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Abstract—This paper investigates energy-efficiency maximiza-
tion (EEM) for downlink simultaneously transmitting and reflect-
ing (STAR-RIS)–assisted massive MIMO (mMIMO) networks
employing rate-splitting multiple access (RSMA). The energy
efficiency formulation problem is a non-convex mixed-integer
program, driven by (i) an upper bound on the allocable common
SE, (ii) the transmit-power budget at the base station (BS), and
(iii) the discrete phase shifts at the STAR-RIS, which together
preclude direct optimal solutions. To address this, we first relax
the problem and decouple it into two subproblems—phase-shift
design and beamforming—that are solved in an alternating
fashion. The phase-shift subproblem is handled via a bisection
search, while the beamforming subproblem is tackled using an
inner-approximation (IA) procedure that converts the original
non-convex constraints into tractable surrogates. For real-time
operation, we design a deep-learning (DL) framework that infers
optimal phase shifts and precoding matrices under varying
system parameters. Simulations demonstrate that the proposed
scheme yields notable EE gains, and we further quantify the
impact of the number of STAR-RIS and STAR-RIS elements on
the overall system performance.

Index Terms—Discrete phase shift, energy efficiency, mMIMO,
non-convex optimization, RSMA, STAR-RIS.

I. INTRODUCTION

High spectral efficiency (SE) and energy efficiency (EE)
are critical performance objectives for next-generation wireless
networks [1], [2]. To boost SE, manage interference, and
sustain high capacity in dense deployments, massive multiple-
input multiple-output (mMIMO), non-orthogonal multiple ac-
cess (NOMA), and rate-splitting multiple access (RSMA) have
been widely explored and adopted [3]–[5]. Yet, in the presence
of obstacles between the base station (BS) and users, received-
signal quality can degrade markedly due to blockage and
non-line-of-sight conditions. A promising remedy is the use
of simultaneously transmitting and reflecting reconfigurable
intelligent surfaces (STAR-RIS) [6], [7]. In contrast to con-
ventional RIS, which only reflects, STAR-RIS supports both
transmission and reflection, extending coverage and improving
link quality for users on both sides of the surface [8]. This dual
functionality is particularly effective for mitigating blockage
and enhancing reception in complex propagation scenarios.
In parallel, RSMA can further increase EE by managing
multiuser interference through splitting data into a common
stream and user-specific private streams [9]. However, as
mMIMO arrays and STAR-RIS apertures scale up, the asso-
ciated resource-allocation and configuration problems become

increasingly complex, introducing new challenges for practical
system design and optimization. To address this challenge, a
deep learning (DL)-based framework has been proposed to
obtain an optimal solution in mMIMO–RSMA networks [10].

Prior work has typically examined RSMA and STAR-RIS
in mMIMO systems separately. However, beyond-5G networks
call for their integrated deployment, which—while promising
substantial gains—introduces pronounced challenges in inter-
ference suppression, resource allocation, and overall system
complexity. In particular, jointly optimizing the EE of user
equipment becomes difficult due to the large numbers of BS
antennas and user antennas, and STAR-RIS elements. Inte-
grating DL with their integrated deployment system can boost
system performance while keeping complexity and latency
low. However, the impact of jointly using DL and STAR-
RIS to address the EE problem in mMIMO–RSMA networks
remains underexplored. Motivated by this gap, we study a
downlink multiuser in a STAR-RIS-assisted mMIMO–RSMA
network to improve EE performance. The main contributions
of the paper are as follows:

• A downlink multi-user mMIMO-RSMA network is con-
sidered, where multiple STAR-RISs are deployed to im-
prove the received quality signal of users. The energy
efficiency maximization (EEM) problem is formulated
under constraints on each user’s minimum data rate, the
total transmit-power budget, and the STAR-RIS phase
shifts. The resulting formulation is highly challenging,
as it leads to a non-linear mixed-integer program.

• To tackle the EEM problem, we decompose it into two
subproblems—phase-shift design and beamforming—and
solve them sequentially: the phase-shift subproblem via
a bisection search and the beamforming subproblem via
a low-complexity IA-based iterative algorithm.

• To support real-time operation, we design a DL frame-
work with a CNN that predicts the optimal solution
produced by the proposed algorithm.

