
ReleaseScribe: An AI Agent for Automating
Compliance Checklists in Product Release Processes

Barun Kumar Saha
Grid Automation R&D

Hitachi Energy
Bangalore 560048, India

barun.kumarsaha@hitachienergy.com

Abstract—Organizations typically have multiple processes and
internal compliance checks to determine whether a product is
ready for market release and that it meets all prerequisites.
These assessments are often performed manually by reviewing
multiple documents—sometimes hundreds of pages long—and
recording the responses in structured checklists, a process that is
both time-consuming and error-prone. To address this challenge,
we present ReleaseScribe, an Artificial Intelligence (AI) agent
powered by a Large Language Model (LLM) that automates the
completion of compliance checklists for product release processes.
For any given process, ReleaseScribe takes a set of input files
and populates a pre-defined checklist with appropriate responses
based on the provided data. The agent employs a set of tools to
orchestrate response generation by the LLM, enforce a structured
output schema, and write data into spreadsheets. To improve
reliability, the initial responses undergo an additional LLM-
based review step to minimize inconsistencies. Furthermore, for
each process, ReleaseScribe leverages customized prompts and
metadata to handle interdependent checklist fields accurately.
We evaluated ReleaseScribe using real-world data from two
distinct processes. The results of the performance evaluation show
that ReleaseScribe achieves a response-level accuracy of approx-
imately 95%–98%, demonstrating its effectiveness in reducing
manual effort while maintaining high compliance accuracy.

Index Terms—Artificial Intelligence, Large Language Models,
Agents, Product Release, Compliance, Checklists, Spreadsheets

I. INTRODUCTION

Recent advances in AI and LLMs are increasingly being
applied in industrial contexts [1]. In particular, AI agents,
such as Reasoning and Acting (ReAct) [2], go beyond text
generation to interact with real-world systems by leveraging
tools, enabling new workflows and making existing processes
more efficient. As a result, AI agents are finding potential us-
age across various stages of the product and service lifecycle,
including design [3], testing [4], and customer support [5].

Before a product can be released to the market, organiza-
tions typically perform multiple internal reviews and quality
checks to ensure readiness. Such assessments often include,
but are not limited to, quality checks aligned with the software
development life cycle, verification and validation activities, as
well as the certifications and approvals necessary for product
release. Accordingly, there are several processes that typically
involve structured checklists with appropriate questions and
response options to verify compliance with internal guidelines.

Traditionally, such an assessment is performed manually
by going through large volumes of documentation that often

has hundreds of pages, gathering evidence for each criterion
or question from the target checklist1, and recording the
responses back in the same checklist. This process is repeated
for every product release, requiring a significant manual effort
to evaluate compliance with internal processes. On the other
hand, in the absence of an assessor, delegating such tasks to
another person may involve a significant knowledge transfer in
a short period. In addition, one needs to avoid potential human
errors. Consequently, there is a strong need to automate the
product release compliance checklists.

It may be noted that although some LLM- and agent-
based approaches exist for working with spreadsheets [6]–
[9], they are primarily designed for general-purpose tasks. In
contrast, filling out checklists—which are generally formal—
for process compliance status can be somewhat different.
On the one hand, the task is simpler because, for a given
organization, an agent needs to work with a limited set of
spreadsheet templates. On the other hand, the task is more
difficult because specific rows and columns of these pre-
designed checklists need to be filled out accurately based on
available data.

To address these challenges, in this work, we investigate the
use of AI agents and design ReleaseScribe to assist with prod-
uct release compliance checks involving multiple processes.
We assume that each process has a checklist template where
the responses need to be recorded.

ReleaseScribe provides a conversational interface where
users can write their queries and upload files, as illustrated in
Figure 1. Based on the process specified by the user, it uses the
corresponding checklist template and fills it out with appropri-
ate responses gathered from the input data. ReleaseScribe uses
a ReAct agent with six tools (Python functions) to orchestrate
the response generation and spreadsheet operations. Unlike
some prior works, ReleaseScribe introduces a structured output
schema-driven orchestration and a reflection mechanism to
handle interdependent checklist fields, which are critical for
compliance accuracy. Early feedback from users suggests that
ReleaseScribe can save up to an hour or a day’s effort,
depending on the process.

