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Abstract—Human pose estimation has been widely applied
in various fields such as sports performance assessment and
health data analysis. Firearm training can also benefit from this
technology, as correct shooting postures improve both accuracy
and trainee safety. This study presents a pose-based approach for
binary classification of standing shooting postures, determining
whether a posture is correct or incorrect. The proposed method
employs a deep learning-based Human Pose Estimation (HPE)
model that extracts key body points (keypoints) and their
confidence scores using YOLO-pose models. These extracted
features are combined into a feature vector and classified using a
Support Vector Machine (SVM) with different kernel functions,
namely: Linear, Polynomial, RBF, and Sigmoid. Experimental
results show that the Linear and RBF SVMs combined with
YOLOvV8n-pose or YOLOv11n-pose models achieve accuracies
and F1-scores above 80%. The highest performance, reaching
87.34% Accuracy and 87.27% F1-score, is achieved by the Linear
SVM using YOLOv11n-pose features extracted from rear-view
camera images. Therefore, the combination of practical YOLO-
pose feature extraction with the highly interpretable Linear SVM
establishes the proposed method as a promising, efficient, and
interpretable real-time solution for shooting posture evaluation.
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I. INTRODUCTION

This paper presents an experimental study on the develop-
ment of an application for detecting shooting postures among
military cadets. The primary objective is to evaluate whether
the cadets adopt the correct shooting posture, which is a crucial
factor influencing shooting performance [1]. The research
focuses on classifying standing shooting postures, as shown
in Fig. 1, into “correct” and “incorrect” categories.

Previous studies have attempted to classify postures using
wearable sensors attached to the body [2], [3]. These sensors
provide positional data in the form of vectors [4], which
are then used for posture classification. For example, Hai
Li [2] employed Support Vector Machines (SVM) [5], [6]
for classification, achieving high accuracy. However, a major
drawback of this approach is its practical complexity, as it
requires physical sensor attachment to the user.



Recent advances in deep learning-based Human Pose Es-
timation (HPE) have enabled body joint detection directly
from images, eliminating the need for body-worn sensors
[7]. This approach simplifies data collection and enhances
usability. Among existing models, OpenPose [8], [9] is one of
the most widely used frameworks for human-pose estimation.
Nevertheless, OpenPose suffers from limitations such as slow
inference speed and error accumulation from multi-stage pro-
cessing [10]-[13]. Recent YOLO-pose models [10] have been
developed to address these issues, offering faster, single-stage
inference and improved efficiency for real-time applications.

Therefore, this study aims to combine the strengths of
previous approaches to develop a more effective method for
classifying shooting postures and determining whether they
are correct or incorrect. The paper is organized as follows.
The background material of this work is briefly introduced in
Section II. The research methodology is described in Section
III. Results and discussion are provided in Section IV. Finally,
the conclusion and future work are in Section V.

II. BACKGROUND

In recent years, deep learning-based Human Pose Estimation
(HPE) has been widely studied for detecting anatomical key-
points on the human body [7], [14]. Several models, including
MoveNet [15], OpenPose [16], and YOLO-pose [10], have
been proposed and adopted. Among them, YOLO-pose is
particularly suitable for real-time applications owing to its
single-stage detection and high inference speed [10], [11]. This
study employs two YOLO-pose variants, YOLOv8n-pose and
YOLOvI11n-pose, to evaluate their effectiveness in keypoint
detection for shooting posture classification. The extracted
keypoints are used to determine whether a standing posture is
correct or incorrect through a Support Vector Machine (SVM)
classifier [5], [6], with multiple kernel functions [17] tested to
identify the best configuration.

Fig. 1. Example of HPE output using the YOLOv8n-pose model.

A. Related Work in Posture Classification

Various approaches have been proposed for motion or
posture classification, ranging from wearable motion sensors
attached to the body [2], [3] to deep learning-based Human
Pose Estimation (HPE) models that detect keypoints directly
from images [8], [9]. Algorithms such as the Support Vector
Machine (SVM) [5], [6] are commonly used for their bal-
ance between computational efficiency and accuracy. However,
studies such as [2] relied on inertial measurement unit (IMU)
sensors rather than deep learning-based HPE, limiting practi-
cality since sensors must be physically attached to the user for
each session.

Deep learning-based HPE [7], [14] extracts body-joint fea-
tures and represents them as two-dimensional coordinates
(z,y). Each detected point, called a keypoint, varies in number
depending on the model, and most HPE systems also output a
confidence score indicating the reliability of each detection.
When multiple individuals appear in an image, the model
associates keypoints for each person to form separate skeletal
representations, as illustrated in Fig. 1.