• Simulation results demonstrate EE gains for the proposed
system. The DL-based framework matches the optimality
of the conventional EEM solver while achieving sub-
stantially shorter run time. We also conduct a thorough
sensitivity analysis of key parameters.

Notation: a, a, A denote the scalar, vectors, and matrices,
respectively. diag(A), |.|, (.)∗ is the diagonal matrix, absolute



of values, complex conjugate, respectively. R and C represent
real part and complex numbers, respectively.

II. SYSTEM MODEL

We consider a downlink multi-user mMIMO-RSMA system
assisted by a set of AAV-attached STAR-RIS R = {Rr|r =
1, ..., R}, as illustrated in Fig. A flying-based station (BS)

Fig. 1. The proposed system model STAR-RIS-assisted mMIMO-RSMA
networks.

simultaneously serves a set of users K = {Uk|k = 1, ...,K}
and users L = {Ul|l = 1, ..., L}, and the STAR-RISs
assist by enhancing their received signals. The base station,
UK , and UL are equipped with MS > 1, MK > 1, and
ML > 1 antennas, respectively. We consider a mode-switching
(MS) STAR-RIS with MR > 1 passive elements split into
a transmit subset M tr

R and a reflect subset M rf
R , such that

M tr
R +M rf

R = MR [8]. Uk and Ul are randomly distributed
across reflection and transmission areas, respectively. The
STAR-RIS is randomly deployed at the perimeter of the
reflection area. We denote the relative position vector from
x ∈ {BS,Rr} to y ∈ {Rr,Uk,Ul} in 3D Cartesian coordinates
by cxy = [xxy, yxy, zxy]. The BS is assumed to possess perfect
channel state information (CSI) for every link [10].

A. STAR-RIS-assisted mMIMO-RSMA

Under single-layer rate-splitting (RS), the BS sends a com-
mon stream for Uk and Ul and private streams per user. Let
sc ∈ CL×1 denote the common stream and spk, s

p
l ∈ CL×1

the private streams, with 1 < L ≤ min{MS,MK,ML}. With
s = [sc, spk, s

p
l ]

T and linear precoding uses W ∈ CMS×L =
[Wc,Wp

k,W
p
l ]. Then the transmitted signal can be expressed

as

X = Wcsc +
∑
k∈K

Wp
ks

p
k +

∑
l∈L

Wp
l s

p
l . (1)

For compactness, we set W1 = Wc, W2 = [Wp
k]k∈K, and

W3 = [Wp
l ]l∈L.

Let GS,Rtr
r

and GS,Rrf
r

denote the BS−Rr channel matrices
associated with the reflecting and transmitting element sets,
respectively. While GS,Uk

, and GS,Ul
denote the BS − Uk

and BS−Uk channel matrices, respectively. Likewise, GRtr
r ,Ul

and GRrf
r ,Uk

denote the Rtr
r −Ul (reflection mode) and Rrf

r −

Ul (transmission mode) channel matrices. We model G =√
ρg[g̃1, ..., g̃i], where G ∈ {GS,Rtr

r
,GS,Rrf

r
,GS,Uk

,GS,Ul
},

where ρg is the large-scale fading and each g̃i is a small-
scale fading. The large-scale fading ρg can be modeled
as ρg = A(dxy/d0)−σPL , where d0, A, dxy, and σPL de-
note the reference distance, the measured pathloss at d0,
the distance between x and y (in meter), and the pathloss
exponent, respectively. Furthermore, dxy can be calculated
as dxy =

√
(xx − xy)2 + (yx − yy)2 + (zx − zy)2. While the

small-scale fading has i.i.d. CN ∼ (0, 1) elements. Thus, the
equivalent channel from BS − Uk denoted by ĜS,Uk

(Φ) ∈
CMK×MS and from BS−Ul denoted by ĜS,Ul

(Ψ) ∈ CML×MS

can be expressed, respectively, as

ĜS,Uk
(Φ) = GS,Uk

+GS,Rrf
r
ΦrGRrf

r ,Uk
, (2)

ĜS,Ul
(Ψ) = GS,Ul

+GS,Rtr
r
ΨrGRtr

r ,Ul
, (3)

where Φr and Ψr denote the reflection-mode and
transmission-modes phase shift of Rr, respectively, which
can be determine, respectively, by

