The Analysis of Next-Generation HPC Architecture

Based on CXL through RAMSES-HRS
Performance Optimization

1%t Hyun Mi Jung
center for supercomputing technology
development
Korea Institute of Science and
Technology Information
Dagjeon, Korea
hmjung@kisti.re.kr

Abstract—High-performance computing (HPC) is an
essential tool for solving complex and massive computational
problems in advanced scientific research fields such as
application simulations in astronomy, climate science, and
particle physics. This is because simulations require maximizing
floating-point operations and extensive parallel processing
based on large-scale data. As HPC systems evolve into
heterogeneous environments combining CPUs and GPUs, new
performance bottlenecks beyond simple computational
overhead have emerged as major challenges. Specifically,
overhead from data memory copying between CPUs and GPUs,
system-wide data bottlenecks, and increased computational
latency and energy consumption are becoming pervasive.
Resolving these inefficiencies to save time and costs while
enhancing research efficiency is the primary goal. Therefore,
this study analyzes performance optimization strategies for the
HPC (High-Performance Computing) application simulation
code RAMSES-HRS to design and analyze a CXL-based next-
generation HPC architecture. First, code profiling analysis
revealed that the primary bottlenecks in the existing system
stem from synchronization and communication delays based on
OpenMP/MPI, rather than computational overhead. Excessive
wait times were particularly observed in the _kmp fork barrier
and pmpi_allreduce_ functions. To address this issue, we
propose solutions including merging OpenMP parallelization
regions, utilizing asynchronous MPI communication, and
changing the AMR (Adaptive Mesh Refinement) index structure
to a hash-based approach. We also explore leveraging next-
generation devices like CXL (Compute Express Link) to resolve
memory bottlenecks and maximize data sharing efficiency.
These approaches are expected to enhance the performance of
RAMSES-HRS and further contribute to building a simulation
environment optimized for next-generation HPC system
architectures.

Keywords—HPC, CXL, Next generation HPC system, HPC
application

I. INTRODUCTION

HPC application simulations are essential for solving
complex and massive computational problems across diverse
fields such as astronomy, climate science, and particle
physics. These simulations rely on large-scale data and require
parallel processing support and maximized floating-point
operations. However, in heterogeneous system environments,
issues arise including overhead from memory copying
between CPUs and GPUs, data bottlenecks, computational
delays, and increased energy consumption[l]. Therefore,
optimizing system performance to save time and costs while
enhancing research efficiency is crucial. This paper presents a

This research was supported by Korea Institute of Science and Technology
Information (KISTI). (No. K25L1M2C2)

2" Hyunjo Lee
dept. General Education
Korea National University of
Agriculture and Fisheries
Jeonju, Korea
o2near@gmail.com

3t Cheol-Joo Chae
dept. General Education
Korea National University of
Agriculture and Fisheries
Jeonju, Korea
chae.cheoljoo@gmail.com

multidimensional solution combining code-level
improvements (OpenMP and
MPI) with structural innovations Adaptive Mesh

Refinement (AMR) indexing and Compute Express Link
(CXL) integration based on next-generation hardware
architectures to resolve the severe communication and
synchronization bottlenecks in RAMSES-HR5[2].
Specifically, it thoroughly examines the technical feasibility
of fundamentally resolving memory bottlenecks within
heterogeneous systems and maximizing data sharing
efficiency by leveraging CXL technology. Chapter 2 of this
paper provides an overview of CXL and explores HPC
utilization strategies for different CXL device types. Chapter
3 analyzes the hotspots of the HPC application simulation
RAMSES-HRS5 to design computational optimization
strategies. Chapter 4 designs performance improvement
strategies using enhanced OpenMP and MPI communication,
along with performance optimization approaches leveraging
CXL. Chapter 5 presents the conclusions and future research
directions.