The specific contributions of this work are as follows:

1In our context, a “checklist” is a spreadsheet containing one or more sheets,
where each sheet contains covering multiple criteria for assessment.

Fig. 1: A high-level illustration of using ReleaseScribe agent
to fill out checklists based on input data.

• Designing ReleaseScribe, an AI agent that automates
compliance checks for product release processes by lever-
aging relevant data, reports, and pre-defined checklists.

• Building a checklist helper module that parses input files,
invokes an LLM for response generation based on data
and instructions, and writes data into spreadsheets while
adhering to layout constraints.

• Introducing schema-driven orchestration combined with
process-specific metadata and prompts to ensure accurate
structured outputs and manage interdependent checklist
fields effectively.

• Evaluating the accuracy of ReleaseScribe by considering
multiple processes and real-life data pertaining to them.

The remainder of this work is organized as follows: Sec-
tion II briefly reviews the contemporary use of LLMs and
AI agents. Section III details the design of ReleaseScribe,
including the definition of “process” and the checklist filling
workflow. The experimental setup is discussed in Section IV.
The results of the performance evaluation are presented in
Section V. Finally, Section VI concludes this work.

II. BACKGROUND

Koshkin et al. [10] designed a multi-agent system for end-
to-end market analysis, report generation, and evaluation by
exploiting already available domain knowledge via few-shot
prompting. Roy et al. [11] investigated the effectiveness of
ReAct agents for root cause analysis in the context of cloud-
related incident management. The study revealed that although
a typical LLM-based approach, for example, using Chain-of-
Thought [12], led to relatively more correct results, the use
of an agentic approach significantly lowered hallucinations.
In a different context, Saha et al. [13] also observed that an
agentic approach, in general, can lead to more accurate power
grid fault analysis results as compared to an LLM.

Kulkarni [5] considered the use of agents to address the
Standard Operating Procedure (SOP) in the context of re-
solving customer issues. The author noted that, in the e-
commerce industry, it typically involves interacting with users
and checking/updating status, which can be automated using
agents.

On the other hand, Nandi et al. [14] noted that LLM
agents often struggle to adhere to SOPs, especially in domains
involving knowledge-based operations. The authors developed
SOP-Bench, a synthetic benchmark, and observed that ReAct
and other agents fare significantly poorly on SOP-like tasks,
although they score higher on other benchmarks, underscoring
the complexity of adhering to SOPs.

Given the ubiquity of spreadsheets in business and other
domains, several works have investigated the use of LLMs
and AI agents to improve spreadsheet operations. Ma et al.
[6], for example, designed a benchmark, along with relevant
metrics, to enable the evaluation of AI-generated responses.

Dong et al. [7] fine-tuned several LLMs to improve the un-
derstanding of spreadsheets for a variety of downstream tasks.
In particular, the authors proposed an encoding framework
with sheet compression for token efficiency. Liang et al. [8]
designed TableTalk, an agent to help users build spreadsheets
incrementally and perform various operations, such as table
creation and chart generation, based on a structured plan,
thereby reducing the cognitive load of users.

Chen et al. [9], on the other hand, designed SheetAgent, an
LLM-powered autonomous agent that can help with various
tasks related to spreadsheets, such as formatting rows and
columns, performing analysis and calculations, and adding
charts. SheetAgent consists of the Planner, Informer, and
Retriever modules to understand the sheets, use any available
examples, and generate Python code to address the query,
which results in about 36%–96% successful completions when
evaluated against different tasks.

To synthesize, we observe that applications of LLM agents
have been investigated pertaining to various stages of the
product or service lifecycle. However, the use of agents in the
context of assessing product release readiness largely remains
unexplored. In particular, the application of agentic workflows
for internal process compliance checks—requiring existing,
pre-designed checklists to be filled out based on the contents
of provided files—largely lacks focus.