Φ = diag
(
λrf1 e

jϕ1 , ..., λrfM rf
R
e
jϕ

M rf
R

)
, (4)

Ψ = diag
(
λtr1 e

jψ1 , ..., λtrM rf
R
e
jψMtr

R

)
, (5)

where ϕM rf
R
∈ (0, 2π] and ψM tr

R
∈ (0, 2π] denote the reflection

and transmission phase shifts of the M rf
R-th and M tr

R-th ele-
ment of STAR-RIS, respectively. Each element uses discrete
phase values with resolution ε = 2b, where b is the number
of quantization bits [8]. Hence, the admissible phase sets can
be expressed, respectively, as

Dϕ =

{
0,

2π

ε
, ...,

2π(ε− 1)

ε

}
,Dψ =

{
0,

2π

ε
, ...,

2π(ε− 1)

ε

}
,

(6)

The received signals at Uk and Ul are, respectively, given
by

yk = ĜS,Uk
Wcsc +

∑
k∈K

ĜS,Uk
Wp

ks
p
k +

∑
l∈L

ĝS,Uk
Wp

l s
p
l + nk,

(7)

yl = ĜS,Ul
Wcsc +

∑
l∈L

ĜS,Ul
Wp

l s
p
l +

∑
k∈K

ĝS,Ul
Wp

ks
p
kl + nl,

(8)

where nk ∼ CN (0, Iσ2
k) and nl ∼ CN (0, Iσ2

l ) denote the
additive white noises at Uk and Ul, respectively.

According to RSMA, the SINR for common-message de-
coding at Uk and Ul can, respectively, be written as

γck(W,Φ) =
|ĜH

S,Uk
Wc|2

ςck(W,Φ)
, γcl (W,Ψ) =

|ĜH
S,Ul

Wc|2

ςcl (W,Ψ)
, (9)

where

ςck(W,Φ) =
∑
k∈K

|ĜH
S,Uk

Wp
k|

2 +
∑
l∈L

|ĜH
S,Uk

Wp
l |

2 + σ2
k,

ςcl (W,Ψ) =
∑
l∈L

|ĜH
S,Ul

Wp
l |

2 +
∑
k∈K

|ĜH
S,Ul

Wp
k|

2 + σ2
l .

Whereas the SINR to decode the private message at Uk and



Ul can, respectively, be written as

γpk(W,Φ) =
|ĜS,Uk

Wp
k|2

ςpk(W,Φ)
, γpl (W,Ψ) =

|ĜS,Ul
Wp

l |2

ςpl (W,Ψ)
,

(10)
where

ςpk(W,Φ) =
∑

k′∈K\{k}

|ĜS,Uk′W
p
k′ |

2 +
∑
l∈L

|ĜH
S,Uk

Wp
l |

2 + σ2
k,

ςpl (W,Ψ) =
∑

l′∈L\{l}

|ĜS,Ul′W
p
l′ |

2 +
∑
k∈K

|ĜH
S,Ul

Wp
k|

2 + σ2
l .

The achievable SE (nat/s/Hz) for the common and private
messages at Uk and Ul can, respectively, be expressed as

SEc
k(W,Φ) = ln(1 + γck), SEp

k(W,Φ) = ln(1 + γpk), (11)
SEc

l (W,Ψ) = ln(1 + γcl ), SEp
l (W,Ψ) = ln(1 + γpl ). (12)

As the common SE is shared across users, the sum allocated
to them satisfies

∑
k∈K SEc

k+
∑
l∈L SEc

l ≤ SEc, where SEc =
min{SEc

1, ...,SE
c
K , SE

c
1, ...,SE

c
L}. Hence, the total achievable

SEs of Uk and Ul can, respectively, be expressed as

SEk(W,Φ) = SEc
k(W,Φ) + SEp

k(W,Φ), (13)
SEl(W,Ψ) = SEc

l (W,Ψ) + SEp
l (W,Ψ). (14)

