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Abstract—Effective resource management is a challenge for
High Performance Computing (HPC) systems. For their jobs,
many users request either too many or too few CPU cores,
which wastes resources or leads to early job failure. This research
proposes an Adaptive CPU Resource Management Framework
that combines reinforcement learning optimization with Random
Forest prediction to solve this issue. The ERAWAN HPC cluster
gathered 3,600 jobs in 2024 to form the dataset. A Random Forest
model was trained to estimate CPU efficiency before execution
and achieved strong accuracy (R2 of 0.96 for training and R2 of
0.85 for testing). For jobs predicted to have CPU efficiency below
70%, the framework applies an iterative adjustment process to
optimize CPU allocation. The experimental results show that the
proposed framework improves the average CPU efficiency from
68.78% to 78.21% for training and from 66.33% to 76.92% for
testing, representing an overall improvement of approximately
13-16%. These results show that the use of predictive modeling
with reinforcement learning optimization is an effective method
to improve resource utilization, reduce waste, and improve
throughput in large-scale HPC environments. Future work will
extend the framework to optimize multiple resources and apply it
to larger and more diverse HPC clusters for real-time scheduling.

Index Terms—Cluster System, High Performance Computing,
Optimization, Prediction, Utilization

I. INTRODUCTION

High-Performance Computing (HPC) systems have become
necessary infrastructure for enabling research and innovation.
Most fields of computational science require substantial com-
puting resources to support data modeling, validation, and
performance evaluation. As a result, HPC has emerged as a
critical technology that enables large-scale simulations, big
data processing, and experiment acceleration in many fields
of research, such as atmospheric science, astrophysics, geoin-
formation science, and chemistry [1]. Typically, HPC systems
consist of high performance computers, high-speed parallel
storage systems, and connected compute nodes that deliver
large-scale CPU and GPU resources [2]. A key component of
every HPC system is the job scheduler, which allocates com-
putational tasks to CPUs, memory, and other shared resources.
One of the most popular schedulers is Slurm (Simple Linux
Utility for Resource Management), which is reported to be

scalable, flexible, and fault-tolerant [3]. However, achieving
efficient and fair utilization of HPC resources remains a
challenge in heterogeneous and dynamic workloads.

Traditional job schedulers still rely heavily on user-defined
resource requests without any verification or adjustment,
which very frequently results in poor allocations. Users may
underestimate or overestimate CPU, memory, or runtime re-
quirements. Underestimation results in premature job termina-
tion, while overestimation results in wasted resources, reduced
system performance, and longer waiting times. This constraint
is compounded by the scheduler’s limited ability to validate
user requests, which has a tendency to render Slurm or other
workload managers bottlenecks in HPC environments where
thousands of jobs compete for limited resources [4], [5].

To address these challenges, data-driven approaches are
playing an increased role in managing resources in HPC
systems. Machine learning methods, like regression and en-
semble models, can predict metrics such as CPU efficiency
or job runtime before a task starts. With these predictions,
schedulers can make better and more proactive decisions about
allocation of resources. However, prediction-based methods
have limits because they cannot adjust resources during a job
or learn from feedback. Reinforcement Learning (RL) offers
a way to overcome this. In RL, an agent interacts with the
system, observes its state, takes actions such as changing CPU
allocation, and learns from the results. This process helps the
scheduler adapt and improve decisions over time without direct
supervision. In HPC systems, RL can help balance efficiency
and fairness by responding to changing job needs and cluster
conditions. Due to these benefits, combining ML prediction
with RL optimization can help achieve accurate and flexible
resource management.

