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Abstract—Accurate prediction of leakage current is essen-
tial for realizing high-performance Dynamic Random Access
Memory(DRAM). However, conventional Technology Computer-
Aided Design(TCAD) simulations involve complex computa-
tions, resulting in high time and cost consumption. To over-
come these limitations, this study developed a DRAM leak-
age current prediction model based on an Artificial Intelli-
gence model, a Machine Learning model. TCAD simulation
results were employed as training data, and three learning
algorithms Broyden–Fletcher–Goldfarb–Shanno(BFGS), Adam
optimizer and linear regression—were evaluated. Among them,
the linear regression model demonstrated the best performance
in predicting DRAM leakage current.

Index Terms—Dynamic Random Access Mem-
ory(DRAM), Leakage current, Machnie Learning,
Broyden–Fletcher–Goldfarb–Shanno(BFGS) model, Adam
model, Linear Regression

I. INTRODUCTION

With the advancement of Artificial Intelligence(AI) tech-
nologies, the demand for high-performance Dynamic Ran-
dom Access Memory(DRAM) capable of processing mas-
sive amounts of data in processing units at high speed has
been increasing. In particular, modern computing platforms
such as data centers, high-performance computing systems,
and AI accelerators require DRAM with high bandwidth
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and power efficiency to process a large amount of data.
However, as device scaling continues, leakage current in
DRAM cells has become a critical issue, degrading data
reliability and device performance[1]. Because leakage current
directly reduces DRAM’s charge retention capacity storage
node, thereby increasing frequency of refresh operation and
increasing power consumption of device. Therefore, achieving
high-performance DRAM requires accurate prediction and
reduction of leakage current in cell transistors.

Traditionally, both academic and industrial approaches have
relied on Technology Computer-Aided Design(TCAD) simula-
tions to calculate the leakage current of DRAM cell transistors.
TCAD serves as an electrical and physical simulator that cal-
culates leakage current by solving carrier continuity equations.
In addition, TCAD typically couples these equations with
Poisson’s equation and relevant transport models to capture
device electrostatics and carrier dynamics, enabling detailed
analysis of leakage mechanisms. However, such simulations
demand extensive computational resources and time[2]. Con-
sequently, these increased computational resource require-
ments and prolonged simulation times can impose constraints
on semiconductor device development.

To overcome these limitations, this study develops a leakage
current prediction model for DRAM cell transistors using ma-
chine learning, an artificial intelligence-based approach. The
proposed framework aims to provide a model that can reduce
the cost of simulations. The machine learning framework
incorporates the Broyden–Fletcher–Goldfarb–Shanno(BFGS)
algorithm considering data characteristic, the Adam optimizer,
and a linear regression model. These methods were selected
to examine both optimization-driven learning behavior(BFGS
and Adam) and a simple yet strong baseline model(linear
regression) for a low-dimensional prediction task. The per-
formance of these three models is compared to identify the
most suitable approach for accurate leakage current prediction,
using quantitative metrics such as mean squared error and the
coefficient of determination.



Fig. 1. Buried-Channel-Array Transisotr structure used in the simulation

TABLE I
DEVICE PARAMETERS

Parameter Value

Gate Oxide Thickness 4nm

Gate Depth 80nm

Recessed Depth 150nm

Lg 18nm

Wfin 18nm

Hfin 18nm

Buried Insulator Thickness 40nm

Silicon Film Thickness 60nm

Lin 6nm

Metal Gate Work Function 4.6eV

N-type Peak Doping Concentration 1× 1020cm−3

P-type Peak Doping Concentration 5× 1017cm−3

Temperature 300K

II. SIMULATION SETUP AND DATA PREPARATION

In this study, the prediction model was trained using leakage
current data obtained from TCAD simulations provided by
Synopsys[3]. Figure 1 illustrates the structure of the Buried-
Channel-Array Transistor(BCAT), which serves as the DRAM

TABLE II
DATASET

Parameter Value

Input Data WL voltage

Output Data SN leakage current

WL Voltage 0.0 ∼ -0.5V

WL Voltage step size 0.5mV

The number of train data 250

The number of test data 750

cell transistor in the simulation. A two-cell BCAT structure of
a 6F2 DRAM was adopted, while only one cell was used for
the simulation. Table 1 lists the datails of device paramters of
BCAT in the simulation.

Table 2 lists the details of datasets. The training dataset for
the leakage current prediction model uses the Word Line(WL)
voltage as the input and the leakage current of the Storage
Node(SN) corresponding to each WL voltage as the output.
The WL voltage range was set between 0V and –0.5V, which
corresponds to the leakage current measurement range. A step
size of 0.5mV was applied, resulting in a total of 1,000 data
points used for model training. The total simulation time was
approximately eight hours, during which 250 data points were
allocated for training and the remaining 750 for testing.