B. Problem Formulation

We assume the STAR-RISs mounted on AAVs remain static
within a coherence interval, ensuring channel stability for
effective joint optimization of the precoders and phase shifts
[?]. Based on (13) and (14), our goal is to maximize energy
efficiency subject to the BS power budget, discrete STAR-
RIS phase constraints, and QoS requirements, by optimizing
Wc,Wp

k,W
p
l ,Φr, and Ψr. The EE metric incorporates total

hardware power consumption, modeled as

P̌ =(∥W1∥2 + ∥W2∥2 + ∥W3∥2)/ξ +MSP
dy
S + P st

S

+
∑
r∈R

MRP
st
r +

∑
k∈K

MKP
st
k +

∑
l∈L

MLP
st
l , (15)

where ξ ∈ (0, 1] denotes the transmit-power efficiency, P dy
S

denotes the BS dynamic power, and P st
S denotes the BS static

power. Likewise, P st
k , P st

k , and P st
l are the static hardware

powers of Rr, Uk, and Ul, respectively. The total circuit
power is P̌CP = P st

S +
∑
r∈RMKP

st
k +

∑
k∈KMKP

st
k +∑

l∈LMLP
st
l . Accordingly, the EEM problem can be formu-

lated as

P1 : Formulated Problem

max
W,Φ,Ψ

E ≜

∑
k∈K SEk(W,Φ) +

∑
l∈L SEl(W,Ψ)

(∥W1∥2 + ∥W2∥2 + ∥W3∥2)/ξ + P̌CP

(16a)
s.t. SEk(W,Φ) ≥ S̄Ek, ∀k ∈ K, (16b)

SEl(W,Φ) ≥ S̄El, ∀l ∈ L, (16c)

||W1||2 + ||W2||2 + ||W3||2 ≤ P̄BS, (16d)
ϕM rf

r
∈ Dϕ, ψM tr

r
∈ Dψ, (16e)

λrfM rf
R
+ λtrM tr

R
= 1, (16f)

λrfM rf
R
∈ {0, 1}, λtrM tr

R
∈ {0, 1}, (16g)

where Constraints (16b) and (16c) enforce per-user QoS,
requiring the SEs of Uk and Ul to exceed the preset thresholds
S̄Ek > 0 and S̄El > 0, respectively. Constraint (16d) limits
the aggregate transmit power to the BS budget. Constraint
(16e) enforces discretized STAR-RIS phase shifts. Constraints
(16f) and (16g) capture the MS operation via binary vari-
ables. Consequently, the objective in (16a) is non-convex in
W,Φ,Ψ, and the problem is a mixed-integer non-convex
program, making global optimization highly challenging.

III. THE PROPOSED EEM ALGORITHM

Solving problem (16) is inherently more challenging than
the SE problem in [10], since the EEM is a mixed-integer,
non-convex fractional program, and entails combinatorial (ex-
ponential) complexity for global optimality. Nevertheless, we
will show—via suitable transformations—that an IA-based
algorithm can efficiently handle the EEM. A key step is to
relax the discrete variables to continuous ones. The resulting
relaxed problem can be approximated as

P2 : Relaxed Problem

max
W,Φ,Ψ

E ≜

∑
k∈K SEk(W,Φ) +

∑
l∈L SEl(W,Ψ)

(∥W1∥2 + ∥W2∥2 + ∥W3∥2)/ξ + P̌CP
(17a)

s.t. ϕM rf
r
∈ [0, 2π], ψM tr

r
∈ [0, 2π], (17b)

(16b), (16c), (16d), (16f), (16g). (17c)

We observe that (17) is a non-convex fractional program.
Our approach is to split it into phase-shift and beamforming
subproblems and handle them via alternating optimization.

A. Phase Shift Subproblem
We first tackle the phase-shift subproblem by fixing the

beamforming variables. Consequently, (17) can be reformu-
lated as

P3 : Phase Shift Subproblem

max
Φ,Ψ

E ≜

∑
k∈K SEk(Φ)

(1 +K + L)/ξ + P̌CP
+

∑
l∈L SEl(Ψ)

(1 +K + L)/ξ + P̌CP

(18a)
s.t. (16b), (16c), (16f), (16g), (17b). (18b)

Noting that (18a) is concave and (17b) is linear within (18), we
design an efficient solver using a Bisection Search Algorithm,
presented in Alg. 1.

Algorithm 1 Proposed Bisection-Search Algorithm for Solv-
ing Phase Shift Subproblem (18)
Input: K, L, R, MR.
Output: Φ⋆

r , Ψ⋆
r .

