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Abstract—Accurate Reference Signal Received Power (RSRP)
prediction is essential for wireless network planning and op-
timization. Traditional methods rely on drive test data, which
are costly and spatially limited. Several studies have presented
AI-driven approaches using measurement reports (MRs) from
user equipment (UE). These deep neural network (DNNs) were
trained using MR and cell configuration data, outperforming the
standard propagation model (SPM). However, lightweight models
trained using MR data exhibit distortion in coverage due to the
limited data in certain areas. To address this, we propose Semi-
AI, a transfer learning-based framework that fine-tunes trained
models to align predictions with real-world signals. In contrast
to typical transfer learning applications, which aim to reduce
training time, Semi-AI seeks to preserve the signal coverage
generated by the path loss model, maintain high prediction
accuracy, and offer flexible coverage planning without extensive
drive testing.

Index Terms—Reference Signal Received Power, Transfer
Learning, Cellular Network, Deep Learning.

I. INTRODUCTION

In modern wireless communication networks, accurately
predicting the Reference Signal Received Power (RSRP) is
crucial for network planning and optimization, enhancing
both coverage and performance. Conventional approaches to
path loss modeling typically rely on empirical data obtained
through drive tests. The collected measurements are fitted to a
Standard Propagation Model (SPM) [1], which estimates path
loss and consequently calculate RSRP for each area. However,
drive tests incur substantial operational costs, especially when
conducted over large geographical regions. Furthermore, such
tests are inherently limited in spatial resolution, as measure-
ments are primarily confined to roadways and may not accu-
rately represent all user locations. An alternative methodology
involves using Measurement Report (MR) data obtained from
user equipment (UE) at various positions. These MR data,
sourced by mobile network operators (MNOs), reflect real-
world signal conditions but may contain measurement noise
due to device heterogeneity. MR data exist in two formats:
one records only the strongest RSRP of the serving cell in
each grid, referred to as the dominant grid; the other records
all received RSRP from various cells, referred to as the

non-dominant grid. However, non-dominant grid data require
substantially greater storage capacity—for example, recording
top five strongest RSRPs consumes more than 2.18 times the
storage used by dominant grid data.

Several studies have proposed machine learning techniques
for RSRP prediction. For example, the study using the drive
test dataset in Putrajaya Malaysia, conducted by [2], employed
a random forest model to predict RSRP, achieving a root
mean square error (RMSE) of 5.74 dB. The study in Denmark
[3] used a drive test dataset in combination with satellite
images and a path loss model within a convolutional neural
network (CNN) to predict path loss, achieving RMSEs of 4.4
dB and 4.2 dB at 811 MHz and 2630 MHz, respectively. In
another study [4], RSRP prediction in China utilized physical
features such as link distance, base station height and geospa-
tial data (e.g., clutter index, altitude, and building height).
This approach achieved an RMSE of 5.12 dB using a CNN
model. Similarly, the study in the Bangkok Metropolitan Area
(BMA), Thailand [5], employed CNN models incorporating
geospatial data and antenna configuration, achieving an RMSE
of 2.92 dB. These studies demonstrate high accuracy in RSRP
prediction.

In this study, to address potential training challenges associ-
ated with newly collected data, the RSRP prediction results are
reproduced using a lightweight deep neural network (DNN)
architecture trained on MR data. Newly available data can
subsequently be used to retrain or fine-tune the model prior
to prediction. Inputs to the lightweight model include MR
data and cell configuration parameters, provided by the MNO.
For dominant grid, the lightweight model achieves an RMSE
of 4.041 dB, representing a significant improvement over
the SPM, which yields an RMSE of 11.630 dB. Although
our model does not outperform those presented in studies
[3] - [5], it is considerably more lightweight and requires
significantly fewer input features. Moreover, in this work, we
highlight a critical limitation encountered when using MR data
to train lightweight model. It exhibits a noticeable distortion
in the predicted coverage area, as illustrated in Fig. 1a. This
distortion likely results from the inherent incompleteness of



