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Abstract— Large Language Models are vulnerable to prompt 

injection attacks. Although various detection techniques have 

been proposed, approaches relying on external classifiers are 

limited by high computational overhead. Accordingly, this paper 

proposes Multi-layer Hierarchical Detection, a fast and 

lightweight method that utilizes hidden states from each 

Transformer layer to perform classification. This method reduces 

the average number of classification layers required for detection 

by 75.3% to 88.5% compared to the baseline method, while 

maintaining performance within a marginal F1-score difference 

of 0.5%. Consequently, the proposed method reduces detection 

latency and provides an efficient solution. 

 

Keywords— Artificial Intelligence, Large Language Models, 

Prompt Injection Detection. 

I.  INTRODUCTION 

Large Language Models (LLMs) are seeing widespread 
adoption across diverse fields, owing to their outstanding 
performance [1]. This expansion, however, increases their 
exposure to prompt injection attacks that manipulate prompts 
to intentionally bypass a model’s guidelines [2, 3, 4]. Given 
that such attacks can precipitate severe consequences, 
including the generation of unintended content and the 
execution of harmful operations, robust and practical prompt 
injection detection is essential. 

Existing prompt injection detection techniques have 
employed independent Transformer models [5] as external 
classifiers [6, 7]. This approach, however, inherently incurs 
high computational overhead. Alternative approaches utilize 
the model’s internal representations, such as attention patterns 
[8] or hidden states [9], to detect prompt injection. While these 
approaches offer the advantage of significantly reducing 
detection overhead, several limitations persist, such as 
inconsistent performance across datasets or a failure to fully 
leverage the hierarchical characteristics of multi-layer 
structures. 

 To address these limitations, we propose a hierarchical 
detection technique called Multi-layer Hierarchical Detection 
(MHD). This method achieves fast and lightweight 
classification by identifying each input at an appropriately 
early layer. By processing easily detectable inputs in lower 
layers and passing those that are difficult to classify to higher 

layers, this approach significantly reduces average detection 
latency and computational overhead.    

The remainder of this paper is structured as follows: 
Section Ⅱ reviews existing research; Section Ⅲ  presents the 
proposed methodology; Section Ⅳ details the experimental 
results; and Section Ⅴ discusses the limitations and concludes 
the study. 

II. RELATED WORK 

Research on prompt injection detection has been actively 
conducted in various directions. One line of research employs 
an external classifier that operates independently of the service 
model—the primary model responsible for generating 
responses to users. In contrast to this external approach, 
another line of work detects attacks by analyzing the internal 
representations of the service model itself. This section reviews 
key studies from both methodologies that serve as baselines for 
our comparison. 

A. Prompt injection detection using external classifiers 

Deberta-v3-base-prompt-injection-v2 [6], developed by 

ProtectAI, is a model specifically fine-tuned for prompt 

injection detection based on DeBERTa [10]. Similarly, Prompt 

Guard [7], developed by Meta, is a specialized detection 

model built upon DeBERTa [10]. Although these models are 

on a million-parameter scale, they have the significant 

disadvantage of incurring high computational overhead, as 

they require an independent inference pass for every input. 

B. Prompt injection detection using internal representations 

Attention Tracker [8] is a technique that detects prompt 

injection by utilizing the service model’s internal attention 

scores. It is based on the observation that prompt injection 

causes a distraction effect, shifting attention from the original 

system prompt to the injected user prompt. A key advantage of 

this method is that it is training-free. However, this method 

has limitations: while it achieves high detection performance 

on specific datasets, its performance varies considerably 

across different domains, indicating high domain-dependence. 

Layer Enhanced Classification (LEC) [9] is a technique for 

detecting prompt injection by utilizing hidden states extracted 

from a single intermediate layer. It involves training a 



 
Figure 2.  MHD Structure. 

 
Figure 1.  LEC Classification results. 

penalized logistic regression classifier on these representations. 

While LEC is lightweight and demonstrates strong 

performance, it is structurally constrained, as it is designed to 

classify all inputs using the fixed intermediate layer.  

III. METHOD 

This section details the core concepts and structural design 
of the proposed MHD. We first provide motivation by 
analyzing the inefficiencies inherent in existing detection 
methods, followed by a comprehensive description of the 
overall architecture and its detailed mechanisms.  

A. Motivation 

The classification results of LEC, shown in Fig. 1, reveal a 
critical inefficiency. As illustrated, most data is accurately 
classified at lower layers (e.g., Layer 1 achieves 96.38% F1-
score). Consequently, passing all data through to a fixed deeper 
layer results in unnecessary computations. To address this, we 
propose a hierarchical approach that processes data that can be 
accurately classified at lower layers and only passes data 
requiring further analysis to higher layers. 

B. Proposed Architecture 

To address the structural inefficiency of existing methods, 
we propose MHD. The overall architecture is illustrated in Fig. 
2. As data passes through each layer, MHD classifies what can 
be classified at that point, while data requiring further analysis 
is passed to the next layer. Therefore, like LEC, final 
classification occurs at an intermediate layer (MHD last layer) 
using a binary classifier, but unlike LEC, we attach a ternary 
classifier to all preceding layers before it.  

