Detection of Prompt Injection Attacks Using a
Hierarchical Approach

Sujin Lee
School of Computer Science and Engineering
Yeungnam University
Gyeongsan, Republic of Korea
sujinlee@yu.ac.kr

Abstract— Large Language Models are vulnerable to prompt
injection attacks. Although various detection techniques have
been proposed, approaches relying on external classifiers are
limited by high computational overhead. Accordingly, this paper
proposes Multi-layer Hierarchical Detection, a fast and
lightweight method that utilizes hidden states from each
Transformer layer to perform classification. This method reduces
the average number of classification layers required for detection
by 75.3% to 88.5% compared to the baseline method, while
maintaining performance within a marginal F1-score difference
of 0.5%. Consequently, the proposed method reduces detection
latency and provides an efficient solution.

Keywords— Artificial Intelligence, Large Language Models,
Prompt Injection Detection.

I. INTRODUCTION

Large Language Models (LLMs) are seeing widespread
adoption across diverse fields, owing to their outstanding
performance [1]. This expansion, however, increases their
exposure to prompt injection attacks that manipulate prompts
to intentionally bypass a model’s guidelines [2, 3, 4]. Given
that such attacks can precipitate severe consequences,
including the generation of unintended content and the
execution of harmful operations, robust and practical prompt
injection detection is essential.

Existing prompt injection detection techniques have
employed independent Transformer models [5] as external
classifiers [6, 7]. This approach, however, inherently incurs
high computational overhead. Alternative approaches utilize
the model’s internal representations, such as attention patterns
[8] or hidden states [9], to detect prompt injection. While these
approaches offer the advantage of significantly reducing
detection overhead, several limitations persist, such as
inconsistent performance across datasets or a failure to fully
leverage the hierarchical characteristics of multi-layer
structures.

To address these limitations, we propose a hierarchical
detection technique called Multi-layer Hierarchical Detection
(MHD). This method achieves fast and lightweight
classification by identifying each input at an appropriately
early layer. By processing easily detectable inputs in lower
layers and passing those that are difficult to classify to higher

Wooguil Pak

School of Computer Science and Engineering
Yeungnam University
Gyeongsan, Republic of Korea
wooguilpak@yu.ac.kr

layers, this approach significantly reduces average detection
latency and computational overhead.

The remainder of this paper is structured as follows:
Section II reviews existing research; Section III presents the
proposed methodology; Section IV details the experimental
results; and Section V discusses the limitations and concludes
the study.

II. RELATED WORK

Research on prompt injection detection has been actively
conducted in various directions. One line of research employs
an external classifier that operates independently of the service
model—the primary model responsible for generating
responses to users. In contrast to this external approach,
another line of work detects attacks by analyzing the internal
representations of the service model itself. This section reviews
key studies from both methodologies that serve as baselines for
our comparison.

A. Prompt injection detection using external classifiers
Deberta-v3-base-prompt-injection-v2 [6], developed by
ProtectAl, is a model specifically fine-tuned for prompt
injection detection based on DeBERTa [10]. Similarly, Prompt
Guard [7], developed by Meta, is a specialized detection
model built upon DeBERTa [10]. Although these models are
on a million-parameter scale, they have the significant
disadvantage of incurring high computational overhead, as
they require an independent inference pass for every input.

B. Prompt injection detection using internal representations

Attention Tracker [8] is a technique that detects prompt
injection by utilizing the service model’s internal attention
scores. It is based on the observation that prompt injection
causes a distraction effect, shifting attention from the original
system prompt to the injected user prompt. A key advantage of
this method is that it is training-free. However, this method
has limitations: while it achieves high detection performance
on specific datasets, its performance varies considerably
across different domains, indicating high domain-dependence.

Layer Enhanced Classification (LEC) [9] is a technique for
detecting prompt injection by utilizing hidden states extracted
from a single intermediate layer. It involves training a

penalized logistic regression classifier on these representations.

While LEC is lightweight and demonstrates strong
performance, it is structurally constrained, as it is designed to
classify all inputs using the fixed intermediate layer.