the MR dataset. Specifically, UEs typically do not report RSRP
values in areas where signal strength is extremely poor or
falls below a certain threshold. Consequently, the training
data lack representation of the weak-signal, far-edge, or non-
coverage regions. As the lightweight model learns only from
the available, mostly good-to-moderate signal data, its predic-
tion inherently extrapolates from a biased sample, leading to
inaccurate coverage. Furthermore, this deficiency renders the
lightweight model unsuitable for radio network optimization
tasks, such as antenna parameter tuning. Even when the
antenna model is changed (as illustrated by comparing Fig. 1a
and Fig. 1b), the predicted coverage continues to exhibit this
distortion, masking the true impact of the optimization.

To address the aforementioned limitation, we propose a
lightweight model based on transfer learning (TL). TL has
been widely recognized for its ability to reduce training
time and computational overhead, particularly in large-scale
applications such as CNNs and natural language processing.
However, in this study, TL is not employed primarily for
computational efficiency. Instead, it is leveraged to maintain
consistency with signal coverage generated by analytical path
loss models during RSRP prediction. This model is referred to
as the semi-AI model. By fine-tuning a pre-trained model, an
RMSE of 5.955 dB is achieved while preserving the coverage
generated by the SPM, as demonstrated in Fig. 1c. Crucially,
the semi-AI model retains its ability to accurately reflect the
impact of changes in the antenna model as shown in Fig. 1d,
making it suitable for subsequent radio network optimization
tasks.

II. PARAMETERS

The data used in this study comprise MR, cell configuration
data, and open-source geospatial data. This study utilizes two
datasets collected from the 1800 MHz LTE network. The
first dataset, in dominant grid format, was collected in BMA,
Thailand, on 4 September 2024. The second dataset, in non-
dominant grid format, was collected in Bangkok, Thailand,
on 2 September 2024. Both datasets were provided by Ad-
vanced Wireless Network Company Limited. The dominant
grid dataset includes approximately a million grid points,
6,000 eNodeB IDs, and 18,000 cell IDs, spanning an area of
roughly 7,761 km2 within the BMA. The non-dominant grid
includes approximately one million grid points, 3,800 eNodeB
IDs, and 10,700 cell IDs, covering an area of roughly 1,568
km2 within Bangkok. The parameters utilized in this analysis
are summarized in Table I.

A. Measurement Report

The MR data consist of the daily average of signal mea-
surement—i.e., RSRP—along with the associated serving cell
and the fixed position of the UE within a 50 m × 50 m grid.
The MR data are available in two formats: dominant and non-
dominant grid.

In this work, the non-dominant grid format records the five
strongest RSRP values per grid point from various cells, as
shown in Fig. 2a, while the dominant grid format records only

(a) Lightweight Model Current
Antenna

(b) Lightweight Model Changed
Antenna

(c) Semi-AI Model Current
Antenna

(d) Semi-AI Model Changed
Antenna

Fig. 1. Coverage prediction results comparing the lightweight model ((a) and
(b)) and the Semi-AI model ((c) and (d)). The prediction is shown for two
antenna configurations: the Current Antenna (wider HPBW, (a) and (c)) and
a Changed Antenna (narrower HPBW, (b) and (d)).

(a) Non-dominant grid. (b) Dominant grid.

Fig. 2. MR data formats.

the best-serving cell for each grid point—i.e., the cell with
the strongest RSRP—as shown in Fig. 2b. The dominant grid
format is more storage-efficient, requiring approximately 2.18
times less space than the non-dominant grid format, based on
a comparison over a 1,568 km2 area.

B. Cell Configuration

The cell configuration dataset contains a set of parameters
characterizing the operational and physical attributes of each
LTE cell. These include the operating frequency band, ref-
erence signal power (PB), physical azimuth—i.e., horizontal
direction from geographic north (φP ), mechanical tilt (θm),
electrical tilt (θe), antenna gain (Gant), horizontal beamwidth
(HBW ), and antenna model. The dataset also provides the
height from the ground to the antenna installation point (hB).