Initialize the upper (ϕ̂, ψ̂) and lower (ϕ̌,ψ̌) bounds;
1: repeat
2: Calculate ϕ⋆ = (ϕ̌+ ϕ̂)/2; ψ⋆ = (ψ̌ + ψ̂)/2
3: Update ϕmrf

r
(ϕ⋆); ψmrf

r
(ψ⋆)

4: Solve the problem (18);
5: until Convergence

Note that the optimal phase-shift solution is continuous and
therefore cannot be used directly in the original problem. To



bridge this gap, we apply a rounding operation to (18) after
obtaining the continuous optimum, i.e.,

Λ⋆ = ⌈Λ(⋆) + δ⌉, ∀r ∈ R, ∀mR ∈MR, (19)

where Λ(⋆) ∈ {Φ⋆
r ,Ψ

⋆
r} and δ = (360/ε)/2 denotes the

rounding step size. After obtaining the optimal phase shifts,
we proceed to the beamforming subproblem, which is solved
in alternation and described in the next subsection.

B. Beamforming Subproblem

We now turn to the beamforming optimization. To iteratively
approximate the non-convex terms, we introduce an auxiliary
variable Ξ > 0 that satisfies

(∥W1∥2 + ∥W2 + ∥W3∥2)/ξ + PCP ≤ Ξ. (20)

Plugging the optimal phase-shift values from Alg. 1 into (17),
we obtain

P4 : Beamforming Subproblem

max
W,Ξ

E ≜
∑
k∈K

SEk(W)/Ξ +
∑
l∈L

SEl(W)/Ξ (21a)

s.t. (16b), (16c), (16d). (21b)

We define e ≜ {ek, el}k∈K,l∈L to represent soft energy
efficiencies, γ ≜ {γck, γ

p
k, γ

c
l , γ

p
l }k∈K,l∈L represent the users’

SINRs (Uk,Ul), S̄E ≜ {S̄Ek, S̄El}k∈K,l∈L represent the mini-
mum SE threshold of users, and ς ≜ {ςck, ς

p
k , ς

c
l , ς

p
l } represent

the interference of users. With these variables, (21) can be
rewritten as

max
W,Ξ,γ,e

E ≜
∑
k∈K

ek +
∑
l∈L

el (22a)

s.t. γ(W) ≥ 1/γ, (22b)
ln(1 + 1/γck)/Ξ + ln(1 + 1/γpk)/Ξ ≥ ek, (22c)
ln(1 + 1/γcl )/Ξ + ln(1 + 1/γpl )/Ξ ≥ el, (22d)
ln(1 + 1/γ) ≥ S̄E, (22e)
(16d), (20). (22f)

With x(κ) the feasible point at iteration (κ), and following
Lemmas 1 and 2 in [11, Lemma 1, Lemma 2], we approximate
constraints (22b) at the κ iteration by

ς(W)/γ ≤ f (κ)(W), (23)

where f (κ)(W) ≜ ∥ĜW∥2 ≥ 2R{(ĜW(κ))∗(ĜW)} −
∥ĜW(κ)∥2.

The term ln(1 + 1/γck)/Ξ + ln(1 + 1/γpk)/Ξ and ln(1 +
1/γcl )/Ξ + ln(1 + 1/γpl )/Ξ on the left-hand side of
(22c)–(22d) is convex in (γ,Ξ). Its first-order approxima-
tion at (γ(κ),Ξ(κ)) is given by [12, Eq. (18)] ln(1 +
1/γc)/Ξ + ln(1 + 1/γp)/Ξ ≥ (2ln(1 + 1/γc,(κ))/Ξ(κ) +
1/(Ξ(κ)(γc(κ) + 1)) − γc/(Ξ(κ) γc,(κ)(γc(κ) + 1)) −
ln(1 + 1/γc(κ))Ξ/(Ξ(κ))2) + (2ln(1 + 1/γp,(κ))/Ξ(κ) +
1/(Ξ(κ)(γp(κ) + 1)) − γp/(Ξ(κ) γp,(κ)(γp(κ) + 1)) − ln(1 +
1/γc(κ))Ξ/(Ξ(κ))2) ≜ B(κ)(γ,Ξ), ∀Ξ(κ) > 0, γc(κ) >
0, γp(κ) > 0.