III. METHOD

This section details the core concepts and structural design
of the proposed MHD. We first provide motivation by
analyzing the inefficiencies inherent in existing detection
methods, followed by a comprehensive description of the
overall architecture and its detailed mechanisms.

A. Motivation

The classification results of LEC, shown in Fig. 1, reveal a
critical inefficiency. As illustrated, most data is accurately
classified at lower layers (e.g., Layer 1 achieves 96.38% F1-
score). Consequently, passing all data through to a fixed deeper
layer results in unnecessary computations. To address this, we
propose a hierarchical approach that processes data that can be
accurately classified at lower layers and only passes data
requiring further analysis to higher layers.

B. Proposed Architecture

To address the structural inefficiency of existing methods,
we propose MHD. The overall architecture is illustrated in Fig.
2. As data passes through each layer, MHD classifies what can
be classified at that point, while data requiring further analysis
is passed to the next layer. Therefore, like LEC, final
classification occurs at an intermediate layer (MHD last layer)
using a binary classifier, but unlike LEC, we attach a ternary
classifier to all preceding layers before it.

C. Detailed Structure

The MHD utilizes two types of layer-specific classifiers:
binary and ternary. The binary classifiers (Safe, Harmful) serve
two distinct purposes. First, they are used to create the ternary
classification dataset. That is, a binary classifier is trained for
each layer, and any data samples misclassified by this classifier
are re-labeled as ‘Uncertain’.

These ternary datasets (Safe, Harmful, Uncertain) are then
used to train the ternary classifier for that layer. The ternary
classifiers are applied at each layer before the MHD last layer.
During inference, inputs classified as ‘Safe’ or ‘Harmful’ stop
the MHD process immediately, while those classified as
‘Uncertain’ are forwarded to the next layer.

When data reaches the MHD last layer, the binary
classifier’s second role is activated. Inputs that passed through
all preceding ternary classifiers as ‘Uncertain’ are finally
categorized by the binary classifier—the same one used in the
ternary dataset creation step—into a definitive ‘Safe’ or
‘Harmful’ status.

IV. EXPERIMENTS

In this section, we present the experimental evaluation of
MHD. To assess its effectiveness and efficiency, we compare
its performance against several existing approaches: external

1

0.98

0.96

F1-SCORE

1 3 5 7 9 11131517 19 21 23

LAYER
Figure 1. LEC Classification results.

0.94

classifier-based methods (deberta-v3-base-prompt-injection-v2
[6] and Prompt Guard [7]), and the internal representation-
based methods (Attention Tracker [8] and LEC [9]). Our
experiments were conducted using the SPML dataset [11]
across two different service models serving as feature
extractors. The following subsections detail the experimental
setup and discuss the comparative results.

A. Experimental settings

1) Feature extraction model: While the original LEC
study [9] examined both service model and detection-specific
fine-tuned models, we utilize only the hidden states generated
by the service model itself. This approach prioritizes resource
efficiency and ensures seamless integration with the existing
service model. Specifically, we employed two pre-trained
models as feature extractors: Qwen2.5-0.5B-Instruct (24
layers, 896-dimensional hidden states) [12] and Qwen2.5-
14B-Instruct (48 layers, 5,120-dimensional hidden states) [12].

response
Layer 24
safe - . harmful
binary classifier
4

Layer N (MFD last layer)

uncertain
harmful

ternary classifier

LayerEZ

uncertain
safe . harmful
ternary classifier

t
Layer 1
t
Embedding

] Service model

input

Figure 2. MHD Structure.

TABLE L SPML DATASET EVALUATION RESULTS
Feature Maximum Average
Extraction Method Accuracy (%) F1 (%) Classification Classification
Model Layer (1~) Layer (1~)
MHD 929 98.99 5 3.70
Qwen2.5-0.5B LEC 98.53 98.52 15 15
Attention-tracker 80.76 76.53 15 15
MHD 98.59 98.57 3 2.53
Qwen2.5-14B LEC 98.88 98.88 22 22
Attention-tracker 86.29 84.22 48 48
- Deberta-v3-base-prompt-injection-v2 94.47 94.7 - -
- Prompt Guard2 77.12 70.33 - -

2) Training: We utilized the SPML dataset [11], which
consists of system prompt-user prompt pairs. A sample is
labeled as 1 (harmful) if a user prompt attempts to elicit an
output that violates the system prompt’s instructions,
regardless of the user’s actual malicious intent. The dataset
was split into 3,300 training, 1,700 validation, and 1,700 test
samples, with the class labels uniformly distributed. For
training the classifiers, we employed a learning rate of 0.05
and an early stopping patience of 20 epochs.

