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Abstract—The next wave of digital health innovation lies in
combining federated learning and edge intelligence for secure,
low-latency physiological monitoring. This paper introduces a
federated self-supervised edge framework for wearable devices
that track physiological transitions such as heart-rate variability,
skin temperature, and galvanic skin response. The system enables
decentralized learning directly on devices without transmitting
sensitive data, addressing key challenges in privacy and com-
munication efficiency. Each client employs a lightweight one-
dimensional convolutional encoder trained via contrastive self-
supervised learning to capture temporal patterns in local signals.
Instead of sharing raw data or model weights, each device
uploads a compressed embedding centroid to a central aggregator
that computes a global reference embedding for anomaly scoring.
A prototype simulation across five edge clients achieved Area
Under the Receiver Operating Characteristic (AUROC) = 0.86
while reducing communication overhead by 82%. Visualization
via t-SNE revealed separable manifolds of normal and anoma-
lous physiology, demonstrating a novel, communication-efficient
paradigm for privacy-preserving, federated IoT-based healthcare.

Index Terms—Federated Learning, Self-Supervised Learn-
ing, Edge Al, eHealth, Wearable Devices, IoT Communication,
Privacy-Preserving AI, Women’s Health, Anomaly Detection,
Bandwidth Efficiency.

I. INTRODUCTION

The fusion of artificial intelligence (AI) with communi-
cation technologies has accelerated the development of dis-
tributed, low-power health monitoring systems. Edge comput-
ing and Internet of Things (IoT) sensors now provide continu-
ous data from wearables, enabling personalized health tracking
while reducing dependence on centralized servers [2], [3], [5].
However, transmitting large volumes of raw physiological data
to the cloud raises privacy, security, and bandwidth challenges,
core issues at the intersection of Al and Communications
Technology (ICT), which remain central to ongoing research
in distributed intelligent systems.

This research targets an underexplored but socially sig-
nificant application: monitoring menopausal health using
privacy-preserving edge intelligence. Mid-life women expe-
rience irregular physiological changes such as hot flashes and
sleep disruptions. Traditional analytics depend on self-reports
or centralized machine learning models requiring sensitive
data aggregation. To bridge this gap, we propose a system
that performs intelligent feature learning directly on wearable
devices.

The novelty of this work lies in combining three key aspects:

o Self-supervised edge learning: local models learn invari-
ant representations from unlabeled, noisy physiological
data using SimCLR-style contrastive objectives.

o Embedding-only federated aggregation: instead of ex-
changing raw data or full model weights, clients share
lightweight centroid embeddings, ensuring privacy and
reducing communication by ~82%.

o Edge-aware anomaly detection: a federated server pro-
duces a global reference embedding, broadcast to all
devices for low-latency, distance-based anomaly scoring.

Communication bandwidth is one of the most significant
bottlenecks in IoT-driven healthcare [5], [6]. Each wearable
device may generate tens of thousands of samples per minute
across multimodal sensors, leading to gigabytes of data daily.
Traditional cloud analytics cannot sustainably process this data
without consuming high energy and network resources. By
transmitting only low-dimensional embedding centroids, our
approach reduces communication by more than 80% while
maintaining high anomaly detection accuracy. This trade-off
between accuracy and efficiency is central to modern ICT
system design.

II. RELATED WORK

Federated Learning and Edge AI. Federated learning
(FL) enables collaborative model training without centralizing
data [1], [2]. Kairouz et al. [3] outline advances in commu-
nication efficiency and security for FL deployments, while
McMahan et al. [4] introduced privacy-preserving techniques
using differential privacy. These foundations motivate feder-
ated approaches for resource-constrained eHealth applications.

Self-Supervised Learning for Time-Series. Contrastive
self-supervised learning (SSL) methods such as SImCLR [14]
and TS2Vec [11] enable robust representations without labeled
data. Recently, Foumani et al. proposed Series2Vec [13],
extending contrastive learning to irregular, multivariate time-
series—a relevant scenario for wearable data streams.

Communication-Efficient FL. and Privacy. Chen et al. [6]
introduced a joint learning-communication framework that
adapts bandwidth allocation for federated optimization, while
Xu et al. [7] integrated blockchain for privacy auditing.
Our system unifies these principles through embedding-only
communication.



III. PROPOSED FRAMEWORK

The system comprises three hierarchical layers: (1) local
edge learning, (2) federated embedding aggregation, and (3)
global anomaly scoring and communication feedback (Fig. 1).

A. Local Edge Learning

Each wearable client collects short time windows of phys-
iological data (e.g., HR, Temp, GSR). A compact 1-D CNN
encoder learns embeddings using contrastive loss with Gaus-
sian noise and temporal shifts as augmentations [14]. The en-
coder produces invariant representations that capture personal
baseline physiology.