B. YOLO-Pose Models

For pose detection, this study employs models that are real-
time, lightweight, and efficient. Prior research [10], [11] has
shown that YOLO-pose is well suited for such tasks due to
several advantages:

« Single Forward Pass: Detects bounding boxes and poses

of multiple individuals in one inference step.

e« No Complex Post-Processing: Eliminates multi-stage

processing, yielding stable runtime and low latency.

o End-to-End Design: Processes an image and directly

outputs final detections.

e Model Scaling: Allows depth, width, and resolution

adjustment to fit various hardware and accuracy needs.
Trained on the COCO keypoints dataset, YOLO-pose predicts
17 keypoints representing major body joints (Fig. 1). In this
study, two variants, YOLOv8n-pose and YOLOVI1 In-pose, are
used for keypoint detection and confidence estimation. Their
implementation within the overall framework is described in
Section III.

C. YOLOvS-pose vs. YOLOvI1I-pose

Successive versions of the YOLO-pose model [10] have
been continuously developed to improve speed and accuracy.
Among them, YOLOv8-pose [13] is one of the most widely
studied and adopted variants for pose estimation. YOLOv11-
pose [18], introduced more recently, enhances YOLOv8-pose
with several notable architectural upgrades. Specifically, the
backbone has been updated from C2f to C3k2, reducing
parameters while enabling deeper and more efficient feature
extraction. The addition of C2PSA and EFPN modules further
decreases parameter count and improves inference speed.

As summarized in Table I [19], [20], YOLOvl1-pose
achieves a lower parameter count and higher inference speed
than YOLOvS8-pose, demonstrating its improved computa-
tional efficiency.



TABLE I
COMPARISON OF YOLOVS8N-POSE AND YOLOV1IN-POSE MODELS

Model Size (pixels) | Speed CPU/GPU (ms) | Params (M) | FLOPs (B)
YOLOI In-pose 640 x 640 5244+05/1.7+0.0 29 7.4
YOLOv8n-pose 640 x 640 131.8/1.18 33 9.2

D. Support Vector Machine (SVM)

In prior studies on motion classification, Hai Li [2] proposed
a posture classification method based on the Support Vector
Machine (SVM), which achieves an excellent balance between
accuracy and computational efficiency, making it suitable for
real-time applications. The SVM decision function for binary
classification [5], [6] is expressed as

N
f@) =" oK (i, @) +b (1)
i=1
j= 1 (Correct posture),  if f(x) > threshold )

0 (Incorrect posture), otherwise.

As shown in (1)—(2), the kernel function K (x1,x2) plays
a key role in mapping the input vectors 1,2 € R" into
higher-dimensional spaces to achieve linear separability. Sev-
eral commonly used kernel types are summarized in Table II.
The kernel function is controlled by several hyperparameters:
the regularization parameter C (controlling misclassification
penalty), and the kernel-specific parameters v, ¢, and d.
v (gamma) defines the scaling factor for Polynomial, RBF,
and Sigmoid kernels; d (degree) sets the polynomial degree;
and c (coefficient, or coef0) is the independent term in the
Polynomial and Sigmoid kernels. The linear kernel uses only
the regularization parameter C'
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Fig. 2. Illustration of the data collection setup showing two cameras (left:
rear view, right: front view), the demonstrator, and the target screen, along
with example images from both camera views.

III. RESEARCH METHODOLOGY

A. Data Collection and Data Preparation

During the data collection stage, shooting postures were
captured through continuous video recordings using two cam-
eras positioned on the left and right sides of the demonstrators.
The right-side camera was placed 2.85 m from the subject,
while the left-side camera was positioned 3.45 m away. An
example of the shooting postures and the camera placement
setup is shown in Fig. 2, where the screen visible in the figure
represents the target toward which the demonstrators aimed.
Each video recording began with a demonstrator walking from
the entrance to the shooting stage, after which he assumed
either a correct or incorrect shooting posture. The demonstrator
then maintained the posture for approximately 30 s before the
end of the recording.

