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Abstract—In open world environments, vision anomaly detec-
tion (VAD) is inherently complex due to diverse and unpredictable
anomaly manifestations. To overcome the limitation of the
availability of an inclusive training data, unsupervised anomaly
detection (UAD) methods provide a solid baseline. Principally,
using only normal distribution patterns for training, any devi-
ations can be flagged as anomalies during inference. Following
the same analogy, we propose a self-supervised framework for
unsupervised anomaly detection termed S2VAD. We explore the
potential of DINOv2 as an encoder for normal feature extraction,
a bottleneck as a compression head, and a transformer decoder
using self-attention for VAD. We use a global cosine loss for
comparing the test image to the learned normality and detecting
anomalies. Using the benchmark MVTec-AD dataset, our work
shows state-of-the-art (SOTA) performance on texture classes
with an image AUROC of 99.8%. To explore the model further,
we share interesting future work directions.

Index Terms—unsupervised anomaly detection, self-supervised
learning, transformers, autoencoders, foundation models.

I. INTRODUCTION

Vision anomaly detection (VAD) is one of the key open
research problems in computer vision due to its increasing
demand in automation. However, the diverse and evolutionary
nature of anomalies poses limitations to the development of
a generalizable solution. Conventionally, class and category-
wise anomaly detection (AD) models have been developed,
like semi-supervised GANomaly [1] and fully supervised
YOLO [2]. But these methods require accurate data labels,
are memory inefficient, and hinder scalability. Therefore, a
cumulatively trained model is essential for not only cross-
domain compatibility but also to address one-class variety. To
address this problem, foundation models have been used for
self-supervised pretraining in unsupervised anomaly detection
[3].

Formally, AD can be defined as the simultaneous anomaly
classification and localization problem. Recent literature has
focused on increasing the generalizability of applications,
improving classification and localization accuracy, and over-
coming challenges in dataset availability. This work aims
to address these challenges by making the following key
contributions:

o The proposed self-supervised framework for unsuper-

vised VAD, S2VAD is a multi-class VAD pipeline. Built
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on a pre-trained foundation model encoder, it leverages
self-supervised feature representations for both texture
and object categories. The reconstruction-based frame-
work gives strong generalization across diverse visual
domains without class-specific fine-tuning.

« For stable reconstruction of normal patterns, our method
incorporates feature-space regularization using bottle-
neck, multilevel consistency constraints using a mul-
tilayer decoder, and a cosine similarity loss. This
pipeline ensures a sharper separation between normal and
anomalous regions and enhances anomaly localization
accuracy.

e A detailed analysis of the proposed S2VAD’s strengths
and weaknesses provides a strong baseline for future
enhancements and work directions.

II. LITERATURE REVIEW

VAD refers to the detection of unusual and undesired
patterns in images, which, given the diverse nature of anoma-
lies, motivates the use of unsupervised learning methods to
overcome inherent data limitations and labeling overhead.
VAD finds applications in myriad domains, including industry
[4], medicine [5], and surveillance [6]. Recent literature shows
a growing interest in developing a unified VAD solution.

By definition, anomalies are rare and do not conform to the
model’s understanding of normality. Therefore, reconstruction-
based methods [7] have been developed to identify data points
that significantly deviate from the learned patterns. When
the underlying structure of training data is normal, such
abnormalities are easier to flag.

Methodologies using autoencoders, like segmentation-
guided denoising student-teacher for anomaly detection
(DeSTSeg) [8], use a pre-trained teacher network and a de-
noising student encoder-decoder. The student learns to denoise
the input (or generate feature representations that are robust to
anomalies) by aligning it with the ‘normal’ features extracted
by the teacher.

Denoising diffusion probabilistic models (DDPM) [9], [10]
have also been used for AD. In these methods, the training
phase uses normal data, and inverts (denoises/ reconstructs) a
progressive noising process. The model’s failure or deviation
in this inversion is used as the anomaly score.
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Fig. 1. The proposed S2VAD Framework. The pipeline uses a DINOv2-Base/14 encoder for feature extraction, followed by a bottleneck for feature
compression. A transformer decoder with self-attention is used for feature reconstruction. We use a global cosine feature alignment loss for anomaly mapping

and mask generation.

