
Hierarchical 6D Pose Estimation Strategy for
Mobile Manipulator

1st Hyeonwook Song
Department of Electrical Engineering

Hanyang University
Seoul, Republic of Korea
hwhy2024@hanyang.ac.kr

2nd Yang-Jin An
Department of Electrical Engineering

Hanyang University
Seoul, Republic of Korea

emdydqortkgh@hanyang.ac.kr

3rd Chang Mook Kang
Department of Electrical Engineering

Hanyang University
Seoul, Republic of Korea
kcm0728@hanyang.ac.kr

Abstract—This paper presents a hierarchical 6D pose estima-
tion strategy for automated wheel replacement using a collabo-
rative robot on a 1:10 scale platform. The proposed perception
pipeline employs a coarse-to-fine approach, integrating YOLO
v11-based PnP for initial alignment with CHT-PCA refinement
for precise nut engagement. Experimental results demonstrate a
95% success rate—significantly outperforming the 54% base-
line—confirming the system’s robustness and applicability in
unstructured environments

Index Terms—Collaborative robot, Wheel replacement au-
tomation, Deep learning vision, YOLO v11-Pose, Perspective-
n-Point (PnP), Circular Hough Transform (CHT), Principal
Component Analysis (PCA), Integrated end effector design

I. INTRODUCTION

With the maturation of collaborative manipulation and
learning-based perception, mobile manipulation is becoming
viable for maintenance tasks requiring precision and repeata-
bility. This paper targets automated wheel replacement by cou-
pling a deep learning vision pipeline with a single collaborative
arm and a compact, integrated end-effector that combines
an impact driver, RGB camera, and gripper on a uFactory
Lite6. In the intended deployment, an autonomous mobile
robot (AMR) first navigates to the vicinity of a target wheel;
in this work, experiments assume the AMR has completed
that approach, and the collaborative arm performs loosening,
removal, and reinstallation of the wheel.

Recent studies have demonstrated that integrating deep
learning-based machine vision with robotic arms enhances the
reliability and efficiency of industrial inspection and manipu-
lation. Mao et al. [1] developed a robot arm system equipped
with a deep learning network for rim defect inspection, achiev-
ing robust object recognition and seamless automation on a
practical robotic platform. Li et al. [2] proposed a 3D hand-
eye calibration method for collaborative robot arms, improving
spatial calibration accuracy and enabling more reliable manip-
ulation in unstructured manufacturing scenarios.

The perception stack operates in two stages: YOLO v11-
Pose detects keypoints of the wheel and nuts to estimate the
initial 6-DoF pose via the PnP algorithm. This allows the
robot to align with the wheel axis, after which a geometric
refinement stage using the Circular Hough Transform (CHT)
and Principal Component Analysis (PCA) estimates a precise
6-DOF pose for nut engagement and wheel handling.

Fig. 1. Mobile manipulator platform used in this study: a uFactory Lite6
collaborative arm mounted on an AMR-sized wheeled base with an integrated
end-effector (impact driver, camera, gripper) for automated wheel removal
and installation; the AMR brings the arm near the target wheel, and the arm
executes loosening, removal, and replacement

A custom end-effector mounted on the Lite6 executes the
full task sequence—nut loosening with the impact driver,
wheel grasping with the gripper, wheel removal, and re-
installation—without tool changes or multiple manipulators.
Validation on a 1/10 scale RC car platform demonstrates fully
automated nut recognition and wheel exchange with improved
success rate and efficiency, indicating practicality for scaled-
up, real-world mobile manipulation workflows.

We developed a compact integrated end effector combining
an impact driver, camera, and gripper to enable single-arm col-
laborative robot automation of the wheel replacement process.
A two-stage vision pipeline using YOLO v11 for detection and
CHT-PCA for precise pose estimation significantly enhanced
manipulation accuracy. This reliable and flexible system was
validated on a scaled platform, demonstrating its effectiveness
in dynamic industrial environments.

