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Abstract—This paper proposes a robust methodology for esti-
mating the State of Health (SOH) of Lithium-ion batteries(LIBs)
using Gaussian Process Regression (GPR). “To overcome the
limitation of prior studies that rely on full charge–discharge
cycles, we leverage partial-charging data, motivated by the fact
that partial charging is commonplace in real-world application.
To capture electrochemical degradation, we add Incremental
Capacity Analysis (ICA) peak features and tune kernel hy-
perparameters via Bayesian optimization for calibrated uncer-
tainty. Using Samsung INR 18650-25R cells, the proposed model
achieves an RMSE of 1.6347% and an EICP of 94.34% (nominal
95%), outperforming baselines without ICA or optimization.
Results show that ICA features improve accuracy and Bayesian
optimization corrects over-conservative intervals, yielding reliable
uncertainty alongside strong point estimates.

Index Terms—Lithium-Ion Battery, SOH Estimation, Bayesian
Optimization, Incremental Capacity Analysis, Gaussian Process
Regression

I. INTRODUCTION

Amid the shift from fossil fuels to sustainable energy
systems, Lithium-ion batteries (LIBs) have become a core
enabler across sectors—powering electric vehicles, supporting
grid-scale storage that smooths intermittent renewables, and
driving portable electronics [1], [2]. Their pervasive role makes
LIBs a foundational technology in today’s energy transition.

As battery reliance deepens, management technologies that
ensure safety, lifetime, and performance have become in-
dispensable. Because cell condition directly affects system
reliability and operational integrity, real-time assessment and
accurate SOH estimation are required [3], [4]. The SOH is
a key indicator that quantitatively represents the degree of a
battery’s aging. It is defined as the ratio of the maximum
capacity a battery can currently store to its initial nominal
capacity, expressed as a percentage, by the following equation.

SOH(%) =
Qcurrent

Qnominal
× 100 (1)
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Here, Qcurrent denotes the maximum discharge capacity
measured in the current cycle and Qnominal the initial nom-
inal capacity at manufacture, so SOH serves as an intuitive
indicator of the battery’s remaining lifespan.

Research on SOH estimation is broadly classified into
circuit-based models, electrochemical models. Circuit-based
approaches, such as the Equivalent Circuit Model (ECM),
represent battery behavior using combinations of electrical
components, while physics-based Electrochemical Models
(EMs) mathematically describe the internal electrochemical
dynamics. ECMs are simple and suitable for real-time ap-
plications but suffer from limited accuracy. In contrast, EMs
offer higher fidelity at the cost of severe model complexity
and computational burden, which hinders their deployment in
practical Battery Management Systems [5], [6].

As an alternative, data-driven machine learning methods
have been actively studied. Models ranging from SVMs and
ANN to Recurrent Neural Networks can achieve high es-
timation accuracy by directly learning degradation patterns
from data [5], [7], [8]. However, most of these approaches
assume access to full-cycle data and suffer from the black-box
problem: the internal reasoning process is opaque, making it
difficult to guarantee the reliability of the predictions [9], [10].

To mitigate these limitations, this study proposes a Gaussian
Process Regression (GPR)–based SOH estimation model. GPR
produces both point predictions and quantitative uncertainty,
providing a basis for assessing the credibility of the estimates
and partially alleviating the black-box nature of conventional
deep learning models. Since the reliability of this uncertainty
crucially depends on the kernel hyperparameters [11], we
employ Bayesian optimization to systematically tune them and
obtain well-calibrated predictive distributions.

Most prior work relies on full charge–discharge data for
SOH estimation, which is difficult to obtain under realistic
operating conditions. In contrast, we use readily collectible
partial-charging data and their statistical descriptors as inputs.
To further enhance estimation performance, we additionally
incorporate ICA peak features, which are sensitive to changes
in the battery’s electrochemical state.

In this work, we validate the proposed methodology by
comparing three models: (1) a baseline GPR model using only
statistical features, (2) a GPR model augmented with ICA peak



features, and (3) the final proposed model in which the kernel
hyperparameters are tuned via Bayesian optimization.

The remainder of this paper is organized as follows.
Section II describes the experimental dataset, preprocessing
procedures, and feature extraction from voltage–current data.
Section III introduces the structure of the GPR-based SOH
estimation model and details the Bayesian hyperparameter
optimization process. Section IV presents and analyzes the
training and validation results through comparison of the three
models. Finally, Section V concludes the paper.