II. CASE STUDY

A. Overview of CXL Protocols (CXL.cache, CXL.mem) and
Coherence Mechanisms

CXL is an open-standard interconnect designed for high-
speed, high-capacity CPU-to-device and CPU-to-memory
connections in high-performance data center computing. CXL
builds upon the existing PCI Express (PCle) physical and
electrical interfaces but overcomes the limitations of PCle by
introducing a new cache coherence protocol. The core
protocols of CXL are as follows:

e (CXL.io: A PCle-based block I/O protocol.

e (CXL.mem: Enables the CPU to access extended
memory (CXL memory) connected to CXL devices.
This overcomes the capacity and socket packaging
limitations of standard DIMM memory.

e (CXL.cache: Maintains cache coherence between CPUs
and accelerators (GPUs, DPUs, etc.), ensuring data
consistency across heterogeneous computing domains.

By managing cache coherence at the hardware level, CXL
provides a new paradigm that integrates the CPU, various
accelerators, and extended memory components into a single,
unified, and consistent memory domain[3-5].

B. HPC Utilization Approaches by CXL Device Type

The CXL specification classifies devices into three types
based on their functionality and role, each performing a
distinct function within HPC architectures[3-5].

e Type I (Accelerator): Possesses its own fully coherent
cache but lacks globally visible local memory (Device
Local Memory). Type 1 devices extend the
functionality of the PCle protocol, particularly by
maintaining cache coherence when accessing host
memory. They are used to replace traditional DMA-
based incoherent accelerators, thereby optimizing data
sharing with the CPU.

e Type 3 (Memory Expander): Possesses only host-
managed device memory (HDM) and is primarily used
to expand memory capacity via CXL.mem
transactions. This overcomes server memory channel
limitations and the constraints of increasing DRAM
density, enabling large-scale memory expansion and
memory pooling.

o Type 2 (Heterogeneous Accelerator): The most
complex type, comprising devices like GPUs, ASICs,
and FPGAs that attach their own high-bandwidth
memory (DDR or HBM). Type 2 devices may
optionally have a cache and expose their memory to
the CPU via Host-Managed Device Memory (HDM).
Simultaneously, like Type 1, they can access CPU
memory consistently using CXL.cache. This
bidirectional memory sharing support is essential for
dramatically improving the performance of
heterogeneous HPC workloads.

Table 1 below compares the roles of CXL device types
within HPC architectures.

TABLE L COMPARES THE ROLES OF CXL DEVICE TYPES WITHIN HPC
ARCHITECTURES.
CXL Device Primary Cache Key HPC Use
Type Protocol Coherence Cases
(Host)
Type 1 | CXL.cache, Fully Coherent | Accelerator with
(Accelerator) CXL.io its own cache
(Coherent DMA
replacement)
Type 2 | Al (Cache, Optional GPU, FPGA,
(Accelerator/ Memory, I/O) Coherence etc.
Memory)
Type 3 | CXL.mem, Host-Managed Large-scale
(Memory CXL.io Memory memory
Expander) (HDM) expansion and
pooling
(Capacity
expansion)

C. CXL Memory Pooling: Establishing a global data
sharing environment between heterogeneous processors
(CPU/GPU)

CXL's Memory Pooling feature is a core technology that
resolves data sharing inefficiencies in HPC environments.
CXL consolidates memory resources distributed across the
system into a single unified pool. Through this global memory
pool, CPUs, GPUs, and other accelerators can dynamically

allocate and utilize memory resources as needed. This
represents a strategic approach to break away from traditional
siloed memory structures, maximize data sharing efficiency
between heterogeneous components, and resolve memory
bottlenecks.

III. RAMSES-HRS5 HOTSPOT ANALYSIS

This study performed performance analysis using Intel
VTun Profiler on RAMSES-HRS, one of the HPC application
simulation codes. RAMSES is a code used for large
RAMSES-HRS, using Intel Vtune Profiler. RAMSES is a
code used for large-scale astrophysical and cosmological
simulations, based on the Adaptive Mesh Refinement AMR
technique and MPI + OpenMP hybrid parallelization.

Figure 1 below shows the total profiling time, and Figure
2 displays the TOPS results from the profiling.