This study proposes a hybrid framework called hybrid Ran-
dom Forest and Reinforcement Learning for Adaptive CPU
Resource Management. The framework combines Random
Forest (RF) prediction with Dyna-Q Reinforcement Learning
to achieve adaptive CPU allocation. The RF model provides
fast and interpretable predictions of CPU efficiency, while
the Dyna-Q agent refines the allocation policy through real



and simulated learning experiences. Dyna-Q is particularly
suitable for HPC systems because it integrates model-based
planning with direct learning, resulting in faster convergence
and higher learning efficiency compared with traditional op-
timization methods. By combining predictive modeling with
adaptive learning, the proposed framework improves resource
utilization, reduces wasted CPU cycles, and supports fair
scheduling among multiple workloads.

II. RELATED WORK

Efficient job scheduling has been one of the main chal-
lenges in High Performance Computing (HPC) systems. The
objective is to maintain a good balance between utilization,
throughput, and fairness among many different workloads.
Traditional methods such as First Come First Served (FCFS),
Shortest Job First (SJF), and other priority-based heuristics [6]
are easy to implement but often fail to deal with the changing
behavior of real workloads. In heterogeneous HPC systems
where resource demands vary between CPUs, GPUs, and
memory, these static approaches often leave some resources
idle, create long queues, and lower the overall performance of
the system [7].

A. Machine Learning Prediction

Over the past decade, researchers have increasingly turned
to machine learning to improve scheduling efficiency. Predic-
tive ML models can estimate job runtime memory consump-
tion or CPU efficiency before execution helping schedulers
make better resource allocation decisions. For instance, Ro-
drigues et al. [4], Tanash et al. [8], and Gupta et al. [9] showed
that supervised and ensemble approaches can accurately fore-
cast resource requirements which helps reduce underestima-
tion errors and improve job completion rates. Other studies
have explored the reliability of the job. Banjongkan et al. [10]
used decision trees to identify jobs that were likely to fail
while Ali et al. [11] showed that AI-assisted scheduling could
improve fairness compared to traditional heuristic approaches.
Although these ML techniques improve prediction accuracy,
most of them still work offline and static, generating one-time
predictions without the ability to adjust during job execution.

B. Reinforcement Learning Optimization

To overcome these static limitations, researchers have begun
exploring reinforcement learning (RL) and hybrid ML–RL
frameworks. Unlike pure prediction models, RL treats schedul-
ing as a sequential decision-making problem in which an agent
learns policies that maximize long-term efficiency through
trial and feedback. Wang et al. [12] introduced a hierarchical
RL (HRL) approach that jointly manages job selection and
resource assignment, while Fan et al. [13] developed a deep
RL scheduler that improved throughput by more than 40%
compared to heuristic baselines. Kolker-Hicks et al. [14]
applied RL to improve backfilling strategies and achieved
better performance than the classic EASY algorithm. Zhang et
al. [15] and Patel et al. [16] also proposed adaptive CPU–GPU

management and cloud optimization using hybrid ML tech-
niques. A review by Gu et al. [17] highlighted the growing
maturity of deep RL approaches for workload scheduling in
both HPC and cloud environments.

C. Hybrid CPU Resource Management Frameworks

Building on these developments, the present study intro-
duces the Hybrid Random Forest and Reinforcement Learning
Framework for Adaptive CPU Resource Management (Hybrid
RF–RL Framework). This framework merges a Random Forest
(RF) predictor with a Dyna-Q reinforcement learning agent
to provide adaptive CPU allocation. The RF model offers
rapid and interpretable predictions of CPU efficiency, while the
Dyna-Q component fine-tunes allocation strategies by combin-
ing real and simulated learning experiences. RF was chosen
for its robustness against noise, its ability to handle mixed job
log features, and its strong performance on tabular data, where
training samples are often limited or unevenly distributed [18],
[19]. Unlike traditional ML-only or heuristic-based methods,
the proposed Hybrid RF–RL Framework achieves both accu-
rate prediction and adaptive optimization, providing a scalable
and intelligent resource management solution for production
HPC clusters.