III. PROPOSED MODEL - S2VAD

This section gives a technical detail about the model and the
components of the proposed pipeline. A detailed schematic of
the S2VAD is shown in Figure 1.

A. Pipeline

We lay the following four building blocks to create the
S2VAD pipeline:

1) DINOv2-ViT-Base/14 encoder [11]: DINOv2 is a fam-
ily of foundation models readily invoked in literature
for feature extraction in a wide range of applications
[3]. Since foundation models leverage millions of images
for training, they can be used for universal downstream
tasks without requiring explicit fine-tuning. This also
broadens their applicability to visual tasks beyond VAD
on both image-level, like image and object classification,
instance retrieval, and video interpretation, and pixel-
level, like depth estimation, dense matching, and seman-
tic segmentation.

The use of transferable frozen features for context
understanding presents a case for self-supervised learn-
ing as a solution using the out-of-distribution approach.
This essentially realizes the rationale behind the pro-
posed reconstruction-based AD model, S2VAD, where
the encoder can learn rich ‘normal’ features using the
frozen DINOV?2 layers.

In S2VAD, for an input image x from the dataset D,
the pretrained DINOv2-Base/14 encoder, fy extracts a
set of patch embeddings {z;}Y, = fo(z), where N
is the total number of extracted patches. The model
learns normal distributions as consistent representations
by minimizing their gap, which can be given by (1):
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Here fp(x) denotes the feature embedding of input x,
1 1s the mean feature vector of all normal samples, and
E.n[-] shows the expectation taken over the distribu-
tion of normal data. || - |2 is the mean squared distance
between each encoded normal feature and the centroid
of the normal feature distribution, pas. The resulting
minimization in (1) facilitates the separation of normal
from anomalous patterns, offering efficient learning.

Bottleneck: The high-dimensional and semantically rich
features extracted from the encoder are compressed
using the bottleneck. This gives a compact and discrim-
inative subspace of tightly clustered normal patterns,
helpful for the effective separation of anomalies in task-
agonistic applications. We used the MLP bottleneck as

Q):
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where, g,(-) is the MLP projection parameterized by
layer-wise weights and biases, ¢ = {W;, Wa, by, bs},
d(-) represents a non-linear activation function such
as ReLU, and o(-) denotes regularization, which we
introduced in the form of jitter. The output h € R (with
d’ being the latent feature vector dimension) is a com-
pact latent representation that serves as the normality-
aware feature used to score downstream anomalies.
The resulting close clustering of the normal subspace
is analogous to a higher sensitivity of the model to
deviations introduced by anomalous inputs.

Transformer Decoder: To reconstruct the input fea-
tures, a transformer decoder is used to generate predic-
tions from the compact latent representations h, from the
bottleneck block. We use self-attention (SA(-)) to cap-
ture dependencies among feature tokens in the decoder,
allowing the model to learn contextual relationships and



correlations between different spatial regions (patches)
of the input image. With an accurate reconstruction
of normal patterns, the decoder enables the detection
of anomalies as deviations between reconstructed and
original features. We define a transformer decoder layer
in (3):

h = DecLayer(h) = LN(h + SA(h)), 3)

where, LN(-) denotes layer normalization, such that the
residual connection h + SA(h) stabilizes training and
preserves original feature information. In our multi-layer
setup, the decoder consists of L 8 stacked self-
attention layers, which is a design choice rather than
a hyperparameter.

Global cosine feature alignment loss: To enforce com-
pactness of normal features in the latent space, we define
a cosine similarity-based loss between reference fea-
tures h (detached normal features) and the reconstructed
decoder features h (trainable features). The point-wise
cosine distance is given by (4):
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where (-, -) denotes the dot product.

The overall global cosine loss is then computed as
the mean over all batches and samples using (5):

B N
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where B is the batch size and N; is the number of
patches in sample j. To define an anomaly, we scale
the gradients of distances below a percentile thresh-
old to focus on more significant deviations. This loss
encourages normal features to cluster around a com-
pact latent distribution, making deviations introduced
by anomalous inputs more prominent and hence, more
easily detectable.

IV. IMPLEMENTATION DETAILS

This section gives S2VAD’s implementation environment,
the dataset and hyperparameters.