Unlike generic spreadsheet tasks, compliance checklists
typically require strict adherence to predefined layouts and
dependencies across sheets, where even a single incorrect
response can potentially invalidate the entire assessment. Con-
temporary solutions tend to emphasize largely autonomous
operations, which is not strictly required for fixed spreadsheet
layouts and where such autonomy can potentially affect an
agent’s understanding. Moreover, the difficulty to adhere to
SOPs, in part, is also separately hinted at by Nandi et al.
[14]. In order to address these challenges, in this paper, we
investigate an AI agent approach to assess product release
criteria and fill out necessary checklists.

III. SYSTEM DESIGN

In this section, we describe the design of ReleaseScribe and
how it works for any process requiring a checklist to be filled
out. ReleaseScribe is based on the ReAct agent architecture.
It consists of a set of tools to help with checklist operations.

Fig. 2: Illustration of the checklist response generation pipeline. The solid arrows represent deterministic data flows, whereas
the dashed arrows indicate flows (tool usage by the agent) enforced by the LLM prompt. The open arrow indicates an optional
step in the flow. The checklist helper module implements the functionality used by the tools, exposed to the agent via interfaces.

A. Process Definition

Figure 2 illustrates the different components of Releas-
eScribe to help fill out checklists for different processes. Here,
a “process” represents any internal (or external) process of
an organization for which some form of compliance needs
to be assessed. For example, organizations can have internal
assessments to identify whether a project is ready to begin or
complete. On the other hand, assessing the quality of a product
against a set of internal guidelines is perhaps ubiquitous across
organizations before any release. Moreover, products may also
need to be assessed for certifications and tests. Although these
processes may largely vary from one organization to another,
a common requirement is to fill out checklists pertaining to
the processes based on relevant input data.

Formally, a process ϕ = ⟨F, T, S,M,P ⟩ is represented by
a set of input and output entities. Here, F and T , respectively,
indicate the set of input files and the checklist template for
the concerned process. In other words, responses are meant to
be generated for the given spreadsheet template based on the
provided input files. In general, each process in an organization
is headed by an individual. Accordingly, the process owner
identifies and provides F and T in order to integrate said
process with ReleaseScribe. It may be noted that F and T are
mandatory inputs. Moreover, these two inputs are sufficient to
manually evaluate the process compliance.

In order to automate the process, ReleaseScribe requires
three additional items. First, an output schema (S) is defined
to represent each sheet of the spreadsheet in a structured
format. In other words, the LLM is asked to generate responses
following the format S.

Next, for each process, a metadata (M) file is manually
created as a one-time activity. The metadata contains the name
and description of the process as well as the template file. In
addition, the file contains other information about each sheet
of the spreadsheet. These include, but are not limited to, the
name of the sheet, if it is dependent on another sheet, human-
readable field names mapped to column or row number (for

example, “requirement": “C"), the columns with dropdown
lists and associated values, path to the prompt file, the prompt
keys, and optional additional notes.

The final component of ϕ is a set of prompts, P , one for
each sheet of the concerned spreadsheet. It may be noted
that the process checklist templates contain a set of questions
that need to be answered or verified, for example, “Is the
product version available?” However, we found that often
these “standard” instructions can be insufficient for the LLMs.
On the other hand, making such instructions more detailed
would need process-related approvals as well as make the
checklists too verbose and long, for example, by adding a
few-shot examples2. Consequently, we use a separate prompt
for each sheet from the checklist, where we copy the cri-
teria/questionnaire text. In addition, for some questions that
seem to be difficult to get correct answers from the LLM,
we provided additional instructions, often with examples. To
summarize, if the spreadsheet (checklist) for a process contains
m different sheets that need to be filled out by ReleaseScribe,
then |S| = |P | = m.

Unlike F and T , the latter components are not provided
by the process owner. Instead, they are designed through
consultations with process owners to capture the underlying
business logic. Internal processes and checklists in any organi-
zation, once defined, typically change infrequently. Therefore,
the process quintuple remains stable once all components
are defined, while still allowing scope for revision when
necessary. We argue that human insight into the design of these
components is not only useful but essential when considering
process compliance.