Using [10, Eq. (34)], constraint (22e) is approximated by
C(κ)(γ) ≜ ln(1 + 1/γ) ≥ ln(1 + (γ(κ))−1) + (γ(κ) + 1)−1 −
γ[γ(κ)(γ(κ) + 1)]−1.

Consequently, (22) is approximated by the following convex
formulation at iteration (κ+ 1):

P5 : Convex Problem

max
W,Ξ,γ,e

E ≜
∑
k∈K

ek +
∑
l∈L

el (24a)

s.t. B(κ)k (γ,Ξ) ≥ ek, B(κ)l (γ,Ξ) ≥ ef , (24b)

C(κ)(γ) ≥ S̄E (24c)
(16d), (20), (23). (24d)

To wrap up, Alg. 2 presents the proposed low-complexity
iterative algorithm, including the bisection module in Alg. 1.

Algorithm 2 : Proposed Inner-Approximation Framework for
Problem (16)

1: Initialization: (W,Φ,Ψ) ← 0, and generate an initial
feasible point (W(0),Ξ(0),γ(0)) randomly;

2: Output: E and (W⋆,Φ⋆,Ψ⋆).
3: repeat
4: Solve problem (18) by running Alg. 1 to achieve

(Φ⋆,Ψ⋆);
5: Round Φ⋆ and Ψ⋆ by using (19);
6: Solve problem (24) to achieve (W⋆,Ξ⋆,γ⋆);
7: until Convergence
8: Calculate E in (16) based on (W⋆,Φ⋆,Ψ⋆);

IV. DEEP LEARNING FRAMEWORK DESIGN

In this section, we present a CNN-based deep learning
framework for the EEM problem in multi-STAR-RIS–assisted
mMIMO–RSMA networks, as illustrated in Fig. 2. As shown

(a) Offline Learning

(b) Online Predicting

Fig. 2. The proposed DL-based CNN framework to the EE problem

in Fig. 2(a), the CNN is trained offline to learn the mapping
from the input parameters of problem (16) to the optimal
solutions (targets) produced by Alg. 2. A scaling function
normalizes all inputs to [0, 1], which stabilizes gradients and
accelerates convergence. After training, the resulting deep



CNN (weights and biases) can be used for real-time inference
to predict the optimal precoding matrices and STAR-RIS phase
shifts with high accuracy, as illustrated in Fig. 2(b). In contrast
to the conventional pipeline—where Alg. 2 must be run to
obtain the optimal transmission/reflection phases at the STAR-
RISs and the precoding matrix—the trained CNN outputs these
directly for new inputs. In the proposed DL framework, the
CNN inputs include the channel matrices from BS to STAR-
RIS {GS,Rrf

r
,GS,Rtf

r
}, BS to users, and STAR-RIS to users

{GRrf
r ,Uk

,GRtr
r ,Ul
}; the positions of all users {UPss

k ,UPss
l };

the position of BS BSPss; the position of all STAR-RISs RPss
r ;

antenna counts at the BS and users (MS, {MK,ML}); the
number of elements per STAR-RIS MR; and the numbers
of users and STAR-RISs (R,K,L). The outputs are the
precoding matrices W ∈ {Wc,Wp

k,W
p
l } and the STAR-RIS

transmission/reflection phase shifts {Φr,Ψr }. Accordingly,
the input dimension is MS((2MR+2)+ML+MK)+MR(ML+
MK)RR

Pss
r +KUPss

k +LUPss
l +8, while the output dimension

is (K+L)(MBS×L)+(MBS×L)+RMR. During inference,
we apply the same input scaling before prediction and perform
inverse scaling on the CNN outputs to recover values in the
original physical units.

Fig. 3. The architecture of the Deep CNN design.

Fig. 3 depicts the proposed deep-CNN architecture, built
around three parallel residual-dense (RD) blocks. These blocks
capture rich representations by forming multi-level connec-
tions among feature maps and stacking multiple convolutional
layers for stronger feature extraction and stable gradient flow.
Within each RD block, a 1×1 convolution reduces dimension-
ality while preserving salient information, and outputs from
intermediate layers are fused via concatenation to aggregate
features across processing stages. A fully connected (fc) layer
then maps the fused features to the prediction space. The
dense skip connections mitigate vanishing gradients, speed
up convergence, and improve learning effectiveness; using
multiple RD blocks also helps curb overfitting and supports
better generalization. This design enables accurate, efficient
inference—even in real time—by combining residual-dense
learning with feature aggregation. ReLU is used as the ac-
tivation function, and all convolutional and fc layers employ
64 kernels/neurons.