A. Development environment

We used NVIDIA RTX 3070 with 8GB RAM to implement
S2VAD. The environment was built on a Windows 10 platform
using python 3.8.12 and torch2.0.1+cull8. The code and
pretrained model weights of DINOv2 are released under the
Apache License 2.0.

B. Dataset

The MVTec-AD dataset [12] is a benchmark dataset for the
development and evaluation of industrial VAD and anomaly
localization methods. It contains 5,354 high-resolution images
with 15 different object and texture categories. Each category
of the dataset includes:

o Normal (defect-free) images for training.

o Anomalous (defective) images for testing, with various
real-world defects such as scratches, dents, contamina-
tions, or misprints.

TABLE I
COMPREHENSIVE PERFORMANCE OF MVTEC-AD DATASET USING THE PROPOSED AD MODEL. THE CLASS-WISE AND AVERAGE RESULTS FOR IMAGE
AND PIXEL-BASED EVALUATION PARAMETERS ARE SHOWN.

Class Image Pixel
I-AUROC I-AP I-F1 P-AUROC  P-AP P-F1 P-AUPRO
Texture
carpet 1.0000 1.0000  1.0000 0.9923 0.6917  0.6774 0.9661
grid 0.9967 0.9988 0.9912 0.9834 0.3041  0.3727 0.9336
leather 1.0000 1.0000  1.0000 0.9917 0.4499  0.4950 0.9703
tile 0.9978 0.9992  0.9881 0.9591 0.5669  0.6821 0.8503
wood 0.9947 0.9984  0.9836 0.9545 0.5451  0.5533 0.9042
Average (Texture) 0.9979 0.9993  0.9906 0.9768 0.5182  0.5561 0.9224
Object

bottle 0.9905 0.9972  0.9839 0.9650 0.6675  0.6691 0.8720
cable 0.7701 0.8726  0.7745 0.8636 0.2808  0.3560 0.5748
capsule 0.7475 0.9315 0.9145 0.9522 0.3870  0.4311 0.8179
hazelnut 0.9929 0.9959  0.9787 0.9848 0.6165 0.6154 0.9239
metal_nut 0.9306 0.9844  0.9286 0.9146 0.6503  0.6496 0.7729
pill 0.9048 0.9830 0.9156 0.9331 0.4107 0.4361 0.7204
screw 0.8096 0.9215  0.8863 0.9619 0.1243  0.2018 0.8401
toothbrush 0.8861 0.9551  0.8955 0.9717 04736  0.5181 0.8080
transistor 0.8575 0.8522  0.7671 0.8199 0.3663  0.3745 0.6196
zipper 0.9758 0.9934  0.9669 0.9624 0.4635  0.5321 0.8994
Average (Object) 0.8875 0.9488  0.9018 0.9422 0.4091 0.4514 0.7845
Overall Average 0.9236 0.9656  0.9322 0.9548 0.4497  0.4870 0.8291




o Pixel-accurate ground-truth masks for evaluating anomaly
localization performance.

C. Hyperparameters

We use an input image size of 256 with a center crop size
of 224. Middle layers 2 to 9 of DINOv2-Base/14 are used for
feature extraction in the encoder. StableAdamW optimizer is
used with a learning rate of 2e-3. The network is trained for
10,000 iterations with a batch size of 8.

V. RESULTS AND ANALYSIS

We share S2VAD’s performance, its limitations and future
work directions in this section.

A. Model Performance

A detailed result of the class and category-wise performance
of S2VAD on MVTec-AD dataset is shown in Table I.

We report the performance in terms of standard anomaly
detection metrics including AUROC, AP and F1 for both im-
age and pixel levels and AUPRO for pixel-level performance.
This determines the anomaly classification and localization
capability of S2VAD.

1) Strengths: The overall image-level AUROC of 92.4%
and I-AP of 96.6% demonstrate strong discrimination between
normal and anomalous samples across all classes. The consis-
tency of pixel-level defect classification is also ensured with
the average pixel-level AUROC (P-AUROC) of 95.5%.

A summary of the model performance using image and
pixel-wise metrics is shown in Fig. 2. Overall, the texture
categories (average [-AUROC: 99.8%) outperform object cat-
egories (average I-AUROC: 88.8%), suggesting that the model

(a) Image vs. pixel AUROC correlation
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captures repetitive structural regularities well. This strength of
S2VAD is evident from the closed cluster of texture categories.