2For instance, a certain checklist criterion requires comparing bug IDs from
multiple tables based on their status. We found that the LLM’s response to
the original criterion text was often incorrect. Therefore, we provided very
detailed instructions for this criterion in the corresponding prompt. As another
example, the LLM often struggled to parse information from unstructured
document footer text. In this case, we added examples to illustrate the correct
parsing technique.

B. Workflow Orchestration
ReleaseScribe contains the checklist helper module, which

consists of a set of functions enabling checklist operations. For
example, the module can (1) create a copy of a spreadsheet
based on the concerned template, (2) generate responses for
a given sheet by invoking an LLM, and (3) write given data
to a given sheet. The checklist helper module can internally
perform several other operations, such as mapping the correct
input file names to the LLM prompts and reviewing the
responses.

Some of the tools (Python functions) of the
ReAct agent invoke certain functions from the
checklist helper modules. For example, cre-
ate_checklist_helper, generate_llm_responses_for_checklist,
prepare_data_for_spreadsheet, and write_to_spreadsheet—
these tools instantiate a ChecklistHelper class and call
the appropriate methods. Another, extract_file_contents,
helps with extracting the plain-text contents from any
input file. Collectively, the ReAct agent with these five
tools fills out the relevant checklists. The final tool,
check_document_formatting, helps with checking formatting
errors in the input documents.

Figure 2 illustrates a sequence of steps connected by dashed
arrows with closed ends, each indicating a different stage
of filling out a spreadsheet. For example, when a user asks
“Generate the checklist for ⟨Process X⟩,” ReleaseScribe begins
by identifying the appropriate metadata file. Based on it,
the prompt for each sheet of the checklist (spreadsheet) is
identified. The prompts may often have keys (placeholders) for
file names or their contents. Based on the input files provided
by the user along with the query, the files are matched to the
prompt keys by invoking the LLM.

In particular, the prompt keys are named semantically, for
example, “test_report.” To match files with the keys, the file
names and a brief snippet from each of them are sent to the
LLM. The LLM, based on the relevance and similarity, returns
a mapping of keys to files, which is used in the subsequent
steps.

It may be noted that some processes may take a variable
number of files containing unstructured data as inputs, for
example, emails, presentations, web page exports, and so
on. Since the number of files in this case is unknown (and
large), they cannot be mapped to prompt keys indicating file
paths. Rather, we provide the aggregated contents of all the
concerned files. To achieve this, the users run a Python script
on their systems to generate the aggregated data files, which
are then uploaded to ReleaseScribe.

On the other hand, certain files, for example, product
manuals, can have up to thousands of pages, thereby occupying
a significant portion of an LLM’s context window. To mitigate
this potential issue, the script also provides an option to specify
the maximum text length to consider for each file during
aggregation.

With the template and input files available, the agent invokes
the LLM, instructing it to respond following the structured
schema S. However, these responses (data) are not suitable for

a spreadsheet library. Therefore, the next step of ReleaseScribe
transforms the LLM responses into an intermediate JSON
representation in the form of row/column addresses and values.
To do this, the agent leverages layout information of the
concerned sheet(s) presented in Markdown format. Finally, the
available data are written into the identified cells, and Releas-
eScribe responds to the user with the filled-out spreadsheet.

It may be noted that, unlike some other agents, ReAct
plans only one step at a time, which can lead to potential
uncertainty in the steps executed, as well as the sequence of
their execution, leading to a bad user experience. In order
to mitigate it, in the system prompt of the ReAct agent, we
specify that this particular sequence of steps needs to be
executed when any user asks to generate a checklist. Thereby,
we achieve the sequential tool calling in a workflow-like
manner3, indicated by dashed arrows in Figure 2.