II. SYSTEM ARCHITECTURE

The proposed system is based on the uFactory Lite6 col-
laborative robot (6-axis) and a 1/10 scale RC car platform, as
illustrated in Fig. 3. The end effector was custom designed



Fig. 2. System architecture showing a two-step detection and action process: initial positioning using YOLO v11 detection for coarse localization (Step 1),
followed by precise recognition using CHT and PCA algorithms for accurate position and orientation detection (Step 2), enabling sequential robotic actions
including Loosening Nut, Wheel Removal, Standby, Wheel Installation, and Tightening Nut.

Fig. 3. Hardware platform overview: (left) CAD design of the integrated end
effector system, (right) implemented system with uFactory Lite6 collaborative
robot and 1/10 scale RC car platform

and fabricated to integrate a DC motor-driven impact driver,
an RGB camera, and a gripper as a single unit. As shown
in the CAD design (Fig. 3, left), the end effector features a
compact, multi-functional design that consolidates all neces-
sary tools for wheel replacement operations. The implemented
system (Fig. 3, right) demonstrates the practical integration
of these components mounted on the robot arm. This config-
uration enables the robot to perform all wheel replacement

processes, including nut loosening, wheel gripping, removal,
and replacement, while maintaining the flexibility and safety
characteristics essential for collaborative robotics applications.

The end effector design incorporates three key components
strategically positioned for optimal functionality: the RGB
camera provides visual feedback for the perception pipeline,
the custom-designed gripper enables secure and adaptive
grasping of the wheel for precise handling, and the impact
driver delivers the necessary torque for nut manipulation.
The modular design allows for independent operation of each
component while ensuring spatial efficiency and minimizing
interference during complex manipulation tasks. The vision
system employs an Intel RealSense D435 camera, which
offers both RGB and depth sensing capabilities, enhancing
spatial awareness and enabling precise 3D pose estimation
within the ROS2 framework. This integration supports real-
time sensor data processing and robot control, ensuring robust
synchronization between perception and manipulation.

III. METHOD

A. Vision and Perception

The vision and perception module operates in two sequential
stages to ensure accurate and robust recognition of wheels
and nuts for autonomous manipulation, as demonstrated by
the system architecture in Fig. 2.

1) Step 1 (Wheel and Nut Detection using YOLO v11):
The automated wheel replacement process initiates from the



collaborative robot’s home position. The end effector’s RGB-
D camera captures the workspace, and the system employs
the YOLO v11-Pose model trained to detect keypoints corre-
sponding to the wheel center.

Unlike standard 2D detection, the proposed system lever-
ages the depth sensing capabilities to enhance pose estimation
accuracy. For each detected 2D keypoint, the corresponding
depth value is extracted from the depth map to derive its 3D
spatial coordinate in the camera frame. Using these observed
3D points and the known 3D geometric model of the wheel,
the system solves the Perspective-n-Point (PnP) problem to
estimate the coarse 6-DoF pose (Twheel

cam ) of the target wheel.
Based on this depth-integrated pose estimation, the robot

controller generates a trajectory to align the camera’s optical
axis with the wheel’s rotation axis. The robot then moves to
a ’set1 position,’ maintaining a distance of 20–30 cm per-
pendicular to the wheel surface. This alignment, facilitated by
accurate depth measurements, minimizes perspective distortion
and maximizes the robustness of the subsequent CHT-PCA
precision recognition in Step 2.

For the experimental implementation, we collected a com-
prehensive dataset comprising 442 images and annotated key-
points for wheel centers and nuts to train the YOLO v11-
Pose model. Fig. 4 illustrates the training performance and
convergence behavior.

Fig. 4. YOLO v11 training graph showing loss curves and performance
metrics over 300 training epochs

As shown in Fig. 4, the training metrics demonstrate stable
convergence with decreasing loss values across all categories
for both training and validation sets. The precision and recall
metrics, along with mAP50 and mAP50-95 scores, show
consistent improvement throughout the training process, ul-
timately achieving precision and recall values exceeding 0.95
and mAP50 scores approaching 1.0. The close alignment
between training and validation curves indicates minimal
overfitting, validating the effectiveness of our custom dataset
for wheel and nut detection tasks.

