reports the supplementary DQN zero-shot transfer
results alongside per-map-trained baselines, illustrating that
performance can be less consistent under distribution shift in
this discrete coordination setting.

V. DISCUSSION

The superior performance of IQL demonstrates the re-
markable effectiveness of decentralized learning approaches
for multi-agent coordination tasks. By allowing each sensor
to learn independently while sharing environmental rewards,
IQL achieves effective coordination without the computational
complexity and communication requirements of centralized
or joint action methods. This approach proves particularly
valuable in sensor network applications where communication
bandwidth is limited and robustness to individual agent failures
is critical.

As an additional transfer experiment, we evaluated DQN un-
der a zero-shot setting to probe behavior across unseen maps.
While DQN can achieve reasonable performance when trained
per map, its behavior under distribution shift is less consistent
in this discrete coordination problem, suggesting that reli-
able cross-map deployment would likely require environment-
specific training or additional adaptation mechanisms [8], [15].

Both environment-specific trained and zero-shot DQN vari-
ants demonstrate issues including training instability, poor
sample efficiency compared to tabular methods, high sensi-
tivity to hyperparameters, and difficulty in learning effective
coordination strategies. The computational complexity analy-
sis reveals practical considerations: Greedy requires O(K|F]|)
per iteration, where || denotes the number of free grid cells;
IQL uses O(K|S||A|) memory for Q-tables; DQN incurs NN
training and replay overhead.

Across increasing obstacle densities (1, 2, 4 obstacles),
IQL maintains high coverage and relatively low variance
compared to both Greedy and DQN. Performance gaps widen
with complexity, suggesting that decentralized coordination
becomes increasingly valuable as spatial complexity increases.

The band-target reward strategy (Eq. 10) provides a tun-
able design parameter for applications requiring controlled
overlap. By targeting the 30-40% range in our experiments,
the framework allows system architects to adjust [Giow, Ohign)
bounds based on specific requirements such as fault tolerance
or multi-target tracking coordination.

The findings suggest IQL as a strong default for multi-
LiDAR systems due to its performance, variance, compute
footprint, and robustness. For cross-environment deployment
without retraining, current deep RL approaches are insuffi-
cient; environment-specific tuning or adaptive online learning
should be considered.

Although wall-clock runtimes depend on hardware and
implementation details, tabular IQL incurs negligible inference
overhead compared to DQN, which requires forward passes
through a neural network at each decision step.

VI. CONCLUSION

We presented a comprehensive evaluation of MARL ap-
proaches for LiDAR placement, and additionally report a

DQN zero-shot transfer experiment. Independent Q-Learning
achieves superior average coverage and stability relative to
deterministic baselines and deep RL approaches. Our band-
target reward framework targets 30-40% controlled overlap,
providing practical flexibility for applications requiring inter-
sensor coordination. We also report an additional zero-shot
transfer experiment for DQN, which suggests that robust
transfer across unseen maps remains challenging in this set-
ting. Simple, well-designed algorithms like IQL—paired with
appropriate reward shaping—offer strong performance, com-
putational efficiency, and reliability for real-world deployment.
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