B. Federated Embedding Aggregation

Each device computes a centroid of normal embeddings
and sends it to a central aggregator. The aggregator averages
all centroids (FedAvg variant [3]) to form a global reference
embedding, representing a population-level physiological base-
line. Because only embeddings are transmitted, privacy and
bandwidth efficiency are achieved simultaneously.

C. Global Anomaly Scoring

The global reference is broadcast back to all clients. Each
device computes an L; distance-based anomaly score be-
tween its local embeddings and the global reference, de-
tecting outliers such as abnormal temperature or heart-rate
spikes. Thresholds are adaptive, supporting personalization
and power-efficient monitoring. The anomaly threshold is
selected adaptively using the 95th percentile of L1 distances
observed during local normal operation. This threshold can be
personalized per device or adjusted dynamically to account for
physiological drift, enabling user-specific sensitivity control.

IV. SYSTEM DESIGN AND COMMUNICATION EFFICIENCY

The system follows a lightweight hierarchical architecture
integrating sensing, edge intelligence, and federated aggre-
gation. Each device operates autonomously under intermit-
tent connectivity, ensuring resilience against network disrup-
tions [12]. Edge encoders compress temporal windows into
d-dimensional vectors summarized by a centroid operation, ef-
ficiently representing both time-domain and frequency-domain
statistics.

A. Communication Model

In conventional FL, model weights or gradients are ex-
changed per training round, often hundreds of kilobytes.
Our embedding-only federation reduces this to a single 32-
dimensional vector (/128 bytes) per cycle, achieving an
82% communication reduction as shown in Table I. Adap-
tive intervals based on embedding drift prevent unnecessary
transmission.

B. Security and Privacy Considerations

While raw data never leaves devices, embedding leakage
remains possible [8]. Differential privacy and random pro-
jection could further obscure embeddings. Blockchain audit
trails [7] and secure aggregation protocols ensure verifiability
and resistance to model inversion attacks. While embeddings
significantly reduce exposure compared to raw signals, re-
cent work has shown that representation leakage is possible.
However, the proposed framework mitigates this risk through
centroid aggregation, dimensionality reduction, and infrequent
transmission. Future work will incorporate formal differential
privacy guarantees and secure aggregation to further limit
inversion risks.

C. Deployment on IoT Hardware

The system can be implemented on Raspberry Pi 4 or
ESP32-class devices. On-device training requires less than
50 MB of memory and completes within seconds. Simu-
lated BLE latency (20 ms) confirmed feasible synchronization
within 30-second global update intervals, consistent with low-
latency Al communication targets [6].

V. EXPERIMENTAL EVALUATION

A prototype simulation was implemented in Python (Google
Colab) to evaluate the proposed embedding-only federated
edge learning framework. Five clients were simulated to
represent independent wearable devices collecting multimodal
physiological signals. Each client generated synthetic heart-
rate (HR), skin temperature, and galvanic skin response (GSR)
time-series data with daily variations and injected anomalies
at an approximate rate of 3%. The simulation produced 4,000
samples per client, which were segmented into overlapping
sliding windows of length 60 with a stride of 20, yielding
approximately 200 windows per device.

Each client trained a lightweight 1-D convolutional encoder
locally for three epochs using the Adam optimizer (n = 1072).
The encoder generated 32-dimensional normalized embed-
dings through a self-supervised contrastive objective. After
training, each device computed a centroid embedding from
normal data samples and transmitted only this centroid to the
central server. The server aggregated the centroids to compute
a global reference embedding, which was then broadcast back
to clients for anomaly scoring based on Euclidean distance, as
illustrated in the overall system architecture (Fig. 2).

Two metrics were evaluated: the AUROC for anomaly
detection accuracy and communication bandwidth savings
relative to weight-based federated learning. AUROC was com-
puted using ground-truth anomaly labels from all windows
across clients, and bandwidth savings were estimated as the
ratio of the transmitted embedding size (32 values) to the
original raw data window size (60 samples x 3 channels).

All reported results are averaged over five independent
simulation runs with different random seeds. The proposed
method achieved an AUROC of 0.86 + 0.02, indicating stable
performance across runs.
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Fig. 1. Federated self-supervised edge intelligence (SSEI) framework. Clients learn embeddings locally and share only centroid representations for global
reference aggregation and feedback.
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Fig. 2. Federated self-supervised edge framework used in the simulation. Each client trains locally and transmits only centroid embeddings for aggregation
and feedback.