Elapsed Time :975.698s
CPU Time 15368.147s
5458.8695
8145.535sk
59487985k
45995
1719.821sk
472.318s
1763.742sk
Tc 5 16
Paused Time 24 Os
Fig. 1. The total profiling time
Function Module CPU Time % of CPU Time
__kmp_fork_barrier libiomp5.s0 6311.070sk 41.1% K
pmpi_allreduce_ libmpifort.so.12 1998.537s 13.0%
__kmp_fork_call libiomp5.s0 1706.718sk 11.1% K
pmpi_waitall_ libmpifort.so.12 1141.301sk 74% K
__intel_avx_rep_memset ramses3d 417.669s 2.7%
*N/A is applied to non-summable metrics.

Fig. 2. The displays the TOPS results from the profiling

Analysis revealed that approximately 53% (8145.535
seconds) of the total CPU execution time (15368.147 seconds)
was spent in spin time. This indicates that bottlenecks
occurring during parallelization and communication processes
are more severe than the computational tasks themselves.
Profiling results show the top four functions consuming the
majority of CPU time are as follows:

e _kmp_fork_barrier(41.1%): Excessive calls
occurred during OpenMP parallel region creation and
thread synchronization.

e pmpi_allreduce (13.0%): Excessive
reductions during Poisson iteration calculations.

global

e _kmp_fork call(11.1%): Repeatedly called during
entry into OpenMP parallel regions.

e pmpi_waitall (7.4%): Concentrated wait time for
asynchronous communication completion during
ghost cell data exchange.

These results clearly indicate that performance
optimization for RAMSES-HRS should focus on improving
the communication-intensive structure rather than
computation-intensive performance enhancements.

IV. STUDY ON HPC APPLICATION PERFORMANCE
IMPROVEMENT THROUGH CXL ADOPTION

A. Performance Improvement Direction for HPC
Simulation Code (RAMSES-HRS)

HPC application simulation codes utilize complex
algorithms and large-scale data structures, making in-depth
application-level analysis and code redesign essential for
optimization on new hardware architectures like CXL. The
RAMSES-HRS5 case study demonstrates the importance of
this approach. RAMSES-HRS5 is based on MPI + OpenMP
hybrid parallelization[6,11]. Performance analysis identified
communication and synchronization delays as key
bottlenecks. To address this, the following specific code
improvements were implemented. Figure 3 below is an
example of code improvement for OpenMP , and Figure 4 is
an example of code improvement for MPI Communication
[12,13].

'$omp parallel default(shared)
do it = 1, nsteps
'$omp single
call post_halo_irecv_isend(level_info, reqs)

!$omp do schedule(dynamic,4) nowait
do blk = 1, nblocks_interior

call hydro_sweep(blk)
end do

!$omp do schedule(dynamic,1) nowait
do Ivl = 1, nlevels

call refine_or_coarsen(lvl)
end do

$omp single
call halo_waitall_and_apply(reqs)

end do
!$omp end parallel

Fig. 3. An example of code improvement for OpenMP

integer :: req(2), stat(MPI_STATUS_SIZE)
logical :: done
do k = 1, max_iter
! 1) Local Calculation (Preparing Values for Reduction)
call spmv(A, p, Ap)
alpha_local = dot_product(p, Ap)
r2_local = dot_product(r, r)

1 2) Start global reduction asynchronously

call MPI_lallreduce(...)

call MPI_lallreduce(...)

! 3) Execute internal calculations for overlapping

call prefetch_next_block_data()

call compute_interior_cells(

call apply_rhs_smoothing()

! 4) Wait for completion only when results are necessary

call MPI_Wait(req(1), stat, ierr)
call MPI_Wait(req(2), stat, ierr)

end do

Fig. 4. An example of code improvement for MPI Communication

e OpenMP Improvements: To reduce the overhead of
the existing Fork/Barrier approach, which
creates/terminates parallel regions per loop, the entire
timestep is consolidated into a single parallel region.
No wait and task loop are used to eliminate
unnecessary synchronization points. This is expected
to reduce Fork/Barrier calls by 15% to 40%.

e MPI Communication Improvements: To reduce
excessive MPI All reduce calls, we use asynchronous
communication via MPI Jallreduce to overlap
communication with CPU computation. To decrease
NIC overhead from small packet communications, we
bundle multiple messages into derived types. These
improvements aim to reduce latency by 10% to 20%.