TABLE 11
COMMON KERNEL FUNCTIONS IN SUPPORT VECTOR MACHINES (SVMS)

Kernel Type Formula
Linear K(wl, 11:2) =1 -T2
Polynomial K(xz1,22) = (Y1 - 22 + )¢
Gaussian / RBF K(x1,22) = exp(—v |1 — 22||?)
Sigmoid K(x1,22) = tanh(yx1 - €2 + ¢)

Next, images were extracted from every frame of the
recorded videos. Each image was processed using the
YOLOvV8n object detection model to identify objects labeled as
“Person.” For each image, only the largest detected “Person”
instance, corresponding to the demonstrator, was manually
selected and labeled as either True or False. A True instance
represents a correct shooting posture captured from the portion
of a video in which the demonstrator maintained a correct
posture, whereas a False instance represents an incorrect
shooting posture obtained from any portion of a video recorded
for an incorrect posture. The selected regions, referred to as
“cropped images,” were then extracted and compiled to form
the experimental dataset. The same procedure was applied to
all video frames from both the left and right cameras. An
example of this data preparation process is shown in Fig. 3.

Finally, all selected cropped images were organized into
two independent 4-fold datasets, one for the Left camera (Left
dataset) and one for the Right camera (Right dataset). Each
fold contained two subsets, where each subset consisted of
either True or False images of the same demonstrator captured
from the corresponding camera view. Within the same fold,
two subsets contained images of the same demonstrator, except
for the first fold of the Left dataset. Importantly, subsets
belonging to different folds included images from different
demonstrators to ensure subject-independent evaluation. These
two 4-fold datasets were then used separately for 4-fold
cross-validation [21], [22]. The sample distribution across
folds, binary classes (True and False), and camera views is
summarized in Table III.



Experimental Dataset

Recorded Video

Fig. 3. Example of the data preparation process, in which the largest detected
“Person” object, corresponding to the demonstrator, is extracted, labeled (True
or False), and compiled into an experimental dataset of cropped images.

B. Proposed Method

The proposed method consists of three main steps, as
illustrated in Fig. 4.

YOLO-based Pose Estimation  Keypoint Coordinates & Confidence scores
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Fig. 4. Tllustration of the proposed method, comprising three main steps:
YOLO-based pose estimation, 51-dimensional feature vector construction, and
SVM-based posture classification.

o First, a cropped image of an individual is processed
using the YOLO-pose model, which outputs 17 keypoints
representing the body joints. Each keypoint contains
three elements: two spatial coordinates (z,y) and one
confidence score.

TABLE 111
SAMPLE DISTRIBUTION BY FOLD AND BINARY CLASS IN THE LEFT AND
RIGHT SHOOTING POSTURE DATASETS

Fold Index Right Dataset Left Dataset
True False True False
1 560 809 916 962
2 594 782 614 898
3 567 223 528 794
4 620 749 666 848

¢ Second, all xz-coordinates, y-coordinates, and confidence
scores from the 17 keypoints are concatenated to form a
51-dimensional (51-D) feature vector.

o Finally, the 51-D feature vector is fed into a support
vector machine (SVM) classifier to determine whether the
shooting posture in the cropped image is correct (True)
or incorrect (False).

In this experiment, cropped images were obtained from either
the left or right camera, and four SVM kernels described in
Section II-D were evaluated. The YOLO-pose models were
selected for their advantages in real-time performance and high
inference speed. Specifically, the YOLOv8n-pose model was
chosen due to its widespread adoption in recent studies, while
the YOLOv1 1n-pose model was included as the latest version
of the YOLO-pose family.

C. Performance Metrics

To evaluate the performance of the proposed method, several
standard performance metrics were computed based on the
confusion matrix [23], [24]. The definition of the confusion
matrix for the shooting posture classification task is presented
in Table IV. The performance metrics used in this study
include Precision, Recall, Accuracy, and F1-Score, as defined
in (3)—(6). In this experiment, particular emphasis was placed
on Accuracy and F1-Score, as these metrics together reflect
both overall correctness and the balance between Precision
and Recall, which are critical aspects for evaluating the
classification model’s performance.