Finally, it may be noted that the Figure also contains an
optional step to review the LLM-generated responses be-
fore translating them into JSON format for writing into the
spreadsheets. Occasionally, LLMs produce conflicting values,
for example, marking a status as compliant while evidence
suggests otherwise. To mitigate this challenge, we introduce
an additional step, where the LLM is asked to review the
responses and fix any inconsistencies. This “reflection” step
can potentially help to improve the accuracy, which will be
discussed in a later section.

IV. PERFORMANCE EVALUATION

We built ReleaseScribe using Python 3.12 and relevant
libraries, such as Chainlit4, LlamaIndex5, MarkItDown6, and
OpenPyXL7. We used GPT 4.1, with temperature set to 0.

Our prompts instructed the LLM to invoke five tools in
sequence when any user asks to generate a checklist. In
our trials, we found that, apart from a few instances, these
instructions were followed by the LLM, enabling the ReAct
agent to exhibit a generally deterministic behavior for this
particular use case.

We evaluated the performance of ReleaseScribe using real-
life data for product release criteria review (henceforth, process
A) and product testing preparations (henceforth, process B).

3A pertinent question is why not use a linear, deterministic workflow with
a fixed number of steps instead of an agent. While the primary objective of
ReleaseScribe is to fill out process checklists with appropriate responses, it
also supports answering related queries. For example, users may request a list
of anomalies (deviations from guidelines) in a report, or a new user may ask
about the criteria for a successful recommendation as defined in the checklists.
Furthermore, future requirements may include linking external knowledge
bases to handle additional query types. A simple workflow is unsuitable
for such advanced use cases. Therefore, we adopt an agent-based approach.
Moreover, the agentic design enables robust, context-aware orchestration and
error handling across all steps, ensuring that even ambiguous or incomplete
inputs are managed without brittle, hard-coded logic. This unified reasoning
across tool invocations is critical for maintaining reliability and accuracy
in real-world, variable scenarios, where static workflows are prone to silent
failure or require constant manual intervention.

4https://docs.chainlit.io/get-started/overview
5https://github.com/run-llama/llama_index
6https://github.com/microsoft/markitdown
7https://openpyxl.readthedocs.io/

Our experiments were designed with the aim of measuring, in
general, how well pre-defined checklists (spreadsheets) can be
filled out based on relevant process data using AI.

The checklist pertaining to process A consists of two sheets,
A1 and A2. Sheet A1 primarily verifies the compliance status
(along with evidence) for several criteria, for example, the
product version number is in the correct format. On the other
hand, A2 presents a summary of the checks. Some of the
responses in A2 depend on A1, thereby creating a dependency.
For example, if there is any non-compliance recorded in A1,
the decision in A2 would be negative.

Process A takes two reports as input files, out of which one
is optional. Sheet A1 has up to 11 × 2 (one for status and
another for comment) = 22 or 20 × 2 = 40 cells to be filled
with data, based on whether a single report or both reports are
provided. Accordingly, A2 has 11 or 15 cells to be filled out,
respectively.

For process B, we considered a single sheet, B1, which
checked the compliance status of preconditions for product
testing. Since there are different kinds of testing, the sheet
layout of B1 was relatively more challenging. In particular, B1
consists of five different groups of rows and columns arranged
according to the test type, and only one such group of cells
must be filled in based on the available data. These groups
have 5–7 cells.

Unlike process A, the compliance checks for process B are
required to be performed by considering the contents of a large
bundle of files. For example, some of the checks include the
verification of the presence of required files and the Point of
Contact in the concerned data files. The local data aggregation
script is executed to create an aggregate data file, which is then
uploaded to ReleaseScribe.

In our evaluations, we considered the reports from five
different product releases (labeled R1 through R5) for process
A. Therefore, there were 5 × 2 = 10 sheets to evaluate in
this case. We also considered four different products planned
for testing under process B, so there were 4 × 1 = 4 sheets
with AI-generated responses. We evaluated the accuracy of
ReleaseScribe based on these input data.