B. Optimization of Adaptive Message Refinement (AMR)
Structure and CXL Utilization

AMR is a core HPC technology that reduces
computational and memory requirements by applying high
resolution only to specific complex regions within a
simulation. However, the performance of AMR-based
applications is often hindered by inefficiencies in the data
structure[7,8].

Existing Oct-tree-based AMR index structures suffer from
increased cache misses as pointer traversal depth grows, and
cause load imbalance issues due to recursive searches. AMR's
dynamic data structures, often reaching hundreds of
megabytes in size with frequent random accesses, tended to be
processed on the CPU rather than the accelerator.

CXL technology presents a structural alternative to resolve
these fundamental bottlenecks in AMR.

¢ [Innovation in Index Structure: First, the complex Oct-
tree-based index structure is replaced with a hash-
based index structure that maps each cell by converting
it into a Morton key (Z-order). This transforms
significantly improves cache efficiency by converting
parent/child/neighbor node lookups into simple bit
operations and hash lookups.

e Utilizing CXL Global Memory Pool: The improved
hash-based index structure is deployed within a global
memory pool leveraging CXL technology.

C. Maximizing Data Sharing Efficiency in Heterogeneous
Environments

By placing the hash-based AMR index structure in the
CXL global memory pool, multiple CPUs and GPUs can
simultaneously access this index structure without data
copying. CXL's cache coherence feature moves the complex
pointer tracking paths of dynamic data structures into a high-
speed shared memory space, maximizing parallelization
efficiency. Particularly when Halo (boundary) data exchange
occurs, using the CXL pool allows only the data array itself to
be transferred, with the actual data referenced directly from
the pool. This eliminates the overhead of traditional memory
copying and minimizes I/O and communication bottlenecks,
significantly enhancing the scalability and performance of
HPC simulations. The cases of RAMSES-HRS and AMR
demonstrate that adopting CXL technology requires more
than just hardware replacement. Fundamental co-design and
redesign of the application's core algorithms and data
structures are essential conditions for success.

V. CONCLUSION AND FUTURE WORK

A. Authors and Affiliations Expected Benefits from
OpenMP/MPI Code Improvements and CXL Integration
Jfor Comprehensive Performance Enhancement

The multifaceted optimization strategy proposed for
RAMSES-HRS provides an integrated solution to address the
chronic issues that have hindered the performance of the
existing simulation code. The code-level improvements for
OpenMP and MPI improvements directly target
synchronization and communication wait times (Spin Time),
which accounted for 53% of total execution time. Through
reducing fork/join overhead, mitigating load imbalance,
enabling asynchronous communication overlap, and message
vectorization, we anticipate performance gains exceeding
20%.

By integrating CXL-based structural innovations on top of
these code improvements, performance gains are further
maximized. Placing the hash-based AMR index structure
within CXL's global memory pool and enabling
heterogeneous processors to access it directly while
maintaining cache coherence revolutionarily improves
RAMSES's most inefficient memory access and data sharing
processes. This reflects how HPC application optimization is
shifting beyond merely maximizing CPU or GPU
computational power, transitioning toward a data-centric
architecture focused on data access speed and communication
efficiency.