II. DATA FOR LIB SOH ESTIMATION

This section details the preprocessing procedures for ex-
tracting features from experimental data and preparing them
in a suitable format for the SOH estimation model.

A. Battery Dataset and Experimental Environment

The dataset used in this study was constructed through
cycling experiments on five Samsung INR 18650-25R Li-
ion battery cells. The nominal capacity and voltage of the
battery are 2.5Ah and 3.7V, respectively. All experiments were
conducted in a thermo-hygrostatic chamber maintained at a
temperature of 25°C and 60% humidity. The cycling protocol
consisted of a 0.5C Constant Current-Constant Voltage (CC-
CV) charge and a 0.5C Constant Current (CC) discharge,
repeated 957 times. The time-series data of voltage and current
measured during each cycle were used for modeling.

B. Input Data Preprocessing and Feature Extraction

The following preprocessing steps were performed to extract
input features that effectively reflect SOH changes from the
collected raw time-series data. First, the analysis was confined
to the CC charging phase of the full charging profile, where
voltage behavior changes due to SOH are prominent.

To emulate the partial charging patterns of real world usage,
the CC charging section was divided into multiple segments,
termed partial charging data in this study. Specifically, a sliding
window approach was applied to the voltage range of 3.60V to
4.19V. A voltage window with a width of 0.4V was moved at
0.01V intervals, generating a total of 20 partial charging data
segments from a single full charge cycle. This structured data
serves as the fundamental unit for extracting the statistical and
physical features used for model training [12].

C. Configuration of LIB SOH Estimation Data

This section describes the process of constructing the final
input feature vector and output data for the model from the
previously generated partial charging data. The input feature
vector consists of key indicators that best describe the current
SOH of the Li-ion battery. In this study, the final input vector
was designed by extracting two groups of features: statistical
features of charge capacity and ICA peak-related features.

(a) ICA Surface Plot

(b) ICA Heatmap

Fig. 1: Visualization of ICA curve evolution with surface plot
and heatmap

1) Statistical Features of Partial Charge Capacity (∆Q):
The first feature group uses statistical properties of partial
charge capacity, calculated by integrating current over time
for each partial charge segment.

∆Q =

∫ tend

tstart

I(t)dt (2)

Here, tstart and tend represent the start and end times of
each segment. As the battery degrades, its internal resistance
increases and effective capacity decreases, altering the time
and charge (∆Q) required to charge through the same voltage
window (∆V ). To capture this pattern, two statistical features
were extracted from the ∆Q values of all segments within
a single charge cycle: the mean of partial charge capacity
(µ∆Q), representing the overall charging characteristic, and the
standard deviation (σ∆Q), indicating the uniformity of capacity
change across different voltage ranges.

2) Incremental Capacity Analysis based Peak Features:
The second feature group utilizes peak information extracted
via the Incremental Capacity Analysis (ICA) technique. ICA is
an effective method for diagnosing the internal electrochemical
state and degradation mechanisms of a battery by analyzing
the derivative of the charge curve ( dQdV versus voltage V ) [13].

Under Constant Current (CC) conditions, the terminal volt-
age V of a battery is generally expressed as:

V (Q) = Eeq(Q) + I ×R(Q) + η(Q, I, T ) (3)

where Eeq is the equilibrium voltage, R is the internal resis-
tance, and η is the overpotential. The ICA curve, represented



by dQ
dV , forms peaks in regions where phase transitions, such as

lithium-ion intercalation and de-intercalation, occur actively.
As the battery degrades, the shape of the ICA curve changes,

with the peak’s amplitude and position showing a strong
correlation with degradation. Generally, as SOH decreases, the
peak amplitude decreases, and its position shifts to a higher
voltage. This amplitude decrease is visible in Fig. 1(a), and
the position shift is observed as the distinctly colored region
moves with cycling in Fig. 1(b). In this study, the peak value
Pj and peak position Vj for each partial charging data segment
j were extracted as features, defined as follows, where i is the
discrete data sample index within the segment.

Pj = max
i

∆Qj,i

∆Vj,i
, Vj = argmax

i

∆Qj,i

∆Vj,i
(4)

The primary cause of peak amplitude decrease is the Loss of
Active Material and SEI growth, which reduces the available
lithium-ions to react, consequently lowering the dQ

dV value [14].
The rightward shift is mainly due to increased internal

resistance (R). This requires a higher terminal voltage V to
drive the same current I , shifting the phase transition voltage
range upwards [15]–[17].

