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Abstract—High-performance computing (HPC) is an 

essential tool for solving complex and massive computational 

problems in advanced scientific research fields such as 

application simulations in astronomy, climate science, and 

particle physics. This is because simulations require maximizing 

floating-point operations and extensive parallel processing 

based on large-scale data. As HPC systems evolve into 

heterogeneous environments combining CPUs and GPUs, new 

performance bottlenecks beyond simple computational 

overhead have emerged as major challenges. Specifically, 

overhead from data memory copying between CPUs and GPUs, 

system-wide data bottlenecks, and increased computational 

latency and energy consumption are becoming pervasive. 

Resolving these inefficiencies to save time and costs while 

enhancing research efficiency is the primary goal. Therefore, 

this study analyzes performance optimization strategies for the 

HPC (High-Performance Computing) application simulation 

code RAMSES-HR5 to design and analyze a CXL-based next-

generation HPC architecture. First, code profiling analysis 

revealed that the primary bottlenecks in the existing system 

stem from synchronization and communication delays based on 

OpenMP/MPI, rather than computational overhead. Excessive 

wait times were particularly observed in the _kmp_fork_barrier 

and pmpi_allreduce_ functions. To address this issue, we 

propose solutions including merging OpenMP parallelization 

regions, utilizing asynchronous MPI communication, and 

changing the AMR (Adaptive Mesh Refinement) index structure 

to a hash-based approach. We also explore leveraging next-

generation devices like CXL (Compute Express Link) to resolve 

memory bottlenecks and maximize data sharing efficiency. 

These approaches are expected to enhance the performance of 

RAMSES-HR5 and further contribute to building a simulation 

environment optimized for next-generation HPC system 

architectures. 
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I. INTRODUCTION  

HPC application simulations are essential for solving 
complex and massive computational problems across diverse 
fields such as astronomy, climate science, and particle 
physics. These simulations rely on large-scale data and require 
parallel processing support and maximized floating-point 
operations. However, in heterogeneous system environments, 
issues arise including overhead from memory copying 
between CPUs and GPUs, data bottlenecks, computational 
delays, and increased energy consumption[1]. Therefore, 
optimizing system performance to save time and costs while 
enhancing research efficiency is crucial. This paper presents a 

multidimensional solution combining code-level 
improvements (OpenMP and  

MPI) with structural innovations Adaptive Mesh 
Refinement (AMR) indexing and Compute Express Link 
(CXL) integration based on next-generation hardware 
architectures to resolve the severe communication and 
synchronization bottlenecks in RAMSES-HR5[2]. 
Specifically, it thoroughly examines the technical feasibility 
of fundamentally resolving memory bottlenecks within 
heterogeneous systems and maximizing data sharing 
efficiency by leveraging CXL technology. Chapter 2 of this 
paper provides an overview of CXL and explores HPC 
utilization strategies for different CXL device types. Chapter 
3 analyzes the hotspots of the HPC application simulation 
RAMSES-HR5 to design computational optimization 
strategies. Chapter 4 designs performance improvement 
strategies using enhanced OpenMP and MPI communication, 
along with performance optimization approaches leveraging 
CXL. Chapter 5 presents the conclusions and future research 
directions. 

 

II. CASE STUDY 

A. Overview of CXL Protocols (CXL.cache, CXL.mem) and 

Coherence Mechanisms 

CXL is an open-standard interconnect designed for high-
speed, high-capacity CPU-to-device and CPU-to-memory 
connections in high-performance data center computing. CXL 
builds upon the existing PCI Express (PCIe) physical and 
electrical interfaces but overcomes the limitations of PCIe by 
introducing a new cache coherence protocol. The core 
protocols of CXL are as follows: 

• CXL.io: A PCIe-based block I/O protocol. 

• CXL.mem: Enables the CPU to access extended 
memory (CXL memory) connected to CXL devices. 
This overcomes the capacity and socket packaging 
limitations of standard DIMM memory. 