2) Step 2 (Nut Pose estimation using CHT and PCA):
Following the strategic positioning to the set1 location de-
termined in Step 1, the system proceeds with a secondary
high-precision recognition process that employs a combined
CHT-PCA algorithmic approach to achieve enhanced spatial
accuracy. The CHT is applied to the localized image patch

to detect and extract the circular features of both the wheel
rim and individual nuts, providing precise 2D spatial coordi-
nates within the image plane. However, considering that the
wheel axis may not be perfectly perpendicular to the robot’s
coordinate frame due to vehicle positioning variations, PCA
is subsequently employed to determine the three-dimensional
orientation of the wheel assembly. The PCA algorithm ana-
lyzes the geometric distribution of detected edge and contour
points to extract the roll, pitch, and yaw (RPY) angular values,
characterizing the wheel’s spatial orientation relative to the
robot’s reference frame. By integrating the spatial coordinates
obtained from CHT with the orientation information derived
from PCA, the system generates a comprehensive 6-DOF
pose estimation that significantly enhances the precision and
reliability of subsequent robotic manipulation tasks, thereby
improving overall task completion accuracy in challenging
operational environments.

Algorithm 1 Wheel Pose Estimation using CHT-PCA
Input: RGB image I , depth image D, camera intrinsics
(fx, fy, cx, cy)

1) Preprocessing:
Extract wheel ROI from I using YOLO detection. Convert
ROI to grayscale: Igray = cvtColor(I,BGR2GRAY). Apply
Gaussian blur: Iblur = GaussianBlur(Igray, σ = 1.0). Extract
edge points P = {(ui, vi)} within wheel region.

2) Circular Hough Transform (CHT):
Detect circle parameters (uc, vc, r) from Iblur using HoughCir-
cles with minRadius = 50, maxRadius = 120.

3) Depth-based 3D Projection:
Compute mean depth: d = mean(D[uc − 1 : uc + 2, vc − 1 :
vc + 2]). Calculate 3D center:

z =
d

1000
, x =

(uc − cx)z

fx
, y =

(vc − cy)z

fy

Wheel center: pcenter = (x, y, z).
4) PCA for Wheel Plane Orientation:

Collect 3D edge points P3D within band (r−3) < distance <
(r + 3) and D[u, v] > 0. Compute mean: p̄ = 1

N

∑N
i=1 pi.

Compute covariance matrix:

Σ =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T

Perform SVD: Σ = USV T . Extract plane normal: n = U [:
,−1] (eigenvector of smallest eigenvalue). Compute roll-pitch-
yaw (r, p, y) from n.

Output: Wheel pose {x, y, z, r, p, y}

In particular, a dataset consisting of 100 images that capture
a variety of 1/10 scale model car wheels was constructed
to quantitatively evaluate the nut recognition accuracy of the
CHT algorithm. For each image, the recognition results were
compared with manually annotated ground truth and analyzed
using the Intersection over Union (IOU) metric. Additionally,
two representative real RC model wheels were examined in
dedicated experiments to verify performance in real-world
scenarios.



Fig. 5. Experimental setup for evaluating pose invariance under yaw variation: The robotic arm and the target wheel were positioned at −10◦, −5◦, 0◦, 5◦,
and 10◦ yaw (from left to right). Each configuration was tested with 20 independent trials.

B. Manipulation and Task Scenario

Based on the perception information, the collaborative robot
follows an optimized trajectory to approach the target. Using
the integrated end effector, it sequentially loosens the nuts and
grips, removes, and replaces the wheel. The overall system
workflow consists of detection, precise position correction,
impact control, gripper operation, and wheel replacement, as
illustrated in Fig. 2.

Wheel Removal Scenario: The wheel removal process fol-
lows a systematic two-stage approach where Step 1 utilizes
YOLO v11 detection to identify the target wheel and calculate
the optimal set1 position for precise recognition, followed
by robotic arm movement to this strategic location. In Step
2, the combined CHT and PCA algorithms perform high-
precision localization to extract three critical coordinate sets:
the set position for each nut (impact driver approach point),
the nut position (exact 3D coordinates and orientation), and
the wheel position (gripper engagement point). All detected
coordinates are transformed and stored within the robotic
arm’s coordinate frame, enabling the system to save data for
each target location during the operation. The robotic arm then
executes the sequential tasks accordingly.

1) Loosening the Nuts: The robot arm moves the end
effector to the wheel’s set position. The integrated
impact driver engages, loosening the nut based on the
precise nut position and orientation data. This process
is repeated for each nut until all are loosened.