III. HYBRID RF-RL FRAMEWORK

Algorithm 1: Hybrid RF–RL Framework
Input: Job log D with features x and target

y = CPU_Efficiency
Output: Optimized Q-table and CPU allocation policy

1 1. Data Preparation: Clean and preprocess job logs.
2 2. RF Prediction: Train regressor fRF(x) to predict y

and serve as a surrogate environment.
3 3. RL Optimization: Initialize Q(s, a) = 0 and

actions A = {±2k | k = 0, . . . , 6} ∪ {0}.
4 for each epoch do
5 foreach job x do
6 Predict baseline ŷb = fRF(x)
7 if ŷb < τ = 70 then
8 Select a using an ϵ-greedy policy
9 Predict ŷn = fRF(x+ a) , compute reward

10 Update Q(s, a)←(1− α)Q(s, a) + αr and
perform limited replays.

11 return Optimized Q-table and predicted improvement
∆ = ŷnew − ŷbase.

The workflow of the Hybrid RF–RL Framework is designed
to enable adaptive and data-driven CPU resource management.
In the first phase, job log data is collected and preprocessed
to remove incomplete records, encode categorical attributes,
and normalize numerical features. In the second phase, the
RF Prediction is trained to predict CPU efficiency before job
execution, providing a surrogate environment that estimates
utilization outcomes under different resource configurations.



TABLE I
FEATURES SELECTED FOR MODEL TRAINING

Feature Type Description

Username Text Username of the job owner
JobName Text Descriptive name of the submitted job
Submit start Datetime Submission date and start time of the job
Type Text Discipline or research domain of the job

(e.g., Chemistry, Computer Science, Engineering, Medicine)
Partition Text Partition or queue where the job was submitted
AllocCPUS Numeric Number of CPU cores requested by the user
AllocGPUS Numeric Number of GPUs requested (if applicable)
ReqMem Numeric Total memory requested for job execution
Elapsed Numeric Actual runtime of the job (seconds)
State Text Final job state (e.g., COMPLETED, FAILED,TIMEOUT )
CPU Efficiency Numeric CPU utilization efficiency (%) (target variable for prediction)

In the third phase, the RL Optimization component interacts
with this predictive environment to optimize CPU allocation
for jobs predicted to have low efficiency.

A. Data Preprocessing

Data preprocessing involves preparing the dataset collected
from the HPC cluster job scheduler. The dataset includes
job log information such as submission details, requested
resources, and measured CPU utilization. The target variable
in this study is CPU Efficiency, defined as the ratio between
effective CPU usage and the number of allocated CPU cores.
The features selected for model training are listed in Table I.
Categorical variables such as Username, JobName, Partition,
and Type were converted using label encoding, while numer-
ical features were normalized to maintain a consistent scale.
Records containing missing or corrupted values were removed
before training to preserve data quality.

B. RF Prediction

This stage focuses on predicting CPU efficiency before
job execution. Random Forest Regression is employed due
to its robustness against overfitting, ability to handle high-
dimensional heterogeneous features, and strong performance
in modeling nonlinear relationships between job attributes and
CPU utilization [20]. The Random Forest prediction for CPU
efficiency of an input x, using B trees, can be expressed as
Eq. 1, where f̂b(x) represents the prediction from the b-th
decision tree and ŷ is the predicted efficiency value.

ŷ =
1

B

B∑
b=1

f̂b(x) (1)

C. RL Optimization

In the final stage, reinforcement learning is applied to adap-
tively adjust CPU allocations for jobs predicted to have low
efficiency. The Dyna-Q algorithm [21], [22] is adopted because
it integrates model-based planning with direct learning. Here,

the Random Forest regressor functions as a surrogate environ-
ment model, enabling simulated efficiency feedback without
executing real jobs. Dyna-Q combines real and simulated
experiences, allowing efficient policy learning from historical
job logs while minimizing costly interactions with the real
HPC environment.

A decision threshold is applied to prediction results as
follows:

• If ŷ ≥ 70%, the job proceeds with its current allocation.
• If ŷ < 70%, optimization is triggered.