In this study, the peak value (Pj) and position (Vj), which
reflect this physical degradation, were used as key input
features. If multiple peaks existed within a segment, the one
with the largest amplitude was selected.

3) Final Input Vector Construction: The four features de-
scribed above—mean partial charge capacity (µ∆Q), standard
deviation of partial charge capacity (σ∆Q), ICA peak value
(P ), and peak position (V )—are integrated to form the final
4-dimensional input feature vector. The dataset for model
training and validation was constructed by randomly sampling
data from the entire lifecycle of the battery cells.

D. Output Data Definition

The output data for the model developed in this study is
the SOH. SOH is a key indicator that intuitively represents
the degree of aging and remaining lifespan based on the
current available capacity, making it one of the most important
parameters in a BMS.

Generally, when SOH drops below 80% of the initial capac-
ity, it is considered the End of Life (EOL), after which bat-
tery replacement is recommended. Therefore, the SOH value
estimated by this model aims to provide users with crucial
information for making decisions about battery replacement
timing and safety management.

III. GPR-BASED LIB SOH ESTIMATION MODEL

This section describes the structure of the GPR model for
SOH estimation and the Bayesian optimization-based method
for setting its hyperparameters.

A. GPR-based Learning Model

GPR is a nonparametric method that models the relationship
between inputs and outputs as a distribution over functions. It
can effectively capture complex nonlinearities and provides

Fig. 2: Gaussian Process Regression Workflow

quantitative uncertainty along with its estimates, allowing for
an assessment of the result’s reliability [11], [18].

Fig. 2 illustrates the GPR inference process. It begins by
assuming a set of possible functions from a prior distribution
defined by a kernel function. This distribution is then updated
based on observed data to form a posterior distribution that
is consistent with the data. Finally, predictions, including an
estimate and a confidence interval, are made for new inputs
using this posterior. The estimated mean f̄∗ and covariance
cov(f∗) are derived as follows.

f̄∗ = K(x∗, X)[K(X,X) + σ2
nI]

−1y (5)

cov(f∗) = K(x∗, x∗)−K∗[K + σ2
nI]

−1KT
∗ (6)

Here, K∗ = K(x∗, X) and K = K(X,X). X and y are the
training inputs and outputs, respectively, K is the covariance
matrix defined by the kernel function, and σ2

n is the noise
variance. The estimated mean serves as the point estimate
for SOH, while the estimated covariance is used to calculate
the confidence interval, quantifying the estimation uncertainty.
In this study, the Matérn 5/2 kernel function was used to
effectively reflect the local non-linearity of the data.

B. Hyperparameter Tuning using Bayesian Optimization

The performance of a GPR model is highly dependent on its
hyperparameters, such as the length-scale and signal variance,
which define the shape of the kernel. To find the optimal



combination that reflects the data’s unique characteristics, this
study employed Bayesian optimization. This technique is more
efficient than grid search or random search, as it can approach
the optimal solution with fewer iterations [19], [20].

Bayesian optimization sequentially locates the optimum
by approximating the objective with a surrogate model and
selecting the next evaluation via an acquisition function. In our
case, the surrogate model is a Gaussian process regression over
the hyperparameter space that models the loss L(θ) with mean
µ(θ) and variance σ2(θ). The acquisition function leverages
this information to select the most promising candidate for
the next evaluation. In this study, we employ the Expected
Improvement (EI) acquisition function. EI is designed to take
larger values when the expected loss is lower (exploitation)
and when the predictive uncertainty is higher (exploration),
thereby effectively balancing the two strategies. This iterative
process—updating the surrogate model and searching for the
optimum—continues until convergence.

The objective function for Bayesian optimization—the loss
L(θ)—must reliably estimate the generalization error for a
given hyperparameter setting θ. Accordingly, we set the final
loss L(θ) to the cross-validated mean squared error (CVMSE),
i.e., the arithmetic mean of the mean squared error (MSE) over
five validation folds:

L(θ) =
1

K

K∑
k=1

MSE(k)(θ) (where K = 5) (7)

MSE(k)(θ) =
1

nk

∑
i∈Vk

(
yi(θ)− ŷi(θ)

)2
(8)

where Vk denotes the k-th validation fold and nk its size.
Bayesian optimization then searches for the hyperparameter
combination that minimizes L(θ), thereby ensuring stable
estimation performance on the validation set. To prevent over-
fitting and data leakage during the search, the test data used
for final evaluation are excluded from the loss computation.