• CXL.cache: Maintains cache coherence between CPUs 
and accelerators (GPUs, DPUs, etc.), ensuring data 
consistency across heterogeneous computing domains. 

By managing cache coherence at the hardware level, CXL 
provides a new paradigm that integrates the CPU, various 
accelerators, and extended memory components into a single, 
unified, and consistent memory domain[3-5]. 
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B. HPC Utilization Approaches by CXL Device Type 

The CXL specification classifies devices into three types 
based on their functionality and role, each performing a 
distinct function within HPC architectures[3-5]. 

• Type 1 (Accelerator): Possesses its own fully coherent 
cache but lacks globally visible local memory (Device 
Local Memory). Type 1 devices extend the 
functionality of the PCIe protocol, particularly by 
maintaining cache coherence when accessing host 
memory. They are used to replace traditional DMA-
based incoherent accelerators, thereby optimizing data 
sharing with the CPU. 

• Type 3 (Memory Expander): Possesses only host-
managed device memory (HDM) and is primarily used 
to expand memory capacity via CXL.mem 
transactions. This overcomes server memory channel 
limitations and the constraints of increasing DRAM 
density, enabling large-scale memory expansion and 
memory pooling. 

• Type 2 (Heterogeneous Accelerator): The most 
complex type, comprising devices like GPUs, ASICs, 
and FPGAs that attach their own high-bandwidth 
memory (DDR or HBM). Type 2 devices may 
optionally have a cache and expose their memory to 
the CPU via Host-Managed Device Memory (HDM). 
Simultaneously, like Type 1, they can access CPU 
memory consistently using CXL.cache. This 
bidirectional memory sharing support is essential for 
dramatically improving the performance of 
heterogeneous HPC workloads. 

Table 1 below compares the roles of CXL device types 
within HPC architectures.  

 

TABLE I.  COMPARES THE ROLES OF CXL DEVICE TYPES WITHIN HPC 

ARCHITECTURES. 

CXL Device 

Type 

Primary 

Protocol 

Cache 

Coherence 

(Host) 

Key HPC Use 

Cases 

Type 1 

(Accelerator) 

CXL.cache, 

CXL.io 

Fully Coherent Accelerator with 

its own cache 
(Coherent DMA 

replacement) 

Type 2 
(Accelerator/

Memory) 

All (Cache, 
Memory, I/O) 

Optional 
Coherence 

GPU, FPGA, 
etc. 

Type 3 
(Memory 

Expander) 

CXL.mem, 
CXL.io 

Host-Managed 
Memory 

(HDM) 

Large-scale 
memory 

expansion and 

pooling 
(Capacity 

expansion) 

 

C. CXL Memory Pooling: Establishing a global data 

sharing environment between heterogeneous processors 

(CPU/GPU) 

CXL's Memory Pooling feature is a core technology that 
resolves data sharing inefficiencies in HPC environments. 
CXL consolidates memory resources distributed across the 
system into a single unified pool. Through this global memory 
pool, CPUs, GPUs, and other accelerators can dynamically 

allocate and utilize memory resources as needed. This 
represents a strategic approach to break away from traditional 
siloed memory structures, maximize data sharing efficiency 
between heterogeneous components, and resolve memory 
bottlenecks. 

 

III. RAMSES-HR5 HOTSPOT ANALYSIS 

This study performed performance analysis using Intel 
VTun Profiler on RAMSES-HR5, one of the HPC application 
simulation codes. RAMSES is a code used for large 
RAMSES-HR5, using Intel Vtune Profiler. RAMSES is a 
code used for large-scale astrophysical and cosmological 
simulations, based on the Adaptive Mesh Refinement AMR 
technique and MPI + OpenMP hybrid parallelization. 

Figure 1 below shows the total profiling time, and Figure 
2 displays the TOP5 results from the profiling. 