2) Wheel Removal: Once all nuts are loosened, the grip-
per on the end effector activates. Using the calculated
wheel position, it securely grips the wheel and carefully
removes it from the axle.

3) Standby: The robot arm holds the removed wheel and
moves to a designated standby position, waiting for the
wheel to be presented for installation.

4) Wheel Installation: The robot arm, with the new wheel
in its gripper, returns to the axle’s position. It aligns the
wheel and places it onto the hub.

5) Tightening Nuts: The robot arm retrieves the nuts, posi-
tions them over the bolts, and uses the impact driver to
sequentially tighten each nut, ensuring they are securely
fastened.

This systematic workflow, guided by the two-stage vision and
perception system, ensures a robust and reliable wheel replace-
ment process, from precise nut location to final installation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To thoroughly evaluate the robustness of the proposed
two-stage vision system, experiments were conducted under
four orientation conditions. In Cases 1–3, roll, pitch, and
yaw were independently varied across five discrete angles
(−10◦,−5◦, 0◦, 5◦, 10◦), while the remaining two angles were
fixed. Case 4 introduced randomized orientation, with all RPY
values uniformly sampled within the range of (−10◦, 10◦).

At each orientation, a dedicated experimental run was
performed by randomly initializing the starting position of the
robotic arm within its kinematic workspace and the camera
field of view. In addition, for every run, the relative orientation
between the end-effector gripper and the wheel was explicitly
varied according to the defined conditions, thereby testing the
system under diverse alignment scenarios.

Each case consisted of 25 independent trials, resulting in
a total of 100 experiments per comparative method (YOLO
v11-only vs. YOLO v11 + CHT-PCA). This protocol ensured
a comprehensive assessment of pose-invariant performance.
Figure 5 illustrates representative setup images, where roll and
pitch were fixed while yaw was varied to evaluate orientation
robustness.

To additionally verify the performance of the 6-DoF pose
estimation algorithm using CHT-PCA, a simulation envi-
ronment closely resembling the real setup was constructed
in NVIDIA Isaac Sim, and the algorithm was validated in
simulation accordingly.. The simulated scene instantiated the
actual robot model and camera, and the algorithm’s estimation
accuracy was evaluated by varying XYZ coordinates and RPY
orientations consistent with the real experimental protocol.

B. CHT-based nut recognition result

To verify the performance of the CHT algorithm, we used
a dataset comprising 100 images of diverse 1/10 scale RC
car wheels and evaluated nut recognition results. For each
wheel type and image, the detected result was compared to
the manually labeled ground truth using the IOU (Intersection
over Union) metric. Furthermore, two real RC model wheels
were selected and subjected to the same evaluation in actual
operational conditions, enabling direct analysis of recognition
accuracy in real environments.



Fig. 6. Visual comparison of recognition results: Initial YOLO v11-Pose
detection (left) and the proposed precise CHT-PCA refinement (right)

TABLE I
COMPARISON OF NUT RECOGNITION ACCURACY (IOU)

Method Mean IOU
YOLO v11-Pose 0.320

CHT-PCA 0.808

As summarized in Table I, the initial detection using YOLO
v11-Pose yielded a mean IOU of 0.320. While sufficient
for coarse localization, this relatively low score highlights
the limitations of deep learning-based regression in capturing
the exact boundaries of small, circular objects. In contrast,
the proposed CHT-PCA refinement significantly improved the
mean IOU to 0.808. This substantial increase demonstrates that
integrating geometric circle fitting with learning-based detec-
tion is essential for achieving the high-precision localization
required for stable tool engagement.