C. Model Performance Metrics

This study used Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Estimation Interval Coverage
Probability (EICP) to comprehensively evaluate the proposed
model’s estimation accuracy and reliability.

1) Estimation Accuracy Metrics: We evaluate predictive
accuracy using the mean absolute error (MAE) and root mean
squared error (RMSE), defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (9)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (10)

where n is the total number of samples, yi is the actual
observed value, and ŷi is the model’s estimated value. MAE
reports the mean absolute deviation and RMSE emphasizes
larger errors due to squaring.

2) Estimation Uncertainty Metric: A unique advantage of
GPR is its ability to provide quantitative uncertainty. This
study used the 95% Confidence Interval (CI) and the Esti-
mation Interval Coverage Probability (EICP) to evaluate the
reliability of this uncertainty estimation.

The 95% CI is calculated using the GPR’s estimated mean
(f̄∗) and standard deviation (σ∗) as follows:

95% CI = [f̄∗ − 1.96σ∗, f̄∗ + 1.96σ∗] (11)

EICP represents the proportion of samples in test data where
the actual value (yi) falls within the 95% CI. An EICP value
close to the nominal CI of 95% indicates that the model
represents its estimation uncertainty accurately.

IV. MODEL TRAINING AND VALIDATION RESULTS

This section describes the training of the GPR-based SOH
estimation models and analyzes their results.

A. Experimental Setup

The SOH estimation model was developed using MATLAB
and its Statistics and Machine Learning Toolbox. The dataset
used in this study was collected through charge-discharge tests
on five Samsung INR 18650-25R cells; data from four cells
were used as training data, while data from one cell was used
as validation data.

B. Model Training

To validate the proposed SOH estimation methodology,
three GPR models with different input data configurations
and hyperparameter optimization methods were designed and
compared.

1) Dataset Configuration: The dataset for model training
and validation was constructed through the preprocessing
steps described in Section II. From the data acquired from
all battery cells, 2,000 samples were randomly extracted for
model training. The entire lifecycle data of one specific cell,
consisting of 957 samples, was used as the validation set. This
was done to evaluate the model’s generalization performance
on unseen data and to prevent overfitting to the degradation
patterns of specific cells.

2) Comparative Model Design: The specifications of the
three models designed for the comparative experiment are as
follows:

Model 1: Baseline GPR The first model is a Gaussian
Process Regression (GPR) model whose hyperparameters are
optimized via random search. The input features consist only
of the statistical characteristics of the partial charging capacity
(µ∆Q, σ∆Q). The model uses the Matérn 5/2 kernel with
heuristic initial values, and serves as a baseline to assess the
effectiveness of the proposed input features and hyperparam-
eter optimization strategies.

Model 2: GPR with ICA Features The second model extends
the baseline GPR by incorporating ICA peak features (P, V )
in addition to the statistical features, resulting in a total of four
input features. As in Model 1, the hyperparameters are tuned
using random search. This model is designed to verify whether



(a) SOH Estimation Results of Model 1 (b) SOH Estimation Results of Model 2 (c) SOH Estimation Results of Model 3

(d) SOH Error of Model 1 (e) SOH Error of Model 2 (f) SOH Error of Model 3

Fig. 3: Comparison of SOH Estimation Results and Relative Error Rates by Model

the ICA-based features provide tangible improvements in SOH
estimation performance.

Model 3: GPR with Bayesian Optimization and ICA Fea-
tures The third model is the final proposed model in this
study. It uses the full set of four input features, including both
statistical and ICA peak features, and applies the Bayesian
optimization scheme described in Section 3 to optimize the
kernel hyperparameters. The objective function is the 5-fold
cross-validated mean squared error (CVMSE), so that the
model is trained to enhance generalization performance

C. Model Validation

This section validates and compares the performance of the
three trained GPR models using a separate validation dataset.
The models’ performance in terms of accuracy and reliability
on the data is quantitatively evaluated based on MAE, RMSE,
and 95% EICP, with the detailed results presented in Table I.

D. Results Analysis

This section quantitatively analyzes the effectiveness of the
ICA features and the Bayesian optimization based on the
validation results of the three GPR models.