Fig. 3. Example parameters of lightweight model.

However, in this work, a digital elevation model (DEM)
sourced from [6] is used to compute the antenna and UE
heights, denoted as HB and HG, respectively.

C. Standard Propagation Model (SPM)

The well-known SPM [1] is suitable for predictions in the
150–3500 MHz frequency band over distances ranging from
1–20 km. The SPM is calibrated using measured path loss
data, which is calculated by

PLSPM = K1 +K2 log(D2D) +K3 log(HB)

+K4 ·Dloss +K5 log(D2D) log(HB)

+K6HG +K7 log(HG)

+Kclutterfclutter +Khill ,
(1)

where D2D is 2D distance between antenna and UE; K1

is constant offset (dB); K2, K3, K4, K5, K6, and K7 are
multiplying factors; Dloss represents losses due to diffraction
over obstructed paths (dB); fclutter denotes average clutter-
related losses;Kclutter is the corresponding multiplying factor;
and Khill is corrective factor for hilly regions.

In this study, MR data are used to calibrate the SPM.
However, due to the impracticality of obtaining certain mea-
surements across large operational area, the parameters Dloss,
fclutter, and Khill are excluded from the calibration process.
Consequently, the final SPM equation becomes

PLSPM = K1 +K2 log(D2D) +K3 log(HB)

+K4 log(D2D) log(HB)

+K5HG +K6 log(HG) .
(2)

III. SEMI-AI

A. Lightweight Model for RSRP prediction

In this work, the proposed lightweight model is designed to
predict the path loss error (PLError), aiming to compensate
for the incompleteness of SPM. Subsequently, the RSRP is
calculated as

RSRP = PB +G3D
B − (PLSPM + PLError) , (3)

TABLE I
GIVEN PARAMETERS

Type Parameter Definition
Measurement
Report

latG,
lngG

Latitude and longitude of UE

RSRP Reference signal received power
(dBm)

Cell Configu-
ration

latB ,
lngB

Latitude and longitude of eNodeB

hB Height from the ground to antenna
(m)

φP Azimuth angle of antenna direction
(deg.)

φD Angle from antenna direction to
horizontal beam direction (deg.)

θm, θe Antenna mechanical and electrical
tilt (deg.)

Gant Antenna Gain (dBi)
PB Reference signal power (dBm)
HBW Horizontal beam width of antenna

(deg.)

Open Source
Data

hDEM Digital elevation model (m)

TABLE II
INPUT PARAMETERS

Parameter Obtained from
latB , lngB Table I

θm, θe Table I

θtilt Equation (5)

cosφR, sinφR Fig. 3

cos θR, sin θR Fig. 3

cosφP , sinφP Table I

cosφMB ,
sinφMB

Equation (6)

cosφG, sinφG Equation (7)

D2D, D3D Fig. 3

HB , HG Fig. 3

Hr Equation (4)

HBW Table I

PB Table I

Gant Table I

G3D
B Ref. [7]

PLSPM Equation (2)

where G3D
B is an antenna gain computed using a three-

dimensional directive antenna pattern interpolation method [7].
The architecture of the lightweight model comprises nine

hidden layers, as shown in Fig. 4. The first four layers employ
the hyperbolic tangent (tanh) activation function, while the
remaining five layers utilize the Gaussian Error Linear Unit
(GELU) activation function. As shown in Table II, a total
of 25 input parameters are used in the lightweight model.
For example, the 2D distance (D2D) and 3D distance (D3D)
from the antenna to the grid point, illustrated in Fig. 3, are
included. Additionally, the height ratio between the transmitter



and receiver (Hr), is calculated as

Hr = HB/HG . (4)

Furthermore, derived parameters—i.e., the total antenna tilt
(θtilt), the beam azimuth of the transmitting cell (φMB), and
the azimuth from the transmitting cell to each grid point
(φG)—are also used, as proposed in [4], and are formulated
by

θtilt = θm + θe , (5)

φMB = φP + φD , (6)

φG = φMB + φR . (7)

B. Constructing Semi-AI Model Through Transfer Learning

TL is frequently employed to reduce training time and
computational complexity. In this study, however, it is used to
preserve the signal coverage characteristics generated by SPM,
while enabling the model to learn the path loss error from
the MR data. The model construction consists of a training
phase and a tuning phase. First, the lightweight model is
trained using synthetic data generated by SPM, augmented
with Gaussian noise, as shown in Fig. 8b and Fig. 9b. The
synthetic data are generated using various antenna models
and parameter variations —i.e., φP , θm and θe. The training
process is illustrated in Fig. 6.