2) AUROC performance: Table II shows the performance
of the model compared to literature in terms of [-AUROC
and P-AUROC. S2VAD outprforms other reconstruction-based
methods like AE-SSIM and RIAD from [13] and SOTA
AD methods from anomalib [14] like efficient AD (EffAD),
student-teacher feature pyramid matching for anomaly detec-
tion (STFPM) and FastFlow

3) AUPRO performance: The pixel-level localization per-
formance using the AUPRO comparison of S2ZVAD with recent
literature is given in Table III. Few-shot methods like window-
based contrastive language-image pretraining (WinCLIP) [15],
denoising diffusion probabilistic models (DDPM), latent dif-
fusion model (LDM) [16], diffusion-based anomaly detection
(DiAD) [17], and an autoencoder-based method, DeSTSeg
[17] are used as comparison baselines.

B. Limitations

We observe and report the following limitations in S2VAD.

1) Confidence calibration: From Table I, an average P-AP
of 44.9% indicates that while detection is accurate glob-
ally (AUROC), the confidence calibration of anomaly
scores needs improvement.

2) Imbalanced texture-object generalization: The signifi-
cant performance gap between texture and object subsets
implies that the model’s learned representations may
lean more toward pattern-based regularity rather than
shape or structure-based variations, which are common
in objects.

(b) P-AUPRO distribution by category
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Fig. 2. Image and pixel-wise performance comparison across texture and object categories. Figure (a) shows the image vs. pixel AUROC correlation.
The texture classes are closely clustered, while object classes are relatively sparse. Figure (b) shows the pixel-wise AUPRO distribution by category. Texture

classes show a higher mean of 92%, while object classes have a mean of 78%.



TABLE 11
COMPARISON OF I-AUROC AND P-AUROC FOR S2VAD AGAINST
DIFFERENT MODELS ON TEXTURE, OBJECT, AND OVERALL CATEGORIES

OF MVTECAD.
Model I-AUROC P-AUROC
Texture
AE-SSIM 78.0 56.7
RIAD 95.1 93.7
STFPM 96.3 97.2
EffAD 82.9 85.9
FastFlow 87.7 91.4
S2VAD (Ours) 99.8 97.7
Object
AE-SSIM 91.0 75.8
RIAD 89.9 94.3
STFPM 87.2 924
EffAD 85.1 88.6
FastFlow 76.8 91.9
S2VAD (Ours) 88.8 94.2
Overall
AE-SSIM [13] 87.0 69.4
RIAD [13] 91.7 94.2
STFPM [18] 90.3 93.9
EffAD [18] 84.3 87.7
FastFlow [18] 80.4 91.7
S2VAD (Ours) 92.3 95.5
TABLE III

COMPARISON OF AUPRO FOR S2VAD AGAINST DIFFERENT MODELS
USIGN MVTEC-AD.

Model AUPRO
WinCLIP [15] 64.6
DDPM [16] 49.0
LDM [16] 66.3
DeSTSeg [17] 82.6
DiAD [17] 64.4
S2VAD (Ours) 82.9

C. Future Work Directions

The results in previous section are encouraging enough to
use this baseline approach for improvements in the following
directions:

o A detailed ablation analysis of encoder base and trans-
former decoder architecture, is required to improve the
model’s object detection capability. Options can be ex-
plored to avoid over-smoothing spatial features or under-
estimating the local variance in defect boundaries.

e Decoder architecture and loss functions can be evaluated
to better handle irregular object geometries, complex
textures, and subtle, small-scale anomalies. Defect sen-
sitivity can be investigated via multi-scale attention and
boundary-aware loss functions.

The weak anomaly localization capacity of the model, par-
ticularly for object classes, can be addressed with hybrid
models. An extended version of this work [19] overcomes

these limitations using self-attention with masking for local
and linear attention for global AD, using a hybrid attention
decoder.

VI. CONCLUSION

In this paper, we lay the foundation work to analyze the
potential of the DINOv2 encoder with a self-attention based
transformer decoder for VAD using S2VAD. Results on the
benchmark dataset MVTec-AD show comparable performance
to recent work. A high image and pixel performance shows
that S2VAD has the potential to be applied to numerous
surface anomaly detection problems in autonomous driving,
railway track state monitoring, and industrial anomaly detec-
tion.
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