.. TP
PreClSlOn = m (3)

TP
Recall = ———M— 4
eca TP + FN @)

TP+TN
A =

ceuracy TP+TN+ FP+FN ®)
Fl-Score — 2 X Precision x Recall ©)

Precision + Recall

IV. RESULTS AND DISCUSSION

The proposed method was evaluated using 4-fold cross-
validation on the Right and Left datasets, as described in Sec-
tion III-A. Due to limitations in data collection and prepara-
tion, it was not feasible to construct a combined feature vector



TABLE IV
CONFUSION MATRIX FOR SHOOTING POSTURE CLASSIFICATION

Actual / Predicted Correct Posture Incorrect Posture

Correct Posture TP (True Positive) FN (False Negative)

Incorrect Posture FP (False Positive) TN (True Negative)

TABLE V
CONFUSION MATRICES FROM 4-FOLD CROSS-VALIDATION USING
YOLOVS8N-POSE AND SVM

SVM Right Dataset Left Dataset
Kernel P FN TN FP TP | FN | TN FP
Linear 2181 | 160 | 1856 | 707 | 2674 | 50 | 2739 | 763
Polynomial | 2122 | 219 | 1840 | 723 | 1887 | 837 | 2747 | 755
RBF 2196 | 145 | 1852 | 711 | 2689 | 35 | 2731 | 771
Sigmoid 1180 | 1161 | 1005 | 1558 | 2724 | O 47 | 3455

that integrates both camera views. Therefore, performance was
evaluated separately for each dataset.

Tables V and VI present the confusion matrices from the
binary classification of shooting postures, which included
the classes True (correct) and False (incorrect), using the
YOLOvV8n-pose and YOLOv1 In-pose models, respectively. In
both cases, the YOLO-pose models extracted keypoints and
their corresponding confidence scores from cropped images
in the Left and Right datasets, which were then combined
into feature vectors for SVM classification, as described in
Section III-B. Four SVM kernels (Linear, Polynomial, RBF,
and Sigmoid) were tested using the default hyperparameter
settings of the scikit-learn SVC class [25], summarized in Ta-
ble VII. The resulting performance metrics (Precision, Recall,
Accuracy, and F1-Score) are reported in Table VIIIL.

Overall, the performance metrics obtained from the Left
dataset are substantially higher than those from the Right
dataset, except for the Polynomial SVM with the YOLOv8n-

TABLE VI
CONFUSION MATRICES FROM 4-FOLD CROSS-VALIDATION USING
YOLOV11IN-POSE AND SVM

SVM Right Dataset Left Dataset
Kernel P FN TN FP TP [ FN | TN FP
Linear 2095 | 246 | 1846 | 717 | 2700 | 24 | 2738 | 764
Polynomial | 2195 | 146 | 1849 | 714 | 2632 | 92 | 2747 | 755
RBF 2139 | 202 | 1836 | 727 | 2690 | 34 | 2734 | 768
Sigmoid 1180 | 1161 | 1005 | 1558 | 2724 | O 10 | 3492
TABLE VII
HYPERPARAMETER SETTINGS OF SVM MODELS
Kernel Type Hyperparameters®
Linear Cc=10
Polynomial® C = 1.0, degree = 3, coef0 = 0.0
Gaussian / RBF” C=10
Sigmoid® C = 1.0, coef0 = 0.0

2For all cases, class_weight = ‘None’, bgamma = ‘scale’

pose model. This discrepancy likely arises because keypoints
extracted from the left camera are more reliable (less noisy)
than those from the right camera. The right camera captured
the front view, which includes more complex visual details
that could confuse the YOLO-pose models, whereas the rear-
view images from the left camera offer simpler body outlines,
particularly of the arms, legs, and torso, possibly sufficient for
assessing shooting posture correctness. The relatively lower
performance of the Polynomial SVM with the YOLOv8n-
pose model may stem from overfitting, since the Linear SVM
using the same features already achieved high performance,
suggesting that the Polynomial SVM might be unnecessarily
complex for this dataset.

Comparing YOLOv8n-pose and YOLOvVIIn-pose, their
overall performance is comparable across all SVM kernels,
except for the previously noted Polynomial case. However,
YOLOv11n-pose offers superior real-time efficiency due to
its lower GFLOPs (Table I), achieved through a redesigned
backbone that reduces computational complexity while pre-
serving keypoint extraction accuracy. The combination of
YOLOvl1In-pose (Left view) and the Linear SVM attained
the highest performance, 87.34% Accuracy and 87.27% F1-
score, demonstrating robustness and suitability for real-time
implementation.

Across all SVM kernels, except the Polynomial case with
YOLOvS8n-pose (Left view), the Linear, RBF, and Polynomial
SVMs produced similar results, with the Polynomial SVM
performing slightly lower on average. Since the Linear SVM
achieved performance comparable to the RBF SVM while
offering greater interpretability, it is preferred for this task.
This interpretability enhances model transparency in the clas-
sification stage following YOLO-pose feature extraction.