 

Fig. 1. The total profiling time 

 

 

Fig. 2. The  displays the TOP5 results from the profiling 

Analysis revealed that approximately 53% (8145.535 
seconds) of the total CPU execution time (15368.147 seconds) 
was spent in spin time. This indicates that bottlenecks 
occurring during parallelization and communication processes 
are more severe than the computational tasks themselves. 
Profiling results show the top four functions consuming the 
majority of CPU time are as follows: 

• _kmp_fork_barrier(41.1%): Excessive calls 
occurred during OpenMP parallel region creation and 
thread synchronization. 

• pmpi_allreduce_(13.0%): Excessive global 
reductions during Poisson iteration calculations. 

• _kmp_fork_call(11.1%): Repeatedly called during 
entry into OpenMP parallel regions. 

• pmpi_waitall_(7.4%): Concentrated wait time for 
asynchronous communication completion during 
ghost cell data exchange. 

 



These results clearly indicate that performance 
optimization for RAMSES-HR5 should focus on improving 
the communication-intensive structure rather than 
computation-intensive performance enhancements. 

 

IV. STUDY ON HPC APPLICATION PERFORMANCE 

IMPROVEMENT THROUGH CXL ADOPTION 

A. Performance Improvement Direction for HPC 

Simulation Code (RAMSES-HR5) 

HPC application simulation codes utilize complex 
algorithms and large-scale data structures, making in-depth 
application-level analysis and code redesign essential for 
optimization on new hardware architectures like CXL. The 
RAMSES-HR5 case study demonstrates the importance of 
this approach. RAMSES-HR5 is based on MPI + OpenMP 
hybrid parallelization[6,11]. Performance analysis identified 
communication and synchronization delays as key 
bottlenecks. To address this, the following specific code 
improvements were implemented. Figure 3 below is an 
example of code improvement for OpenMP , and Figure 4 is 
an example of code improvement for MPI Communication 
[12,13]. 

  

Fig. 3. An example of code improvement for OpenMP 

 

Fig. 4. An example of code improvement for MPI Communication 

 

• OpenMP Improvements: To reduce the overhead of 
the existing Fork/Barrier approach, which 
creates/terminates parallel regions per loop, the entire 
timestep is consolidated into a single parallel region. 
No wait and task loop are used to eliminate 
unnecessary synchronization points. This is expected 
to reduce Fork/Barrier calls by 15% to 40%. 

 

• MPI Communication Improvements: To reduce 
excessive MPI All reduce calls, we use asynchronous 
communication via MPI_Iallreduce to overlap 
communication with CPU computation. To decrease 
NIC overhead from small packet communications, we 
bundle multiple messages into derived types. These 
improvements aim to reduce latency by 10% to 20%. 

 

B. Optimization of Adaptive Message Refinement (AMR) 

Structure and CXL Utilization 

 AMR is a core HPC technology that reduces 
computational and memory requirements by applying high 
resolution only to specific complex regions within a 
simulation. However, the performance of AMR-based 
applications is often hindered by inefficiencies in the data 
structure[7,8]. 

Existing Oct-tree-based AMR index structures suffer from 
increased cache misses as pointer traversal depth grows, and 
cause load imbalance issues due to recursive searches. AMR's 
dynamic data structures, often reaching hundreds of 
megabytes in size with frequent random accesses, tended to be 
processed on the CPU rather than the accelerator. 

CXL technology presents a structural alternative to resolve 
these fundamental bottlenecks in AMR. 

• Innovation in Index Structure: First, the complex Oct-
tree-based index structure is replaced with a hash-
based index structure that maps each cell by converting 
it into a Morton key (Z-order). This transforms 
significantly improves cache efficiency by converting 
parent/child/neighbor node lookups into simple bit 
operations and hash lookups. 

• Utilizing CXL Global Memory Pool: The improved 
hash-based index structure is deployed within a global 
memory pool leveraging CXL technology. 