After training, all layers are frozen except for the first and
last layers, which are indicated as colored layers in Fig. 5.
The model is then tuned using the MR corresponding to the
target cell ID. The tuning process is depicted in Fig. 7. This
tuning allows the unfrozen layers to adaptively learn the path
loss error specific to each cell ID, while the frozen layers
preserve the coverage representation learned from the synthetic
data. The tuning process enables the model to replicate the
path loss characteristics of each cell ID in a manner similar
to SPM, while leveraging the learning capability to reduce
prediction error. A significant advantage of this architecture
is its ability to continuously adapt to changes in the radio
environment; by simply fine-tuning the unfrozen layers using
the newly available data, the semi-AI model can be quickly
updated to reflect the most current propagation conditions and
network deployment status.

IV. RESULTS

To evaluate the performance of the models, two distinct
metrics are utilized. The first metric is the RMSE, which
quantifies the statistical discrepancy between the measured and
predicted RSRP values, which is formulated as

RMSE =

√√√√ 1

nsample

nsample∑
i=1

(yi − ŷi)
2 , (8)

where nsample is number of grid points, yi is the measured
RSRP value, and ŷi is predicted RSRP value.

The second metric, the Propagation Model Consistency
Error (PMCE), is introduced to evaluate the fidelity of the
predicted coverage relative to the expected coverage by the

Fig. 4. Lightweight model for RSRP prediction.

Fig. 5. Trained and tunable layers of semi-AI.

analytical path loss model. The PMCE specifically measures
the discrepancy between the predicted RSRP values and the
RSRP values generated by the SPM. This metric is crucial
for assessing how well a model can adapt to new antenna
configurations without inheriting the coverage bias present in
the historical MR data.

PMCE =

√√√√ 1

nsample

nsample∑
i=1

(
ySPM
i − ŷi

)2
, (9)

where ySPM
i is the RSRP value generated by the SPM at

grid i, and ŷi is the predicted RSRP value. A lower PMCE
indicates that the predicted coverage aligns more closely with
the theoretical coverage generated by the SPM.

The SPM and Semi-AI models are trained and evaluated on
a per-cell ID basis, while the lightweight model is trained using
a dataset encompassing all cell IDs. To ensure fair comparison,
weighted average RMSE and PMCE values are computed,
accounting for the differing number of grid points per cell,
as calculated by

RMSE or PMCE =

∑ncell

j=1 nsamplej · Metricj∑ncell

j=1 nsamplej

, (10)

where ncell is number of cell IDs and Metricj represents either
RMSEj or PMCEj .

The model evaluation results are presented in Fig. 10 and
Fig. 11. The dominant grid dataset comprises approximately
1 million grid points across 7,781 km2 in BMA, while the
non-dominant grid covers roughly 1 million grid points across



Fig. 6. Training process of semi-AI.

Fig. 7. Tuning process of semi-AI.

1,568 km2 in Bangkok. Examples of dominant and non-
dominant grid are shown in Fig. 8a and Fig. 9a, corresponding
to cell ID-1 on eNodeB-A.

In the dominant grid dataset, the SPM exhibits RMSE values
of 6.448 dB (training) and 11.630 dB (testing), indicating a
significant generalization gap and poor alignment with mea-
sured RSRP values. In contrast, the lightweight model achieves
substantially lower RMSE values of 3.483 dB (training) and
4.041 dB (testing). However, the lightweight model’s PMCE
is significantly higher, at 25.174 dB, confirming that although
it fits historical MR data well, it produces distorted coverage
predictions lacking alignment with the expected coverage (see
Fig. 8c).