Overall, these results show that shooting-posture classifi-
cation can be effectively achieved using YOLO-pose feature
extraction with SVM classification. Although the SVM hyper-
parameters were not extensively optimized and the datasets
remain preliminary, the performance, particularly 87.34% Ac-
curacy and 87.27% Fl-score from the Linear SVM with
YOLOvVI11n-pose (Left view), demonstrates that the proposed
approach is both feasible and promising for future work.

V. CONCLUSION AND FUTURE WORK

This study investigated the feasibility of a pose-based mo-
tion classification method combining YOLO-pose and Sup-
port Vector Machine (SVM) models for binary classifica-
tion of standing shooting postures as either correct (True)
or incorrect (False). Video recordings were captured from
two simultaneous views, front (Right) and rear (Left), and
processed separately into four-fold cross-validation datasets
for each view. Results show that the Left (rear-view) dataset
outperforms the Right (front-view) dataset, likely due to more
reliable keypoints extracted from the rear view. An excep-
tion occurred with the Polynomial SVM using YOLOv8n-
pose, possibly due to overfitting. Overall, YOLOvS8n-pose
and YOLOvl1n-pose produced similar performance, though
YOLOvI1 In-pose achieved higher real-time efficiency because



TABLE VIII
COMPARISON OF YOLOVS8N-POSE AND YOLOV1IN-POSE PERFORMANCE USING 4-FOLD CROSS-VALIDATION AND SVM CLASSIFICATION

Dataset SVM YOLOvV8n-pose Model YOLOv11n-pose Model
Kernel Precision(%) | Recall(%) | Accuracy(%) | F1-Score(%) | Precision(%) | Recall(%) | Accuracy(%) | F1-Score(%)

Right Linear 75.52 93.17 82.32 83.42 74.50 89.49 80.36 81.31
Right Polynomial 74.59 90.65 80.79 81.84 75.46 93.76 82.46 83.62
Right RBF 75.54 93.81 82.54 83.69 74.63 91.37 81.06 82.16
Right?® Sigmoid® 43.10 50.41 44.56 46.47 43.10 50.41 44.56 46.47
Left Linear 77.80 98.16 86.94 86.80 77.94 99.12 87.34 87.27
Left Polynomial 71.42 69.27 74.43 70.33 77.71 96.62 86.40 86.14
Left RBF 77.72 98.72 87.05 86.97 77.79 98.75 87.12 87.03
Left Sigmoid 44.08 100.00 44.51 61.19 43.82 100.00 4391 60.94

@ The identical performance values for “Right-Sigmoid” in the YOLOv8n-pose and YOLOv11n-pose models were reviewed during result validation

and are not typographical errors.

of its lower GFLOPs. Among all tested SVMs, the Linear
and RBF SVMs delivered the best performance, with the
Linear SVM achieving 87.34% Accuracy and 87.27% F1-
Score using the YOLOv1In-pose (Left view), making it the
preferred choice for its simplicity and interpretability. Despite
the limited dataset and lack of extensive hyperparameter
tuning, the results are promising. Future work will expand
the dataset, include varied shooting postures, optimize SVM
hyperparameters, and integrate the system into a real-time
firearm training application.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude
to the Defence Technology Institute (DTI) and Armed Forces
Academies Preparatory School (AFAPS) for their support and
collaboration in this project.This work was supported by the
project titled “Research and Development to Enhance the
Efficiency of Virtual Shooting Range Simulator,” funded by
the National Research Council of Thailand (NRCT) under the
fiscal year 2025 research and innovation program (Contract
No. N23A680785).

REFERENCES
[1] M. Krawczyk-Suszek, B. Martowska, and R. Saputa, “Analysis of the
stability of the body in a standing position when shooting at a stationary
target—a randomized controlled trial,” Sensors, vol. 22, no. 1, p. 368,
2022.
H. Li, H. J. Yap, and S. Khoo, “Motion classification and features
recognition of a traditional chinese sport (baduanjin) using sampled-
based methods,” Applied Sciences, vol. 11, no. 16, p. 7630, 2021.
S. Chen and R. R. Yang, “Pose trainer: correcting exercise posture using
pose estimation,” arXiv preprint arXiv:2006.11718, 2020.
A. Bonfiglio, D. Tacconi, R. M. Bongers, and E. Farella, “Effects of
imu sensor-to-segment calibration on clinical 3d elbow joint angles
estimation,” Frontiers in Bioengineering and Biotechnology, vol. 12, p.
1385750, 2024.
V. Jakkula, “Tutorial on support vector machine (svm),” School of EECS,
Washington State University, vol. 37, no. 2.5, p. 3, 2006.
M. A. Chandra and S. Bedi, “Survey on svm and their application in
image classification,” International Journal of Information Technology,
vol. 13, no. 5, pp. 1-11, 2021.
C. Zheng, W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, N. Kehtarnavaz,
and M. Shah, “Deep learning-based human pose estimation: A survey,”
ACM computing surveys, vol. 56, no. 1, pp. 1-37, 2023.
A. Singh, A. Bevilacqua, T. L. Nguyen, F. Hu, K. McGuinness,
M. O’Reilly, D. Whelan, B. Caulfield, and G. Ifrim, “Fast and robust
video-based exercise classification via body pose tracking and scalable
multivariate time series classifiers,” Data Mining and Knowledge Dis-
covery, vol. 37, no. 2, pp. 873-912, 2023.

