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Abstract—This paper presents a practical and deployable
system for estimating the planar positions of pedestrians us-
ing existing monocular CCTV infrastructure, without requiring
depth sensors or additional hardware. Our approach leverages a
modern object detector (YOLOv8) to obtain pedestrian bounding
boxes from camera streams. For each detection, we approximate
the footpoint (i.e., the contact point with the ground) and
transform its image coordinates to real-world ground-plane
coordinates using a pre-calibrated homography matrix. This
yields a Top-view localization of each individual. The system
is designed to aggregate data from multiple camera streams,
sending the localized positions to a front-end application that
visualizes all pedestrians on a unified control map in real-time.
This low-cost solution enables wide-area situational awareness,
making it suitable for applications in smart city management,
security surveillance, and digital twin environments.

Index Terms—Pedestrian Localization, Monocular Camera,
Homography, Top-view, CCTV Surveillance

I. INTRODUCTION

Estimating the real-world location of pedestrians is fun-
damental for a wide range of applications, including urban
analytics, safety monitoring, and crowd management [1] [2].
While solutions using LiDAR, stereo cameras, or depth sensors
provide high accuracy, their deployment is often limited by
high cost and the need for specialized hardware. In contrast,
vast networks of monocular CCTV cameras are already in-
stalled in public and private spaces. This raises a critical
question: Can we achieve reliable ground-plane localization
using only this existing infrastructure?

Approaches using RGB-D cameras [3] [4] can improve
tracking accuracy with depth information. However, these so-
lutions face significant limitations. The active infrared sensors
in many RGB-D cameras are unreliable in outdoor settings
due to sunlight interference and have a limited effective range.
The quality of the depth data can also be degraded by material
properties, such as shiny or dark surfaces. Consequently, the
need for specialized hardware and these operational constraints
make RGB-D cameras unsuitable for a universally deployable
solution that relies on existing infrastructure.

This paper proposes an end-to-end system that answers this
question affirmatively for scenes with approximately planar
ground. We present a practical and low-cost system that lever-
ages existing CCTV cameras to detect and localize pedestrians

using a bounding object detection box [5] in real-time. The
core of our system consists of three main stages: (1) real-time
pedestrian detection and tracking using YOLOv8, (2) footpoint
extraction from pedestrian bounding boxes, and (3) coordinate
transformation from the 2D image plane to a 2D world ground
plane using homography [6]. This approach provides location
information without complex camera calibration procedures,
making it easily deployable.

Fig. 1. System Architecture. Each CCTV stream is processed to extract Top-
view coordinates, which are then aggregated and visualized on a unified map
in the front-end.

II. SYSTEM ARCHITECTURE AND METHOD

Our proposed system consists of a backend processing
pipeline for each camera and a frontend for centralized vi-
sualization. The overall system architecture is illustrated in
Fig. 1. The backend processes CCTV video streams to detect
pedestrians, extract their footpoints in the image plane, and
transform these coordinates into Top-view world coordinates.
The resulting data is then sent to a front-end application for
real-time visualization on a unified map.

A. Object Detection and Tracking
For real-time pedestrian detection and tracking, we use

YOLOv8 [7], the latest version of the You Only Look Once
(YOLO) family of models. YOLOv8 provides high accuracy
and fast inference speeds, making it suitable for real-time ap-
plications. Its built-in tracking capabilities allow it to assign a



Fig. 2. Visualization of the backend Yolo and homography transformation
processing.

unique ID to each pedestrian and track them across consecutive
frames without requiring an external tracking algorithm like
DeepSORT [8]. For each detected pedestrian in a video frame,
the model outputs a bounding box defined by its coordinates
(xmin, ymin, xmax, ymax) and a tracking ID.

B. Footpoint Extraction
CCTV video was generated using Isaac Sim for this study.

The pedestrian’s footpoint was calculated as the bottom center
of the bounding box. In the image coordinate system, the
footpoint Pimg is defined as follows:

Pimg =

(
xmin + xmax

2
, ymax

)
(1)

This method is computationally efficient and independent of
the specific object detector used.

C. Top-view Transformation via Homography

Fig. 3. Homography transformation from image coordinates (left) to Top-view
coordinates (right) using four user-defined correspondence points.

A homography is a projective transformation that maps
points from one plane to another [9]. In our case, we use
a 3 × 3 homography matrix, H , to map points from the
2D image plane to the 2D ground plane in the real world.
Given a foot point pimg in homogeneous coordinates p̃img ,
its corresponding world coordinate pg on the ground plane is
computed as:

p̃g = H · p̃img

The resulting homogeneous coordinate p̃g = [x′g, y
′
g, w

′
g]> is

converted back to Cartesian coordinates [xg, yg]> by dividing
by w′g . The matrix

D. Implementation and Visualization

The proposed system was implemented using a client-
server architecture. The backend is developed in Python with
OpenCV [10] for image processing and homography calcula-
tions, while the frontend is a web application built with React
[11]. Communication between the backend and frontend is
handled in real-time using WebSockets [12].