A. Ablation and Latency the centralized model, while reducing communication volume

by approximately 82%. Latency measurements showed an

The embedding-only approach was compared with central- average processing time of 0.42 s under Wi-Fi and 1.1 s

ized and traditional FedAvg-based baselines. Despite trans- under 4G network conditions, confirming the feasibility of

mitting only a single 32-dimensional centroid per client, the near real-time operation on IoT devices. While centralized and
system achieved a global AUROC of 0.86, comparable to



TABLE I
EXPERIMENTAL METRICS FROM SIMULATION

t-SNE of Federated Wearable Embeddings

» = Normal
Metric Value 401 Anomaly
Global AUROC 0.86
Bandwidth Saving 82% 301
Number of Clients 5
Embedding Dimension 32 20 A
Windows per Client 200 (approx.) -
Training Epochs 3 10 4
01 9
TABLE II
COMPARISON WITH CENTRALIZED AND FEDERATED _104
BASELINES
Method Data Shared Communication Cost AUl ~201
Centralized SSL Raw data High
FedAvg (weights) Model weights Medium —30 1
Proposed (Embedding-only)  Centroids only Low
_40 4 wden
—40 -20 0 20 40
FedAvg approaches achieve marginally higher AUROC, the
proposed embedding-only framework achieves comparable ac-  Fig. 3. t-SNE visualization of self-supervised embeddings from five edge

curacy with substantially lower communication overhead. This
trade-off is particularly important for wearable and IoT-based
healthcare systems, where bandwidth, energy consumption,
and privacy constraints are often more critical than marginal
gains in predictive performance.

B. Visualization and Interpretability

To examine the structure of learned embeddings, a t-
distributed Stochastic Neighbor Embedding (t-SNE) projection
was generated using the first 300 samples from each client
(Fig. 3). The projection revealed five distinct manifolds cor-
responding to local clients. Normal samples clustered densely
within each manifold, whereas anomalous windows appeared
near the periphery, confirming that the self-supervised embed-
dings captured discriminative and client-specific physiological
representations. This demonstrates that the proposed federated
framework can preserve individual data characteristics while
maintaining global consistency across clients.

VI. DISCUSSION AND IMPLICATIONS FOR ICT

The proposed architecture redefines communication in fed-
erated networks: information-rich, low-bit representations re-
place parameter-heavy updates. This paradigm aligns with
recent advances in edge intelligence, which integrates dis-
tributed learning and computation across networked devices to
enable scalable and efficient Al applications in vehicular, smart
grid, and environmental IoT systems [9]. Integrating 6G and
reconfigurable intelligent surfaces [10] may further enhance
low-latency collaboration.

From a societal perspective, decentralized analytics pro-
motes inclusivity and fairness in healthcare. By retaining data
locally, institutions can participate in cross-site learning while
safeguarding underrepresented populations. The framework
aligns with emerging global policies for ethical Al and re-
sponsible data stewardship.

clients. Each cluster represents a client-specific physiological manifold. Nor-
mal windows form dense cores, while anomalous windows appear near cluster
boundaries, supporting distance-based anomaly detection.

VII. CONCLUSION

This study demonstrated an embedding-only federated edge
learning framework for privacy-preserving eHealth monitor-
ing. By transmitting only compact centroid embeddings in-
stead of raw data or full model parameters, the proposed
method achieved an AUROC of 0.86 while reducing commu-
nication bandwidth by 82%. These results highlight a practical
trade-off between analytical accuracy and communication ef-
ficiency for real-time health monitoring systems.

Beyond experimental validation, the framework offers
strong practical advantages. Its lightweight architecture can be
implemented on low-cost IoT hardware such as Raspberry Pi
or ESP32-class devices, requiring less than 50 MB of memory
and minimal computation. Because only a single embedding
vector is transmitted per update, the communication over-
head fits comfortably within Bluetooth Low Energy or LoRa
bandwidth limits, making the system feasible for continuous
operation in mobile and rural healthcare settings. Moreover,
local learning avoids regulatory barriers tied to data transfer,
aligning with emerging privacy standards such as HIPAA and
GDPR.

The approach contributes a new perspective to edge intelli-
gence in healthcare by showing that meaningful physiological
representations can be learned locally without central data
aggregation. Such privacy-preserving, resource-aware archi-
tectures are essential for next-generation Internet of Medical
Things (IoMT) applications, where continuous sensing must
coexist with strict power, connectivity, and privacy constraints.

Overall, embedding-only communication offers a practical
foundation for future AI+ICT systems that are lightweight,
secure, and human-centered, bridging the gap between intelli-
gent analytics and responsible data stewardship in connected



healthcare.

VIII. FUTURE DIRECTIONS

Future work will build on this foundation by:

e Conducting real-world evaluation on publicly available

wearable datasets such as WESAD and PAMAP2 to
validate performance under heterogeneous conditions;
Integrating differential privacy and secure aggregation
mechanisms to strengthen protection against potential
embedding inversion attacks;

Deploying the system on low-power edge hardware and
exploring communication protocols such as LoRa and
5G-based adaptive scheduling to assess scalability and
latency;

Establishing cross-institutional collaborations to test the
framework in diverse demographic and environmental
contexts for large-scale validation.
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