[2]

[6]

[8

[t}

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19

[20]
[21]
(22]
[23]

[24]

[25]

Z. Zhao, S. Kiciroglu, H. Vinzant, Y. Cheng, I. Katircioglu, M. Salz-
mann, and P. Fua, “3d pose based feedback for physical exercises,” in
Proceedings of the Asian Conference on Computer Vision, 2022, pp.
1316-1332.

D. Maji, S. Nagori, M. Mathew, and D. Poddar, “Yolo-pose: Enhancing
yolo for multi person pose estimation using object keypoint similarity
loss,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2022, pp. 2637-2646.

S.-T. Tsai, Z.-R. Wu, P.-H. Lin, C.-H. Chen, W. Chien, and Y.-C. Chang,
“Comparative analysis of real-time multi-person pose detection in elec-
trical industrial safety scenarios using yolov8-pose and openpose,” in
2024 IEEE 4th International Conference on Electronic Communications,
Internet of Things and Big Data (ICEIB). 1EEE, 2024, pp. 327-330.
M. Elnady and H. E. Abdelmunim, “A novel yolo Istm approach
for enhanced human action recognition in video sequences,” Scientific
Reports, vol. 15, no. 1, p. 17036, 2025.

S. Cai, H. Xu, W. Cai, Y. Mo, and L. Wei, “A human pose estimation
network based on yolov8 framework with efficient multi-scale receptive
field and expanded feature pyramid network,” Scientific Reports, vol. 15,
no. 1, p. 15284, 2025.

Q. Dang, J. Yin, B. Wang, and W. Zheng, “Deep learning based 2d
human pose estimation: A survey,” Tsinghua Science and Technology,
vol. 24, no. 6, pp. 663-676, 2019.

G. Goyal, F. Di Pietro, N. Carissimi, A. Glover, and C. Bartolozzi,
“Moveenet: Online high-frequency human pose estimation with an event
camera,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4024-4033.

S. Qiao, Y. Wang, and J. Li, “Real-time human gesture grading based
on openpose,” in 2017 10th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI). IEEE, 2017, pp. 1-6.

A. Patle and D. S. Chouhan, “Svm kernel functions for classification,”
in 2013 International conference on advances in technology and engi-
neering (ICATE). 1EEE, 2013, pp. 1-9.

N. Jegham, C. Y. Koh, M. Abdelatti, and A. Hendawi, “Evaluating
the evolution of yolo (you only look once) models: A comprehensive
benchmark study of yolol1 and its predecessors,” arXiv e-prints, pp.
arXiv-2411, 2024.

Ultralytics. (2023) Explore ultralytics yolov8. Accessed: 2025-10-31.
[Online]. Available: https://docs.ultralytics.com/models/yolov8
(2024) Ultralytics yolol1l. Accessed: 2025-10-31.
Available: https://docs.ultralytics.com/models/yolo1 1

D. Berrar et al., “Cross-validation.” 2019.

M. W. Browne, “Cross-validation methods,” Journal of mathematical
psychology, vol. 44, no. 1, pp. 108-132, 2000.

S. Sathyanarayanan and B. R. Tantri, “Confusion matrix-based perfor-
mance evaluation metrics,” African Journal of Biomedical Research,
vol. 27, no. 4S, pp. 4023-4031, 2024.

A. Hay, “The derivation of global estimates from a confusion matrix,”
International Journal of Remote Sensing, vol. 9, no. 8, pp. 1395-1398,
1988.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, no. null, p. 2825-2830, Nov. 2011.

[Online].