V. SIMULATION RESULTS

To evaluate the proposed algorithms for the formulated
problem in STAR-RIS–assisted mMIMO–RSMA networks,

we use the following simulation settings: cell size 500 m ×
500 m × 50 m, S̄Ek = S̄El = 1 bps/Hz, MK = ML = 10, P dy

S

= 10 dBm, P st
S = 15 dBm, and P st

k = P st
l = 5 dBm, P st

r = 0
dBm. The convex optimization is carried out in MATLAB via
YALMIP (SDPT3 backend) [10]. The dataset is divided into
90% for training and 10% for testing.
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Fig. 4. Convergence behaviour of the proposed Alg. 2.

As depicted in Fig. 4, Algorithm 2 solves problem (16)
efficiently across a range of BS power budgets, reaching the
optimal value in roughly 13 iterations via monotonic objective
improvement. In addition, a larger power budget leads to
higher average EE, owing to the corresponding increase in
achievable capacity, in line with constraint (16d).

As illustrated in Fig. 5(a), RMSE drops with increasing
epochs, reflecting progressive refinement of network parame-
ters. The proposed CNN yields the lowest RMSE, outperform-
ing the fc DNN benchmark [4] and confirming its advantage
on high-dimensional data. Additionally, both DNN and CNN
benefit from larger training sets, which provide broader feature
coverage and lead to lower errors.

Fig. 5(b) illustrates how the maximum power budget at the
BS affects the average EE. As P̄BS increases, the average SE
rises because higher transmit power improves the received
signal quality at ground users. The Alg. 2–based method
attains the highest SE, as it explores the feasible set to
globally optimize the objective, yielding superior solutions. By
contrast, the Alg. 2 variant without (w/o) STAR-RIS performs
worst since users rely solely on the direct BS to user links with
no additional STAR-RIS gain. Finally, the DL-based approach
closely tracks the benchmark Alg. 2–based curve, indicating
that the DL model predicts the output parameters with high
accuracy.

Fig. 5(c) plots average EE versus the number of STAR-
RISs R for different element counts. EE increases with
R as additional panels improve users’ effective channels.
Likewise, more elements per STAR-RIS further raise EE by
enabling tighter signal focusing. The conventional scheme
without RSMA performs worst because it allocates orthogonal
time–frequency resources to each user. By contrast, the DL-
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Fig. 5. Epoch vs. RMSE and the impact of the power budget and the number of STAR-RISs R on the average EE

based method accurately predicts the precoders and STAR-RIS
phase shifts, achieving strong EE.

TABLE I
THE EXECUTION TIME OF ALG. 2-BASED VS. DL-BASED APPROACHES

Number of users Alg. 2-based DL-based
8 54.3 s 0.0137 s
12 80.6 s 0.0134 s
16 105.3 s 0.0153 s

Finally, we assess the execution time of the DL-based
method for obtaining the optimal solution (Table I). The
simulation was run on hardware specifications of an AMD
Ryzen 7 9700X 8-core processor, a single NVIDIA GeForce
GTX 1050 Ti graphic processing unit, and 16 GB of RAM.
The results show that the DL approach attains the optimum
with lower runtime, even as the number of users grows,
whereas the Alg. 2-based solver slows significantly with scale.
This is because the DL model directly maps inputs to near-
optimal outputs, while Alg. 2 requires multiple iterations,
increasing computation time.

VI. CONCLUSIONS

This paper investigated a DL-based EEM framework for
STAR-RIS–assisted mMIMO–RSMA networks. We formu-
lated joint optimization of the BS precoding matrix and
STAR-RIS phase shifts under BS power, discrete phase,
and minimum-QoS constraints, yielding a mixed-integer non-
convex problem. To solve it, we decoupled the task into
phase-shift and beamforming subproblems: the former handled
via a bisection search, the latter transformed into a tractable
surrogate and solved by an IA method. For real-time operation,
we further designed a DL framework that predicts near-
optimal phase shifts and precoders across varying system
parameters. Simulations show that the DL approach attains
optimal-quality solutions with markedly lower runtime than
conventional solvers, and we quantified the influence of key
parameters on overall performance.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Education (RS-2023-
00244014). This work was supported by Chungbuk National
University BK21 program (2025).