B. Proposed Future HPC Architecture through Role
Division: CXL (Data Sharing) - DPU (Communication)
- CPU/GPU (Computing)

Ultimately, the approach proposed in this study
contributes to building a simulation environment optimized
for next-generation HPC system architectures. Future HPC
systems will evolve toward maximizing overall system
efficiency through role specialization among dedicated
devices:

e CPU/GPU (Computational): Dedicated to complex
physics models and floating-point operations,
maximizing computational efficiency in a low-latency
environment.

e CXL (Data Sharing): Integrates memory hierarchies
across heterogeneous devices via a high-speed, cache-
coherent interconnect, providing a Global Memory
Pool function to eliminate memory access bottlenecks.

e DPU (Data Processing Unit) (Communication):
Offloads long-distance/inter-rack MPI communication
protocol processing and I/O tasks from the CPU,
enabling the CPU to focus purely on computational
tasks and ultimately alleviating communication
bottlenecks.

CXL serves as the core interconnect in this new
architecture, minimizing data movement and ensuring
memory access consistency. It presents a blueprint for
overcoming the scalability limitations of communication-
intensive, large-scale simulation codes like RAMSES.

This study proposed specific solutions to address
synchronization and communication issues, which are key
bottlenecks hindering the performance of HPC application
simulations. Alongside code improvements for OpenMP and
MPI communication structures, it suggested structural
alternatives: transitioning the AMR index structure to a hash-
based approach and introducing CXL technology. These
approaches are expected to establish a simulation environment
optimized for next-generation HPC architectures, where
computation is distributed to CPUs/GPUs, data sharing to
CXL, and communication to DPUs. Future research should
directly implement the proposed solutions into the RAMSES
code to validate their actual performance improvement
effects.

REFERENCES

[1] Hyun Mi Jung at al. , “A Study on GPU Parallelization and
Performance Optimization of the Athena++ Simulation Code in High-

Performance Computing Environments,” Smart Media Journal, vol 14
1n06,2025.

[2] Jaehyun Lee and Jihye Shin at al. “The Horizon Run 5 Cosmological
Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to
Giga-parsec Scales”, arXiv:2006.01039 , 5 Oct 2023

[3] Daniel S. Berger, Yuhong Zhong, Fiodar Kazhamiaka, Pantea
Zardoshti, Shuwei Teng, Mark D. Hill, Rodrigo Fonseca , “Octopus:
Scalable Low-Cost CXL Memory Pooling” arXiv, [Online].
Auvailable: https://arxiv.org/html/2501.09020v1

[4] Synopsys Blog, “How CXL and Memory Pooling Reduce HPC
Latency” . [Online]. Available:
https://www.synopsys.com/blogs/chip-design/cxl-protocol-memory-
pooling.html

[5] Danny Moor, Debendra Das Sharma,”Enabling composable systems
with expanded fabric capabilities”, [Online]. Available:
https://computeexpresslink.org/wp-
content/uploads/2023/12/CXL_3.0-Webinar FINAL.pdf

[6] R. Teyssier, “Cosmological hydrodynamics with adaptive mesh
refinement: The RAMSES code,” Astronomy & Astrophysics, vol.
385, no. 1, pp. 337-364, 2002.

[71 M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” Journal of Computational Physics, vol.
53, no. 3, pp. 484-512, 1984.

[8] Z.Liu, F. B. Tian, and X. Feng, “An efficient geometry-adaptive mesh
refinement framework and its application in the immersed boundary
lattice Boltzmann method,” Computer Methods in Applied Mechanics
and Engineering, vol. 392, p. 114662, 2022.

[91 Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard, Version 4.0,” 2021.

[10] T. Mattson et al., “A Hands-on Introduction to OpenMP,” OpenMP
Tutorial, National Center for Supercomputing Applications (NCSA),
2008.

[11] D. L. Caballero de Gea et al., “Barriers and reductions in OpenMP,”
Technical Report, Universitat Politécnica de Catalunya, 2015.

[12] Hyunjo Lee et al., “A Study on Code Modification for Hotspot
Optimization in OpenMP Parallel Regions in the RAMSES Simulator”,
2025 Autumn Academic Conference of Smart Media, 2025.

[13] Hyunjo Lee et al., “A Study on Code Modification Strategies to
Improve MPI Communication Bottlenecks in the RAMSES
Simulator”. 2025 Autumn Academic Conference of Smart Media,
2025.