We considered two accuracy metrics pertaining to different
granularity levels. In response-level accuracy (alternatively,
response accuracy), we considered how accurate the LLM
responses are for the checklists, on average. In particular, we
considered the aforementioned input files for each process and
uploaded them onto ReleaseScribe. A separate conversation
session was created for each checklist.

We manually investigated the checklists generated by Re-
leaseScribe. In particular, we verified whether all the responses
are in the correct positions in the checklists and whether
all the responses are correct. For each iteration, we counted
the number of wrong or misplaced responses and converted
them into proportions based on the total number of responses
expected. Thereafter, we took the complement to identify the
proportion of responses that are not wrong, which is the
response accuracy metric. This metric indicates, on average,

how capable an LLM is of generating correct responses for
checklist criteria.

Separately, we also considered a subset of the aforemen-
tioned files to evaluate the process-level accuracy (alterna-
tively, process accuracy) metric for process A, sheets A1 and
A2. We generated the checklists based on these input files.
Subsequently, we examined the responses of a subset of 16
cells (or 21, in case both reports were available) in each sheet.
Only when all such cells of both sheets had correct responses
was the iteration considered to be successful. Accordingly, we
computed the average process accuracy metric by considering
the average across all iterations.

The process accuracy metric is stricter than response accu-
racy. This is generally useful for compliance checks, where
even a single wrong response can alter the overall compliance
status. In general, both response and process accuracy should
be close to 100%. However, when a strict compliance check
is not required, a high value of response accuracy can be a
suitable indicator to measure the usefulness of ReleaseScribe.

In order to evaluate the impact of our design choices,
we conducted additional experiments. In one scenario, we
measured the accuracy with and without running the LLM
response review step (Figure 2). In another scenario, rather
than instructing the LLM to use sheet-specific custom schemas
for structured output (S in Section III-A), we asked it to use a
generic schema, as shown Listing 1. In this case, we measured
the process-level accuracy. It may be noted that said generic
response schema was used only in this experiment; all other
experiments used the sheet-specific schema.

Listing 1: A generic schema for the spreadsheets
class RowResponseItem(BaseModel):
"""
Abstract each row of a spreadsheet with optional ID and

error message.
"""

id: Optional[str] = Field(description=’ID’)
is_error: bool = Field(
description=’Set to ‘True‘ if there is an error in the

response; default ‘False‘’
)
row_response: Optional[str] = Field(
description=’Response for a single row; can contain

responses for multiple columns’
)

class SpreadsheetResponseModel(BaseModel):
"""
Abstract a spreadsheet with multiple rows.
"""

items: list[RowResponseItem] = Field(description=’List
of row response items’)

is_error: Optional[bool] = Field(
description=’Set to ‘True‘ if there is an error in the

response; default ‘False‘’
)

Since the unique input data files were limited, we ran
multiple trials of the experiments and generated checklists
filled out with data. Based on these results, the average values
and 95% confidence intervals were computed.

V. RESULTS

Figure 3 shows the average response-level accuracy for
sheets A1 and A2 from process A and sheet B1 from process

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

A1 A2 B1

R
es

p
o

n
se

 a
cc

u
ra

cy
 (

%
)

Sheets

Fig. 3: Response-level accuracy for different sheets.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

Without review With review

R
es

p
o

n
se

 a
cc

u
ra

cy
 (

%
)

LLM review condition

Fig. 4: Process-level accuracy for process A.

B. It can be observed that at least 95% accuracy was obtained
(in the case of A2), which implies that, on average, at least
95% of the AI-generated checklist responses were correct and
placed in the appropriate target cells. On the other hand, in the
case of B, the accuracy was around 98%. On investigating the
errors, we observed that some of the responses generated for
A1 were incorrect because they failed to follow the respective
criteria or generated incorrect responses. However, in the case
of A2, we found that occasionally the responses are correct but
inserted into the wrong rows or columns in the spreadsheet.

Figure 4 illustrates the process-level accuracy for process
A. When LLM-generated responses were used without any
further review, the average success rate was 88%. However,
when responses were further reviewed before being written
into the spreadsheets, accuracy improved to 92%. This is
largely because the additional review step potentially helped
to “sanitize” some of the inconsistent responses, leading to
more accurate results.