The prediction model was implemented as a Multi-Layer
Perceptron(MLP) consisting of four hidden layers, each con-
taining 32 neurons. Model performance was evaluated using
two accuracy indicators: the Mean Squared Error(MSE) and
the coefficient of determination(R2).

III. MACHNIE LEARNING MODEL

A. BFGS model

The calculation of leakage current using TCAD requires
a significant amount of time, which limits the number of
data samples available for training the prediction model.
Therefore, the Broyden–Fletcher–Goldfarb–Shanno(BFGS) al-
gorithm is selected as it is well suited for modeling with
a limited dataset[4]. BFGS is a quasi-Newton optimization
method that approximates the Hessian(second-order curvature)
of the objective function using gradient information, enabling
stable and fast convergence without explicitly computing the
true Hessian. Compared with purely first-order methods, this
curvature-aware update can reduce the number of iterations
required to reach a good solution, which is advantageous when
the training dataset is small and repeated TCAD-based data
generation is expensive.

TABLE III
PERFORMANC PARAMETER OF BFGS MODEL

Training Data Test Data
MSE 2.31× 10−9 2.32× 10−9

R2 −4.33× 1018 −4.34× 1018

Table 3 presents the performance metrics of the BFGS
model. As shown in the table, the Mean Squared Error(MSE)
is relatively low, whereas the R2 has a negative value. This
indicates that the BFGS model fails to accurately predict the
leakage current and, therefore, is not suitable for leakage
current prediction. Specifically, although the low MSE implies
that the model can reduce the average squared error on the
evaluated samples, the negative R2 means that the model
performs worse than a naive baseline that simply predicts
the mean leakage current value. This inconsistency suggests
that the BFGS-optimized model does not capture the overall
variance/trend of the leakage current data and generalizes



poorly, likely due to the limited training data and the mismatch
between the model complexity/optimization behavior and the
underlying low-dimensional relationship. Consequently, the
BFGS model is not considered appropriate for accurate leak-
age current prediction in this study.

B. Adam model

TABLE IV
PERFORMANC PARAMETER OF ADAM MODEL

Training Data Test Data
MSE 5.71× 10−28 5.72× 10−28

R2 −2.58× 10−4 −2.59× 10−4

Table 4 presents the performance metrics of the Adam
model, which is commonly used in neural network(NN) ar-
chitectures. The absolute values of the MSE and the R2 are
lower compared to those of the BFGS model. However, since
the R2 value remains negative, the Adam model is also deemed
unsuitable for leakage current prediction. Adam(Adaptive Mo-
ment Estimation) is a first-order stochastic gradient-based
optimizer that updates network parameters using exponentially
decaying estimates of the first and second moments of the
gradients, which generally provides robust and fast training for
deep networks under noisy gradients and large-scale datasets.
In this study, however, the dataset is relatively small and
the input–output relationship is low-dimensional, so the NN
trained with Adam can be prone to unstable convergence
and/or overfitting, leading to poor generalization on the test
set and a negative.

C. Linear Regression model

TABLE V
PERFORMANCE PARAMETER OF LINEAR REGRESSION MODEL

Training Data Test Data
MSE 2.63× 10−29 2.66× 10−29

R2 0.95 0.95

Figures 2 and 3 show the WL–leakage current graphs
comparing the linear regression model prediction results with
the 250 TCAD simulation training data and the 750 TCAD
simulation test data, respectively.

and 3 show the WL–leakage current graphs comparing the
prediction results of the linear regression model with the
TCAD simulation data. Table 3 presents the performance
metrics of the linear regression model, where the R2 is
close to 1. This indicates that the linear regression model
is the most suitable for predicting leakage current. Linear
regression is a simple yet effective supervised learning method
that models the output as a linear function of the input by
estimating coefficients that minimize the squared prediction
error. Because the leakage current in this study exhibits an
approximately monotonic and near-linear dependence on the
WL voltage over the investigated range, the linear model can

Fig. 2. Leakage current predition model using Linear regression based training
data

Fig. 3. Leakage current predition model using Linear regression based test
data

capture the dominant trend without introducing unnecessary
degrees of freedom.

The suitability of the linear regression model over the MLP
model can be attributed to the characteristics of the dataset.
The MLP model is designed to capture nonlinear relationships
among multiple input variables, making it effective for com-
plex, high-dimensional data. However, the dataset used for
leakage current prediction consists of two-dimensional data
with a single input and a single output. Therefore, the linear
regression model is more appropriate than the MLP model for
this case.

IV. CONCLUSION

In this study, a machine learning-based prediction model
for DRAM leakage current was developed. Three machine
learning algorithms were applied for model development, and
the results showed that the linear regression model was the
most suitable due to the two-dimensional characteristics of the
leakage current data. The proposed prediction model offers a
advantage in reducing computation time and cost compared to



conventional TCAD-based simulations. Furthermore, by min-
imizing prediction errors to improve accuracy and extending
this work to temperature dependent leakage current prediction
in future work, this approach is expected to contribute to the
development of high-performance DRAM devices.
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