The threshold 70% follows the NERSC workload study [23],
which reports widespread underutilization in HPC workloads.

For inefficient jobs, the agent selects an action a from the
following.

A = {±2k | k = 0, . . . , 6} ∪ {0}

representing incremental CPU adjustments. After applying a,
the environment predicts the new efficiency ŷn, and the reward
is defined as:

r = (ŷn− ŷb)−αover ·∆Alloc−βunder ·max(0, τ − ŷn) (2)

where αover and βunder penalize over-allocation and low effi-
ciency, respectively. Through iterative Q-updates and planning,
the Dyna-Q agent converges toward an allocation policy that
enhances overall CPU efficiency and fairness among compet-
ing workloads.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
Hybrid RF-RL Framework for adaptive CPU resource man-
agement. The analysis is divided into three parts: experimental
setup and framework configuration, evaluation metrics used
for prediction and optimization, and overall CPU efficiency
improvement compared with baseline methods. The baseline
optimization methods are Stepwise Search (brute-force) and
Particle Swarm Optimization (PSO).



TABLE II
THE HYPERPARAMETERS USED IN THE CPU-EFFICIENCY PREDICTION AND OPTIMIZATION METHODS.

Module Hyperparameter Value
Stepwise CPU bounds [1, 64]

Trigger threshold (τ ) 70.0%
Search strategy brute-force sweep

PSO swarmsize 10
Local bounds [1,64]
Penalty weight (λ) 0.25
Trigger threshold (τ ) 70.0%

Dyna-Q Learning rate (α) 0.15
Exploration (ϵ) 0.25
Planning steps (nplan) 60
Action set {-32,-16,-8,-4,-2,-1,0,+1,+2,+4,+8,+16,+32}
CPU bounds [1, 64]
Under-target penalty (β) 0.30
Over-allocation penalty (λ) 0.25
Trigger threshold (τ ) 70.0%
Training epochs 20

A. Experimental Setup

The dataset used in this study was derived from job logs col-
lected from the ERAWAN HPC cluster, the high-performance
computing system of Chiang Mai University, Thailand. It
comprises 3,600 job records executed during 2024, represent-
ing various academic and research workloads. Each record
contains the features listed in Table I, with CPU Efficiency
serving as the target variable. Before training, the data were
preprocessed to remove incomplete records and normalize
the numerical features. The prepared dataset was then split
into 70% for training and 30% for testing. All experiments
were implemented in Python and executed on the CMU HPC
ERAWAN cluster managed by the Slurm workload manager.

The hyperparameters of the framework are summarized
in Table II. A Random Forest regressor was employed as
the performance prediction model, with the number of trees
and tree depth selected to balance prediction accuracy and
computational cost. For optimizing CPU allocation, three
methods were considered: Stepwise search, PSO, and Dyna-
Q algorithm. To ensure a fair comparison, all optimization
methods operated within the same CPU allocation limits and
were triggered only for jobs with predicted CPU efficiency
below a threshold of 70%. In the PSO and RL approaches,
penalty terms were incorporated to discourage unnecessary
CPU over-allocation and to guide the optimization toward
efficient resource utilization.

B. Prediction Accuracy

The accuracy of the Random Forest (RF) model was evalu-
ated using the coefficient of determination (R2) together with
the mean absolute error (MAE) and the root mean square error
(RMSE). As shown in Fig. 1, the predicted CPU efficiency
values closely align with the actual measurements. During
training, the model achieved an R2 of 0.96 with an RMSE of
6.75 and an MAE of 3.58, which indicates precise predictions
and minimal average error.