C. 6D-pose estimation Result

To circumvent the difficulty of obtaining precise 6D ground-
truth wheel poses in the robot-base frame under real condi-
tions, the accuracy of the 6D pose estimation algorithm was
evaluated in NVIDIA Isaac Sim, where ground-truth poses are
exactly known and controllable, as illustrated in Figure 7. The
wheel’s orientation was held fixed while the robot’s XYZ and
RPY were matched to the real experimental setup, enabling a
like-for-like simulation of the acquisition geometry; accuracy
was then assessed by comparing the CHT-PCA estimates
against the simulator’s wheel pose in the robot-base frame.
As shown in Table II, per-axis accuracies surpassed 90%
on all coordinates, with roll slightly lower at 88.4% due to
the limited observability of roll from PCA-derived features.
Importantly, within the task scenario considered, small roll-
angle errors do not propagate to operation failure provided that
the remaining translational and rotational axes are accurate,
thereby preserving functional performance; excluding roll, the
consistently high accuracy across other axes supports the
practical validity of the proposed method for the automated
wheel-change task

Fig. 7. Isaac Sim experimental environment (left) and recognition results in
simulation (right)

TABLE II
PER-AXIS MEAN ACCURACY(%):XYZ IN MM, RPY IN DEGREES

Approach X Y Z Roll Pitch Yaw
CHT-PCA 92.8 97.3 97.6 88.4 95.4 96.3

D. Task Success Rate

Table III presents the comparative performance results for
both approaches across 100 experimental trials.

TABLE III
PERFORMANCE RESULTS

Approach Success Rate Avg. Task Time (s)
YOLO v11-Pose 54% 80.2 ± 8.7

Proposed (PnP + CHT-PCA) 95% 52.8 ± 6.2

As shown in Table III, the baseline approach utilizing only
YOLO v11-Pose with PnP achieved a moderate success rate of
54%. While capable of bringing the end-effector to the vicinity
of the wheel, it frequently failed during precision-critical
phases, such as exact nut engagement and wheel alignment,
due to the inherent jitter and estimation errors of the keypoint
detection. In contrast, the proposed integrated system achieved
a 95% success rate, representing a significant 41 percentage
point improvement in task reliability. Furthermore, the precise
alignment provided by the CHT-PCA refinement streamlined
the operation, reducing the average task time by approximately
27.4 seconds.

E. Analysis

These results demonstrate that the proposed two-stage
recognition process is critical for high-precision manipulation
tasks. The analysis highlights a key limitation of relying solely
on deep learning-based pose estimation (YOLO v11-Pose):
while effective for coarse localization and initial approach,
it lacks the sub-millimeter precision required for mechanical
assembly tasks like nut threading.

By integrating the CHT-PCA algorithm as a refinement
stage, the system effectively compensates for the residual
errors of the PnP solution. This hierarchical pose refinement
strategy combines the robustness of deep learning for global
detection with the geometric accuracy of classical computer
vision for local alignment. The dramatic increase in success
rate (from 54% to 95%) confirms that this hybrid approach



ensures the reliable 6-DoF pose estimation necessary for
seamless nut tightening and wheel handling.

While the proposed hierarchical strategy demonstrates high
reliability in standard scenarios, specific failure modes were
identified under edge conditions. Notably, when the initial
angular misalignment between the camera optical axis and
the wheel surface exceeded 10 degrees, the performance of
the second-stage refinement significantly degraded. In these
high-obliquity cases, the circular features of the wheel rim and
nuts appear increasingly elliptical due to perspective distortion.
Consequently, the Circular Hough Transform (CHT), which is
optimized for geometric circles, frequently failed to converge
to the correct center coordinates. This estimation error had a
cascading effect; the inaccuracy in the wheel center estimation
propagated to the nut detection phase, causing misalignment
of the impact driver and reducing overall task success. These
findings indicate that while the hybrid pipeline improves pre-
cision, its robustness relies on the initial alignment remaining
within a tolerance threshold, highlighting a critical area for
future optimization against large deviations.

V. CONCLUSION

This paper introduced a robust two-stage vision system
for automated wheel replacement, integrating YOLO v11-
Pose for coarse approach and CHT–PCA for precise 6-DoF
pose refinement. Experimental validation demonstrated that
this hybrid pipeline raised the task success rate from 54% to
95% and reduced mean execution time by over 27 seconds
compared to a PnP-only baseline. The results confirm that
while deep learning effectively handles initial localization, the
integration of geometric algorithms is essential for ensuring
the high precision required for nut engagement and wheel
alignment. Although performance degradation was observed
under large initial misalignments (> 10◦), the proposed system
proves the efficacy of combining learning-based and geometric
perception for industrial mobile manipulation. Future work
will focus on enhancing tolerance to large deviations and
integrating visual-language–action (VLA) models to further
improve task generalization.
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