C. Detailed Structure 

The MHD utilizes two types of layer-specific classifiers: 
binary and ternary. The binary classifiers (Safe, Harmful) serve 
two distinct purposes. First, they are used to create the ternary 
classification dataset. That is, a binary classifier is trained for 
each layer, and any data samples misclassified by this classifier 
are re-labeled as ‘Uncertain’.  

These ternary datasets (Safe, Harmful, Uncertain) are then 
used to train the ternary classifier for that layer. The ternary 
classifiers are applied at each layer before the MHD last layer. 
During inference, inputs classified as ‘Safe’ or ‘Harmful’ stop 
the MHD process immediately, while those classified as 
‘Uncertain’ are forwarded to the next layer.  

When data reaches the MHD last layer, the binary 
classifier’s second role is activated. Inputs that passed through 
all preceding ternary classifiers as ‘Uncertain’ are finally 
categorized by the binary classifier—the same one used in the 
ternary dataset creation step—into a definitive ‘Safe’ or 
‘Harmful’ status. 

IV. EXPERIMENTS 

In this section, we present the experimental evaluation of 
MHD. To assess its effectiveness and efficiency, we compare 
its performance against several existing approaches: external 

classifier-based methods (deberta-v3-base-prompt-injection-v2 
[6] and Prompt Guard [7]), and the internal representation-
based methods (Attention Tracker [8] and LEC [9]). Our 
experiments were conducted using the SPML dataset [11] 
across two different service models serving as feature 
extractors. The following subsections detail the experimental 
setup and discuss the comparative results.  

A. Experimental settings 

1) Feature extraction model: While the original LEC 

study [9] examined both service model and detection-specific 

fine-tuned models, we utilize only the hidden states generated 

by the service model itself. This approach prioritizes resource 

efficiency and ensures seamless integration with the existing 

service model. Specifically, we employed two pre-trained 

models as feature extractors: Qwen2.5-0.5B-Instruct (24 

layers, 896-dimensional hidden states) [12] and Qwen2.5-

14B-Instruct (48 layers, 5,120-dimensional hidden states) [12]. 



TABLE I.  SPML DATASET EVALUATION RESULTS 

Feature 

Extraction 

Model 

Method Accuracy (%) F1 (%) 

Maximum 

Classification 

Layer (1~) 

Average 

Classification 

Layer (1~) 

Qwen2.5-0.5B 

MHD 99 98.99 5 3.70 

LEC 98.53 98.52 15 15 

Attention-tracker 80.76 76.53 15 15 

Qwen2.5-14B 

MHD 98.59 98.57 3 2.53 

LEC 98.88 98.88 22 22 

Attention-tracker 86.29 84.22 48 48 

- Deberta-v3-base-prompt-injection-v2 94.47 94.7 - - 

- Prompt Guard2 77.12 70.33 - - 

 

2) Training: We utilized the SPML dataset [11], which 

consists of system prompt-user prompt pairs. A sample is 

labeled as 1 (harmful) if a user prompt attempts to elicit an 

output that violates the system prompt’s instructions, 

regardless of the user’s actual malicious intent. The dataset 

was split into 3,300 training, 1,700 validation, and 1,700 test 

samples, with the class labels uniformly distributed. For 

training the classifiers, we employed a learning rate of 0.05 

and an early stopping patience of 20 epochs. 

B. Experimental results 

 The evaluation results for the SPML dataset are presented 
in Table I.  MHD achieved significantly higher performance 
than external baseline methods and the Attention Tracker. 
When compared to LEC, MHD demonstrated comparable 
performance levels. As shown in Table I, MHD showed 
slightly higher performance when using Qwen2.5-0.5B-
Instruct, while LEC showed a marginal advantage with 
Qwen2.5-14B-Instruct. Overall, the F1-score difference 
between the two methods remained within a narrow range of 
±0.5%. 

Critically, MHD improved detection efficiency by reducing 
the average number of classification layers by 75.3% to 88.5% 
compared to LEC, all while maintaining equivalent 
performance. This reduction translates into a significant 
decrease in overall detection latency. Furthermore, early 
detection at lower layers enables the rapid blocking of harmful 
prompts and minimizes redundant inference computations. 
These characteristics ensure model safety while simultaneously 
enhancing operational efficiency. 

V. CONCLUSION 

In this paper, we introduced MHD to address the 
inefficiency of existing detection methods that process every 
input through a fixed single layer. While our study proposes a 
fast and lightweight multi-layer detection approach, several 
limitations remain for future work. First, MHD requires a 
dedicated classifier for each layer, resulting in a larger total 
number of trainable parameters compared to single-classifier 
methods like LEC. Second, inputs that are not classified at 
early layers must undergo sequential classification up to the 

MHD last layer. In such worst-case scenarios, computational 
overhead may slightly increase compared to a single-pass 
method. These limitations highlight the need for further 
optimization strategies in future research.  
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