When tested on unseen data, the model maintained a high
level of performance, achieving an R2 of 0.85. Although
slightly lower than the training score, this still reflects strong
generalization ability. The RMSE increased to 12.92 and
the MAE to 5.78 which is expected because the testing
data contain workload patterns not seen in the training set.
Despite the wider spread of the predicted values shown in
Fig. 1(b), this variation mainly results from the diverse and
irregular nature of unseen jobs. Nevertheless, the Random
Forest model maintains a high R2 value indicating stable
predictive performance and providing a strong basis for sub-
sequent reinforcement learning optimization. Overall, these
results confirm that the RF model effectively captures CPU
efficiency trends, offering both accuracy and generalizability
required for adaptive resource management in HPC systems.

TABLE III
COMPARISON CPU EFFICIENCY OF OPTIMIZATION METHODS

Method CPU Efficiency (%) Improvement(%)

Train Test Train Test

Actual Data 68.78 66.33 0.00 0.00
Predicted (RF) 68.96 67.69 +0.26 +2.05
Stepwise Search 78.76 77.34 +14.51 +16.60
PSO Optimization 76.27 74.76 +10.89 +12.71
Proposed Dyna-Q 78.21 76.92 +13.71 +15.97

C. Reinforcement Optimization Efficiency

The effectiveness of reinforcement learning optimization
was evaluated by comparing the average CPU efficiency across
different stages, as illustrated in Fig. 2. The comparison in-
cludes the efficiency of the actual data, the predicted efficiency
of the RF model, and the optimized results obtained from
Stepwise Search, PSO, and the proposed Dyna-Q algorithm.

As shown in the figure, the baseline average CPU efficiency
of the actual job logs was approximately 68.8% for the training



Fig. 1. Relationship between actual and predicted CPU efficiency obtained from the Random Forest model for (a) training and (b) testing datasets.

Fig. 2. Comparison of average CPU efficiency for the training and testing datasets across different methods.

set and 66.3% for the test set. After prediction with the
Random Forest model, the efficiency improved slightly due
to smoothing effects of model generalization. Both optimiza-
tion methods, Stepwise and PSO, further increased the mean
efficiency to around 74 to 79%. The proposed reinforcement-
based Dyna-Q achieved the highest performance, reaching
78.2% (training) and 76.9% (testing), corresponding to an
improvement of approximately 10 to 16% over the baseline.
Table III summarizes the numerical results.

The baseline optimization methods Stepwise Search and
Particle Swarm Optimization (PSO) represent static strategies
that rely on fixed models trained from historical data and
cannot adapt or update during execution. In contrast, the
proposed hybrid RF-RL framework introduces a dynamic
learning mechanism via the Dyna-Q agent, which continuously
refines its allocation policy using both simulated and real
feedback. Although the final CPU efficiency of the Hybrid
RF–RL Framework is only slightly higher than that of the
Stepwise method its adaptive and self-improving nature makes
it more scalable and practical for real-time HPC operations.

V. CONCLUSION

This paper presented a Hybrid Random Forest and Rein-
forcement Learning (Hybrid RF–RL) Framework for adaptive

CPU resource management in HPC systems. The frame-
work combines Random Forest prediction with a Dyna-Q
reinforcement learning agent to dynamically optimize CPU
allocation based on both historical and real-time feedback.
Using 3,600 job records from the CMU ERAWAN HPC
cluster, the proposed model achieved high predictive accuracy
(R2 = 0.96 for training and 0.85 for testing) and improved
average CPU efficiency by about 13–16% compared with
baseline methods. Although the achieved efficiency is close to
that of traditional Stepwise optimization, the adaptive learning
nature of Dyna-Q makes the framework more scalable and
practical for real HPC environments where workloads con-
tinually change. These findings demonstrate that combining
predictive modeling with adaptive learning enhances both re-
source utilization and fairness in heterogeneous HPC systems.
Future work will extend this approach toward multi-resource
optimization (CPU, memory, and GPU) and explore deep
reinforcement learning for higher-dimensional decision spaces
to enable scalable and intelligent resource management for
next-generation HPC environments.
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