The Semi-AI model, fine-tuned for 2000 epochs, effectively
mitigates the coverage distortion, as shown in Fig. 8d-8i. It
achieves RMSE values of 4.918 dB (training) and 5.415 dB
(testing), while significantly reducing the PMCE to 7.134 dB.
This indicates that the semi-AI model effectively preserves the
theoretical coverage generated by the SPM while improving
prediction accuracy. Based on this performance, the semi-AI
model trained for 2000 epochs is selected as the preferred
model for coverage prediction and network optimization.

Further evaluation on the non-dominant grid confirms these
performance characteristics. The SPM yields RMSE values of
8.585 dB (training) and 10.510 dB (testing). The lightweight
model again achieves low RMSE values of 4.918 dB (training)
and 5.415 dB (testing), but a high PMCE of 24.196 dB,
indicating a persistent issue with distorted coverage. In con-
trast, the Semi-AI model achieves RMSE values of 4.844 dB
(training) and 7.674 dB (testing), with a much lower PMCE
of 9.881 dB. This demonstrates that the semi-AI model main-
tains fidelity to the SPM-generated coverage while improving
prediction accuracy, making it suitable for real-world planning
and optimization tasks.

(a) Dominant grid (b) Generated grid (c) Lightweight model

(d) Semi-AI 500 epochs (e) Semi-AI 1000 epochs (f) Semi-AI 1500 epochs

(g) Semi-AI 2000 epochs(h) Semi-AI 2500 epochs (i) Semi-AI 3000 epochs

Fig. 8. Coverage prediction of dominant grid model.

(a) Non-dominant grid (b) Generated grid (c) Lightweight model

(d) Semi-AI 500 epochs (e) Semi-AI 1000 epochs (f) Semi-AI 1500 epochs

(g) Semi-AI 2000 epochs(h) Semi-AI 2500 epochs (i) Semi-AI 3000 epochs

Fig. 9. Coverage prediction of non-dominant grid model.



Fig. 10. Semi-AI performance on dominant grid.

Fig. 11. Semi-AI performance on non-dominant grid.

V. CONCLUSION

This study proposed a semi-AI model to address the critical
coverage distortion problem inherent in lightweight model
trained using MR data. Quantitatively, the semi-AI model
achieved high predictive accuracy on both dominant and non-
dominant datasets, significantly outperforming the SPM—for
example, achieving an RMSE of 5.955 dB compared to
11.630 dB on the dominant grid. Crucially, by minimizing
the PMCE, the semi-AI model successfully mitigated the
distortion and preserved the fidelity of the analytical coverage.
This improved consistency demonstrates the suitability of the
proposed semi-AI model for reliable RSRP prediction and
subsequent radio network optimization tasks. With the added
benefit that its fine-tuning mechanism allows for rapid and
continuous adaptation to the newly available data.
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TABLE III
RMSE PERFORMANCE COMPARISON

Data Model RMSE (dB) Coverage
format Training Testing
Dominant SPM 6.448 11.630 Preserved
Grid Lightweight

model
3.483 4.041 Distorted

Semi-AI
2000 epochs

3.751 5.955 Preserved

Non- SPM 8.585 10.510 Preserved
Dominant Lightweight

model
4.918 5.415 Distorted

Grid Semi-AI
2000 epochs

4.844 7.674 Preserved

TABLE IV
PMCE FOR COVERAGE FIDELITY ASSESSMENT

Trained dataset Model PMCE (dB)
Dominant Grid Lightweight model 25.174

Semi-AI 1000 epochs 6.803
Semi-AI 2000 epochs 7.134
Semi-AI 3000 epochs 7.220
Semi-AI 4000 epochs 7.374

Non-Dominant Grid Lightweight model 24.196
Semi-AI 1000 epochs 9.284
Semi-AI 2000 epochs 9.881
Semi-AI 3000 epochs 10.306
Semi-AI 4000 epochs 10.599
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