TABLE I: SOH Estimation Models Performance Comparison

Model Accuracy Uncertainty
MAE(%) RMSE(%) EICP(%)

Model 1 2.3278 3.1902 93.20
Model 2 1.2473 1.7426 93.72

Model 3 (Proposed) 1.1393 1.6347 94.34

In this section, the performance of the three GPR models is
validated and compared. A separate validation dataset, which
is not used during training, is employed to quantitatively
evaluate how accurately and reliably each model estimates
the SOH for unseen data. The models are evaluated in terms
of MAE, RMSE, and 95% EICP, and the detailed quantita-
tive performance indicators, computed on a partial charging
data–wise basis, are summarized in Table I.

For visual comparison, Fig. 3 presents the prediction results
aggregated at the cycle level. Since all partial charging data
within the same cycle share an identical ground-truth SOH,
the partial charging data-wise SOH estimations within each
cycle are averaged, and this cycle-averaged value is plotted as
a single representative point for that cycle.

E. Result Analysis

In this subsection, the validation results of the three GPR
models are analyzed to quantitatively assess the effectiveness
of the ICA-based features and the impact of Bayesian hyper-
parameter optimization.

To examine the contribution of ICA peak features, the
performance of Model 1 and Model 2 is compared. As shown
in Table I, Model 2 achieves reductions in MAE and RMSE
of approximately 1.08% and 1.45% points, respectively, indi-
cating a substantial improvement in estimation accuracy. This
trend is also clearly observed in the error distributions in
Fig. 3(d)–(e), where Model 2 exhibits a more concentrated
and reduced error distribution compared to Model 1, which
uses only statistical features. These results suggest that the



ICA peak features effectively capture local degradation char-
acteristics of the battery.

The effect of Bayesian optimization is assessed by compar-
ing Model 2 with the proposed Model 3. According to Table I,
Model 3 attains the best overall accuracy, with an MAE of
1.1393% and an RMSE of 1.6347%, thereby achieving the
most stable prediction performance among the three models.

From the perspective of uncertainty quantification, the final
proposed Model 3 also shows the most reliable behavior. Its
EICP is 94.34%, which is the closest to the nominal confidence
level of 95% among all models, indicating that the predicted
confidence intervals are well calibrated.

The results of the three models lead to two key conclusions.
First, the ICA peak features play a decisive role in improv-
ing SOH estimation accuracy. Second, Bayesian optimization
enhances the reliability of uncertainty estimation with high
estimation accuracy. Therefore, Model 3, which incorporates
both ICA-based features and Bayesian hyperparameter op-
timization, is confirmed to be the best-performing model
in terms of both point estimation accuracy and calibrated
uncertainty under partial charging conditions.

V. CONCLUSION

In this study, we proposed a GPR-based methodology to es-
timate the SOH of Li-ion batteries using partial charging data
and ICA peak features. By focusing on the stable CC charging
phase and training the model exclusively on partial charging
segments, the proposed approach is well aligned with practical
BMS operation. In addition, the kernel hyperparameters of the
GPR model were tuned via Bayesian optimization to enhance
generalization performance and uncertainty reliability.

Experimental results confirmed that incorporating ICA peak
features improves SOH estimation accuracy compared to using
only statistical descriptors of partial charge capacity. The final
proposed model (Model 3) achieved the best performance
with an MAE of 1.1393% and an RMSE of 1.6347%. In
terms of uncertainty, Model 1 and Model 2, which determine
hyperparameters via random search under the same evaluation
budget, exhibited undercoverage with EICP values of 93.72%
and 93.20%, respectively. In contrast, the Bayesian-optimized
Model 3 attained an EICP of 94.34%, yielding empirical cover-
age that is closer to the nominal 95% level. This demonstrates
that, unlike naive random sampling, Bayesian optimization
exploits information from previous evaluations to concentrate
on promising regions of the hyperparameter space and obtain
more consistent estimates of the kernel and noise parameters.

Finally, we verified that accuracy and uncertainty calibration
can be maintained even when the model is trained from ran-
domly sampled partial charging data, which is advantageous in
practical environments where full charge histories are difficult
to obtain. Nonetheless, this study is limited to a single Li-
ion cell type under fixed environmental conditions. Future
work will extend the proposed framework to cell modules, and
investigate additional features such as the temporal evolution
of ICA peaks and higher-order distributional statistics to
further improve robustness.
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