Users interact with the system via the web UI. They can
upload a video source or provide a stream URL. Then, using
mouse clicks, they select four points on the video frame
to define the ROI for the homography transformation. The
backend receives the video and ROI coordinates, computes the
homography matrix, and begins processing the video stream.

For each frame, the backend detects and tracks pedestrians,
extracts their footpoints, and transforms them into Top-view
coordinates. These coordinates, along with their tracking IDs,
are sent to the frontend in real-time. The frontend provides two
views: (1) the original video stream with bounding boxes and
tracking IDs overlaid, and (2) an integrated Top-view control
map where each pedestrian is represented by a dot and their
ID, as shown in Fig. 4. This dual visualization allows operators
to intuitively understand crowd density, movement paths, and
individual trajectories.

Fig. 4. Example of the integrated control map GUI. The right panel shows the
Top-view map with real-time positions of pedestrians, while the left panels
show the source camera feeds.

III. KALMAN FILTER FOR TRACKING STABILIZATION

We optionally apply a constant-velocity 2D Kalman filter
to stabilize the time series of pedestrian locations on the Top-
view plane. The filter reduces detection jitter via short-horizon
prediction and noise suppression and improves positional
reliability during brief occlusions.

This formulation follows standard Kalman filter theory and
practice [13], [14] and reflects common usage in vision-based
pose/trajectory estimation [15].

Part of our evaluation uses synthetic CCTV data generated
with NVIDIA Isaac Sim. We record the world-frame coor-
dinates of simulated human agents at every frame to obtain
ground-truth pedestrian positions. These ground-truth tracks



Fig. 5. Ground-truth pedestrian positions in a CCTV scenario generated with
NVIDIA Isaac Sim.

are used to visualize interpolated trajectories and to support
both quantitative and qualitative evaluation. Figure 5 illustrates
the distribution of true pedestrian positions in the same scene.

A. State-space model

We define the state and measurement vectors as x =
[x, y, vx, vy]> and z = [x, y]>, respectively. For a time
step of ∆t, the linear motion and measurement models are

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , H =

[
1 0 0 0
0 1 0 0

]
.

We use simplified covariances Q = q I4 and R = r I2. The
prediction and update follow the standard Kalman filter:

x̂k|k−1 = F x̂k−1|k−1 (2)

Pk|k−1 = FPk−1|k−1 F
> + Q (3)

Kk = Pk|k−1 H
>(HPk|k−1 H

> + R
)−1

(4)

x̂k|k = x̂k|k−1 + Kk

(
zk −Hx̂k|k−1

)
(5)

Pk|k = (I−KkH)Pk|k−1 (6)

B. Integration in the Top-view pipeline

For each tracking ID, we maintain an independent filter
instance. The bottom-center footpoint of the bounding box is
first mapped to Top-view coordinates (xTop−view, yTop−view)
via homography and then used as the measurement for the
per-frame update. The initial state is set with the first obser-
vation and zero velocity. When a track disappears, its filter is
discarded.

The filter is integrated into the backend’s Top-view overlay
stage and can be toggled on/off. The main hyperparameters
are process noise q, measurement noise r, and the sampling
interval ∆t. Larger r increases smoothing by trusting mea-
surements less, while larger q improves responsiveness to
acceleration but may pass more noise. ∆t should match the
actual frame interval.

C. Practical settings and observations

We evaluated multiple (r, q,∆t) combinations to balance
jitter reduction and trajectory continuity. Small r yields high
responsiveness but more jitter; large r reduces jitter but de-
grades responsiveness to abrupt direction changes. Increasing
q helps follow sharp turns but can transmit noise if too large.
In practice, we recommend moderate r, low-to-moderate q,
and ∆t aligned with the video frame rate for a good real-time
stability trade-off.

D. Evaluation protocol and results

To quantify temporal stability and smoothness, we evaluate
tracks stored in per-session databases using four metrics com-
puted per track and averaged across tracks: (1) jitter (standard
deviation of per-frame displacement), (2) curvature (mean
absolute change in direction in radians), (3) gap rate (fraction
of missing frames over track lifespan), and (4) a composite
stability score in [0, 100] defined as

score = 100 ·
(
1 − [0.5 j̃ + 0.3 c̃ + 0.2 g̃]

)
,

where j̃, c̃, g̃ are robustly min–max normalized via the
5th and 95th percentiles within a session. This protocol is
implemented in our analysis script.

The test data used in our experiments was generated in
a virtual environment using NVIDIA Isaac Sim, simulating
arbitrary CCTV surveillance scenarios. We created synthetic
videos featuring pedestrians moving in various locations and
adjusted different filter parameters based on these simulated
scenes to assess stability (e.g., jitter, curvature, etc.).