REFERENCES

[1] M. Na, J. Lee, G. Choi, T. Yu, J. Choi, J. Lee, and S. Bahk, “Operator’s
Perspective on 6G: 6G Services, Vision, and Spectrum,” IEEE Commun.
Mag., vol. 62, no. 8, pp. 178–184, 2024.

[2] R. H. Y. Perdana, T.-V. Nguyen, Y. Pramitarini, and B. An, “Deep
Learning-Based Energy Efficiency Maximization in Massive MIMO-
NOMA Networks With Multiple RISs,” in 2024 Int. Conf. Artif. Intell.
Inf. Commun. Osaka, Japan: IEEE, 2024, pp. 382–387.

[3] M. Soleymani, I. Santamaria, and E. Jorswieck, “Energy-efficient Rate
Splitting for MIMO STAR-RIS-assisted Broadcast Channels with I/Q
Imbalance,” in Eur. Signal Process. Conf. Helsinki, Finland: EURASIP,
2023, pp. 1504–1508.

[4] R. H. Y. Perdana, T.-V. Nguyen, and B. An, “A Deep Learning-Based
Spectral Efficiency Maximization in Multiple Users Multiple STAR-
RISs Massive MIMO-NOMA Networks,” in 2023 Twelfth Int. Conf.
Ubiquitous Futur. Networks. Paris, France: IEEE, 2023, pp. 675–680.

[5] J. Zheng, J. Zhang, H. Du, D. Niyato, D. I. Kim, and B. Ai, “Rate-
Splitting for CF Massive MIMO Systems with Channel Aging,” IEEE
Trans. Veh. Technol., vol. 73, no. 1, pp. 1485–1490, 2024.

[6] X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously Trans-
mitting and Reflecting (STAR) RIS Aided Wireless Communications,”
IEEE Trans. Wirel. Commun., vol. 21, no. 5, pp. 3083–3098, 2022.

[7] Y. Pramitarini, R. H. Y. Perdana, K. Shim, and B. An, “Secure Multicast
Routing Against Collaborative Attacks in FANETs with CF-mMIMO
and STAR-RIS: Blockchain and Federated Learning Design,” IEEE
Internet Things J., vol. 12, no. 12, pp. 22 404–22 426, 2025.

[8] R. H. Y. Perdana, T. V. Nguyen, Y. Pramitarini, D. H. Nguyen, and
B. An, “Enhancing Spectral Efficiency of Short-Packet Communica-
tions in STAR-RIS-Assisted SWIPT MIMO-NOMA Systems with Deep
Learning,” IEEE Trans. Wirel. Commun., vol. 24, no. 1, pp. 842–859,
2025.

[9] D. Galappaththige and C. Tellambura, “Sum Rate Maximization for
RSMA-Assisted CF mMIMO Networks With SWIPT Users,” IEEE
Wirel. Commun. Lett., vol. 13, no. 5, pp. 1300–1304, 2024.

[10] R. H. Y. Perdana, T.-V. Nguyen, and B. An, “Adaptive User Pairing in
Multi-IRS-aided Massive MIMO-NOMA Networks: Spectral Efficiency
Maximization and Deep Learning Design,” IEEE Trans. Commun.,
vol. 71, no. 7, pp. 4377–4390, 2023.

[11] T. V. Nguyen, V. D. Nguyen, D. B. Da Costa, and B. An, “Hybrid
User Pairing for Spectral and Energy Efficiencies in Multiuser MISO-
NOMA Networks with SWIPT,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 4874–4890, Aug. 2020.

[12] V. D. Nguyen, H. V. Nguyen, O. A. Dobre, and O. S. Shin, “A New
Design Paradigm for Secure Full-Duplex Multiuser Systems,” IEEE J.
Sel. Areas Commun., vol. 36, no. 7, pp. 1480–1498, 2018.