B. Experimental results

The evaluation results for the SPML dataset are presented
in Table I. MHD achieved significantly higher performance
than external baseline methods and the Attention Tracker.
When compared to LEC, MHD demonstrated comparable
performance levels. As shown in Table I, MHD showed
slightly higher performance when using Qwen2.5-0.5B-
Instruct, while LEC showed a marginal advantage with
Qwen2.5-14B-Instruct. Overall, the Fl-score difference
between the two methods remained within a narrow range of
+0.5%.

Critically, MHD improved detection efficiency by reducing
the average number of classification layers by 75.3% to 88.5%
compared to LEC, all while maintaining equivalent
performance. This reduction translates into a significant
decrease in overall detection latency. Furthermore, early
detection at lower layers enables the rapid blocking of harmful
prompts and minimizes redundant inference computations.
These characteristics ensure model safety while simultaneously
enhancing operational efficiency.

V. CONCLUSION

In this paper, we introduced MHD to address the
inefficiency of existing detection methods that process every
input through a fixed single layer. While our study proposes a
fast and lightweight multi-layer detection approach, several
limitations remain for future work. First, MHD requires a
dedicated classifier for each layer, resulting in a larger total
number of trainable parameters compared to single-classifier
methods like LEC. Second, inputs that are not classified at
early layers must undergo sequential classification up to the

MHD last layer. In such worst-case scenarios, computational
overhead may slightly increase compared to a single-pass
method. These limitations highlight the need for further
optimization strategies in future research.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
Government (MSIT) (No. NRF-RS-2025-24683865).

REFERENCES

[11 W. X. Zhao et al., “A survey of large language models,” arXiv preprint,
arXiv:2303.18223, Mar 2023.

[2] Y. Liu et al, “Prompt injection attack against LLM-integrated
applications,” arXiv preprint, arXiv:2306.05499, Jun 2023.

[3] Lakera, “Prompt Injection Attacks Handbook,” Lakera Al, 2024.
[Online]. Avaliable: https://www.lakera.ai/ai-security-guides/prompt-
injection-attacks-handbook

[4] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, Yang Zhang,
“Do Anything Now: Characterizing and Evaluating In-The-Wild
Jailbreak Prompts on Large Language Models,” arXiv preprint,
arXiv:2308.03825, Aug 2023.

[5] A. Vaswani et al., “Attention is all you need,” Advances in Neural
Information Processing Systems, vol 30, 2017.

[6] ProtectAl.com, “Fine-Tuned DeBERTa-v3-base for Prompt Injection
Detection,” HuggingFace, 2024. [Online]. Available:
https://huggingface.co/ProtectAl/deberta-v3-base-prompt-injection-v2

[7] Meta, “Llama-Prompt-Guard-2-86M,” HuggingFace, 2025. [Online].
Available: https://huggingface.co/meta-llama/Llama-Prompt-Guard-2-
86M

[8] K.-H. Hung et al., “Attention tracker: Detecting prompt injection attacks
in LLMs,” Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 2309-2322, Apr 2025.

[9] M. Sawtell, T. Masterman, S. Besen, and J. Brown, “Lightweight safety
classification using pruned language models,” arXiv preprint,
arXiv:2412.13435, Dec 2024.

[10] Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, “DeBERTa:
Decoding-enhanced = BERT with Disentangled Attention,”
ArXiv:2006.03654, Jun 2020.

[11] R. K. Sharma, V. Gupta, and D. Grossman, “SPML: A DSL for
defending language models against prompt attacks,” arXiv preprint,
arXiv:2402.11755, Feb 2024.

[12] Qwen, “Qwen2.5 technical report,” arXiv preprint, arXiv:2412.15115,
Dec 20 .