We conducted two ablations with ∆t = 1:

TABLE I
PER-SESSION AVERAGES ANALYSIS FIXED r = 4.

Session Stability ↑ Jitter ↓ Curv. (rad) ↓ Gap rate ↓
OFF 66.20 1.935 1.415 0.0079
q = 1, r = 4 66.77 1.666 1.213 0.0088
q = 2, r = 4 68.02 1.756 1.249 0.0079
q = 4, r = 4 66.42 1.762 1.262 0.0086
q = 6, r = 4 67.86 1.786 1.265 0.0086

Fig. 6. Stability score comparison across different process noise q (respon-
siveness vs. smoothness trade-off).



• Varying process noise q with fixed r = 4. The best
composite score was obtained at q = 2 with a stability
score of ≈ 68.0, improving over Filter OFF (≈ 66.2) by
about +1.8.

TABLE II
PER-SESSION AVERAGES ANALYSIS FIXED q = 2

Session Stability ↑ Jitter ↓ Curv. (rad) ↓ Gap rate ↓
OFF 66.20 1.935 1.415 0.0079
r = 0.5, q = 2 68.64 1.860 1.296 0.0076
r = 1.0, q = 2 66.64 1.811 1.274 0.0085
r = 2.0, q = 2 67.29 1.759 1.266 0.0087
r = 4.0, q = 2 68.02 1.756 1.249 0.0079

Fig. 7. Stability score comparison across different measurement noise r (lower
jitter/curvature yield higher scores).

• Varying measurement noise r with fixed q = 2. The best
setting was r = 0.5 with a stability score of ≈ 68.6 (vs.
OFF ≈ 66.2, + ≈ 2.4); r = 4.0 was the next best at
≈ 68.0, followed by r = 2.0 and r = 1.0.

Overall, moderate measurement noise (r ≈ 0.5) and low-to-
moderate process noise (q ≈ 2.0) yielded the best stability in
our data, corroborating the practical guidance above.

E. Ablation option

Depending on deployment needs, the Kalman filter can
be disabled to use raw Top-view coordinates as is. This is
useful when assessing interactions with multi-camera fusion
or downstream smoothing methods.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a practical and cost-effective
system for real-time pedestrian localization that leverages
existing CCTV infrastructure. Our approach combines the
high performance of the YOLOv8 object detector, a sim-
ple but effective footpoint approximation, a user-calibrated
homography transformation, and a lightweight 2D Kalman
filter for per-track temporal smoothing. This enables robust
conversion of multi-camera 2D streams into a unified Top-view
pedestrian map with enhanced stability. The overall pipeline is
easily deployable and scalable, making it applicable to a wide
range of domains, including security surveillance and urban
analytics.

The integration of the 2D Kalman filter in our pipeline
brings several practical advantages. By predicting and smooth-
ing the per-person footpoint positions frame by frame, the

Kalman filter significantly reduces visual jitter and discontinu-
ities in the reconstructed trajectories. Our results show that ap-
propriate tuning of filter parameters (process and measurement
noise, sampling interval) provides a strong trade-off between
responsiveness to real motion changes and temporal stabil-
ity—essential for both human visualization and downstream
applications. Moreover, the filter’s modular design allows it to
be toggled or replaced depending on deployment constraints
and the presence of more complex smoothing or multi-sensor
fusion modules.

Looking ahead, several research directions could further
enhance our work:

• Advanced Kalman Filter Extensions: Exploring more
sophisticated state models (e.g., constant acceleration,
maneuvering models), adaptive noise estimation, or
switching filters could provide improved accuracy and
robustness, especially in highly dynamic scenes or with
irregular frame intervals.

• Improved Re-Identification (Re-ID): Integrating robust
Re-ID models may enable consistent tracking of individu-
als across non-overlapping camera views, addressing one
of the major challenges in multi-camera systems [16].

• Automated Calibration: Developing methods for auto-
matic or semi-automatic homography calibration—such
as exploiting scene geometry or vanishing lines—would
significantly reduce setup labor and make deployments
even more accessible [17].

• Handling Non-Planar Scenes: Since our method cur-
rently assumes a flat ground plane, future work could
extend it to handle non-planar geometry (e.g., slopes,
stairs) by incorporating 3D priors or online estimation
of height variations [18].

• Occlusion Handling: In crowded scenes, occlusions are
a persistent challenge. Fusing data from multiple over-
lapping camera views in combination with filtering may
better resolve ambiguities and maintain robust trajectories
[19] [20].

In summary, the addition of the Kalman filter not only
improves the practical usability of our Top-view tracking
but also provides a flexible foundation for further research
on robust, automated, and scalable multi-camera pedestrian
analysis.
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