 

C. Maximizing Data Sharing Efficiency in Heterogeneous 

Environments 

By placing the hash-based AMR index structure in the 
CXL global memory pool, multiple CPUs and GPUs can 
simultaneously access this index structure without data 
copying. CXL's cache coherence feature moves the complex 
pointer tracking paths of dynamic data structures into a high-
speed shared memory space, maximizing parallelization 
efficiency. Particularly when Halo (boundary) data exchange 
occurs, using the CXL pool allows only the data array itself to 
be transferred, with the actual data referenced directly from 
the pool. This eliminates the overhead of traditional memory 
copying and minimizes I/O and communication bottlenecks, 
significantly enhancing the scalability and performance of 
HPC simulations. The cases of RAMSES-HR5 and AMR 
demonstrate that adopting CXL technology requires more 
than just hardware replacement. Fundamental co-design and 
redesign of the application's core algorithms and data 
structures are essential conditions for success. 

 



V. CONCLUSION AND FUTURE WORK 

A. Authors and Affiliations Expected Benefits from 

OpenMP/MPI Code Improvements and CXL Integration 

for Comprehensive Performance Enhancement 

The multifaceted optimization strategy proposed for 
RAMSES-HR5 provides an integrated solution to address the 
chronic issues that have hindered the performance of the 
existing simulation code. The code-level improvements for 
OpenMP and MPI improvements directly target 
synchronization and communication wait times (Spin Time), 
which accounted for 53% of total execution time. Through 
reducing fork/join overhead, mitigating load imbalance, 
enabling asynchronous communication overlap, and message 
vectorization, we anticipate performance gains exceeding 
20%. 

By integrating CXL-based structural innovations on top of 
these code improvements, performance gains are further 
maximized. Placing the hash-based AMR index structure 
within CXL's global memory pool and enabling 
heterogeneous processors to access it directly while 
maintaining cache coherence revolutionarily improves 
RAMSES's most inefficient memory access and data sharing 
processes. This reflects how HPC application optimization is 
shifting beyond merely maximizing CPU or GPU 
computational power, transitioning toward a data-centric 
architecture focused on data access speed and communication 
efficiency. 

 

B. Proposed Future HPC Architecture through Role 

Division: CXL (Data Sharing) - DPU (Communication) 

- CPU/GPU (Computing) 

Ultimately, the approach proposed in this study 
contributes to building a simulation environment optimized 
for next-generation HPC system architectures. Future HPC 
systems will evolve toward maximizing overall system 
efficiency through role specialization among dedicated 
devices: 

• CPU/GPU (Computational): Dedicated to complex 
physics models and floating-point operations, 
maximizing computational efficiency in a low-latency 
environment. 

• CXL (Data Sharing): Integrates memory hierarchies 
across heterogeneous devices via a high-speed, cache-
coherent interconnect, providing a Global Memory 
Pool function to eliminate memory access bottlenecks. 

• DPU (Data Processing Unit) (Communication): 
Offloads long-distance/inter-rack MPI communication 
protocol processing and I/O tasks from the CPU, 
enabling the CPU to focus purely on computational 
tasks and ultimately alleviating communication 
bottlenecks. 

CXL serves as the core interconnect in this new 
architecture, minimizing data movement and ensuring 
memory access consistency. It presents a blueprint for 
overcoming the scalability limitations of communication-
intensive, large-scale simulation codes like RAMSES. 

This study proposed specific solutions to address 
synchronization and communication issues, which are key 
bottlenecks hindering the performance of HPC application 
simulations. Alongside code improvements for OpenMP and 
MPI communication structures, it suggested structural 
alternatives: transitioning the AMR index structure to a hash-
based approach and introducing CXL technology. These 
approaches are expected to establish a simulation environment 
optimized for next-generation HPC architectures, where 
computation is distributed to CPUs/GPUs, data sharing to 
CXL, and communication to DPUs. Future research should 
directly implement the proposed solutions into the RAMSES 
code to validate their actual performance improvement 
effects. 
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