Figure 5 takes a detailed look at the process-level accuracy
by plotting the average values for product release instances R1
through R5 from process A. In the case of R1, a review of the
LLM responses before writing to the spreadsheets improved
the accuracy from 60% to 90%. On the other hand, in the
case of R4, the accuracy reduced from 100% to 90%. In
other words, the LLM review step turned some of the correct
responses wrong, possibly because of misinterpretation by the
LLM. It may be recalled that process-level accuracy measures
whether or not all answers are correct, which means even a
single mistake can lead to a substantial change in the accuracy.

In the case of R2, R3, and R5, we observed no change when
the responses generated by the LLM were reviewed before

 30

 40

 50

 60

 70

 80

 90

 100

R1 R2 R3 R4 R5

Without review With review

R
es

p
o
n
se

 a
cc

u
ra

cy
 (

%
)

Product releases

Fig. 5: Process-level accuracy for different product releases
from process A.

writing to the spreadsheets. Therefore, considering R1 and R4,
a review of the LLM-generated responses generally seemed
to have a positive impact. It may be noted that even though
Figures 4 and 5 largely indicate marginal improvements, such
revision of LLM-generated responses is generally useful and
typically practiced.

In addition, we also considered the potential impact of
the output schema S (Section III-A). When we set S to a
single, generic output schema for all the sheets (Listing 1), we
observed that although the LLM generated correct responses
like any other case described earlier, the mapping of those
responses to the specific rows and columns in the spreadsheets
failed. In particular, with a generic schema, the process-level
accuracy was 0% for all the cases. This is largely due to the
reason that the semantic names of the fields in the schema
and the criteria text in the spreadsheets together help toward
correctly “aligning” the rows and columns, thereby helping
in identifying the correct addresses. However, in the absence
of such a sheet-specific schema, and since many criteria
may have similar wording, identifying the correct rows and
columns becomes difficult. The result indicates that checklist
automation would benefit from using a sheet-specific schema
to capture the responses from LLMs.

We close this section by discussing a few inconsistencies
that we observed in our trials, which also affected the perfor-
mance evaluation results.

• For some checklist criteria, we noticed that the LLM went
beyond the instructions provided to it for the particular
check and reasoned incorrectly based on other related
text available in the input data files. We have largely
addressed the issue by making the prompt instructions
for this particular check rather detailed and stricter.

• An interesting result has been observed in case one of
the reports that used an outdated template. Although this
particular report is part of our performance evaluation, we
regard this issue to be of less significance as the document
templates have been updated.

VI. CONCLUSION

LLMs and AI agents are finding their applications in dif-
ferent stages of product and service development. However,
the internal compliance checks for the product release process

largely remain manual. In this work, we designed Releas-
eScribe to address this challenge. The agent takes a set of
input files for any given process and fills out the corresponding
checklist (spreadsheet) with appropriate responses. As an
intermediate step, the LLM-generated responses are reviewed
to minimize potential inconsistent answers before writing to
the spreadsheet. Our experimental results indicate that Releas-
eScribe generates mostly correct responses on average, saving
hours of manual effort.

It may be noted that ReleaseScribe is intended to assist
in the decision-making process by collating diverse data
points from multiple sources into a single place. However,
it is recommended that human supervision continue to be
employed to cross-check the compliance status and make the
final product release decision. This is particularly important
since the approach relies on the correctness of LLM-generated
responses, which, despite the reflection step, may occasionally
introduce inconsistencies.

In the future, this work can be extended in different ways.
The instructions to the LLM can be potentially improved to
further reduce the incorrect responses. On the other hand,
additional processes (checklists) and larger datasets may be
considered to provide a more comprehensive evaluation of
performance. Moreover, a final reflection layer can be added
to verify the overall consistency and presentation of the
checklists.

REFERENCES

[1] X. Tian, J. Xu, S. Wang, and Y. Zhou, “Construction and Application
of a Multi-Modal Knowledge Graph Integrated with Large Language
Models in the Field of Manufacturing Processes,” in 2025 International
Conference on Artificial Intelligence in Information and Communication
(ICAIIC), 2025, pp. 0288–0292.

[2] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“ReAct: Synergizing Reasoning and Acting in Language Models,” in
International Conference on Learning Representations (ICLR), 2023.

[3] A. Allam, Y. Mansour, and M. Shalan, “ASIC-Agent: An Autonomous
Multi-Agent System for ASIC Design with Benchmark Evaluation,” in
IEEE ICLAD, 2025, pp. 23–29.

[4] I. Bouzenia and M. Pradel, “You Name It, I Run It: An LLM Agent to
Execute Tests of Arbitrary Projects,” Proc. ACM Softw. Eng., vol. 2, no.
ISSTA, Jun. 2025. [Online]. Available: https://doi.org/10.1145/3728922

[5] M. Kulkarni, “Agent-S: LLM Agentic workflow to automate Standard
Operating Procedures,” 2025. [Online]. Available: https://arxiv.org/abs/
2503.15520

[6] Z. Ma, B. Zhang, J. Zhang, J. Yu, X. Zhang, X. Zhang, S. Luo,
X. Wang, and J. Tang, “SpreadsheetBench: Towards Challenging Real
World Spreadsheet Manipulation,” in Advances in Neural Information
Processing Systems, vol. 37, 2024, pp. 94 871–94 908.

[7] H. Dong, J. Zhao, Y. Tian, J. Xiong, S. Xia, M. Zhou, Y. Lin,
J. Cambronero, Y. He, S. Han, and D. Zhang, “SpreadsheetLLM:
Encoding Spreadsheets for Large Language Models,” 2025. [Online].
Available: https://arxiv.org/abs/2407.09025

[8] J. T. Liang, A. Kumar, Y. Bajpai, S. Gulwani, V. Le, C. Parnin,
A. Radhakrishna, A. Tiwari, E. Murphy-Hill, and G. Soares, “TableTalk:
Scaffolding Spreadsheet Development with a Language Agent,” ACM
Trans. Comput.-Hum. Interact., Sep. 2025.

[9] Y. Chen, Y. Yuan, Z. Zhang, Y. Zheng, J. Liu, F. Ni, J. Hao, H. Mao,
and F. Zhang, “SheetAgent: Towards a Generalist Agent for Spreadsheet
Reasoning and Manipulation via Large Language Models,” in Proceed-
ings of the ACM on Web Conference 2025. Association for Computing
Machinery, 2025, pp. 158–177.

[10] R. Koshkin, P. Dai, N. Fujikawa, M. Togami, and M. Visentini-
Scarzanella, “MaRGen: Multi-Agent LLM Approach for Self-Directed
Market Research and Analysis,” in LLM4ECommerce Workshop at KDD
’25. ACM, Aug. 2025.

[11] D. Roy, X. Zhang, R. Bhave, C. Bansal, P. Las-Casas, R. Fonseca,
and S. Rajmohan, “Exploring LLM-Based Agents for Root Cause
Analysis,” in Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, 2024, pp.
208–219. [Online]. Available: https://doi.org/10.1145/3663529.3663841

[12] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Proceedings of the 36th International Con-
ference on Neural Information Processing Systems, 2022, pp. 24 824–
24 837.

[13] B. K. Saha, A. V, and O. D. Naidu, “DrAgent: An Agentic Approach
to Fault Analysis in Power Grids Using Large Language Models,” in
2025 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), 2025, pp. 0938–0945.

[14] S. Nandi, A. Datta, N. Vichare, I. Bhattacharya, H. Raja, J. Xu,
S. Ray, G. Carenini, A. Srivastava, A. Chan, M. H. Woo, A. Kandola,
B. Theresa, and F. Carbone, “SOP-Bench: Complex Industrial
SOPs for Evaluating LLM Agents,” 2025. [Online]. Available:
https://arxiv.org/abs/2506.08119

