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Abstract—Supply-demand imbalance is a critical problem in

street-hail taxi systems. In a high-demand or overserved area,

where pickups exceed drop-offs, taxis have to compete intensely

for passengers. This results in a reduction of their revenues. On

the other hand, in a low-demand or underserved area, where

taxis are less likely to search for passengers, the passengers

experience a longer waiting time. Moreover, taxis often perceive

that finding passengers in a low-demand area is more difficult.

This results in the refusal of service for trips to destinations in

low-demand areas, which is one of the critical problems in the

Bangkok taxi service. In this study, based on more than four

million real taxi trips in Bangkok, we quantify the effects of the

supply-demand imbalance on passenger search time and distance.

In contrast to the conventional perception, we demonstrate that,

on average, taxis in underserved areas do not have longer search

times and distances than those in overserved areas. In fact, there

is almost no correlation between the level of supply-demand

imbalance and passenger search time and distance. These new

insights change how recommendation and rebalancing models for

traditional street-hail taxi services and future autonomous taxi

services should be designed.

Index Terms—Taxi supply-demand imbalance, smart mobility,
smart city, big data analytics

I. INTRODUCTION

The imbalance between supply and demand is a persistent
problem in street-hail taxi systems. It causes inefficiencies
that affect passengers, drivers, and city traffic. Typically, the
imbalance is measured by the ratio of pickups and drop-
offs. In a high-demand or overserved area, where the number
of pickups exceeds the number of drop-offs, taxis have to
compete intensely for passengers. This likely leads to reduced
revenues. On the other hand, in a low-demand or underserved
area, where taxis are less likely to search for passengers, the
passengers experience a longer waiting time. Moreover, it is
generally perceived that passenger search time in underserved
areas is higher than in overserved areas. In other words, taxis
often believe that it takes them longer to find the next pas-
senger in the low-demand area than in the high-demand area.
This results in the refusal of service for trips to destinations in
the low-demand areas, which is one of the critical problems
in the Bangkok taxi service.

In this study, we quantify the effects of supply-demand
imbalance on passenger search time and distance. Does it take
longer to find the next passengers in the underserved areas?

Do taxis have to drive farther in the underserved areas to find
their next passengers? Is it advisable to recommend taxis to the
high-demand areas? Are most areas in Bangkok underserved
or overserved? These are the key research questions that we
aim to address in this study.

In this study, we analyze over four million taxi trips in
Bangkok and its surrounding region in January, April, July,
and October 2022. These trips are extracted from the real
global positioning system (GPS) traces of Bangkok taxis,
publicly provided by the Thai Intelligent Traffic Information
Center (iTIC) [1]. Unlike most public taxi datasets, which only
keep records of busy trips (i.e., trips with passengers), the
Bangkok taxi dataset also provides records of taxis when they
are vacant. Consequently, it enables us to genuinely observe
important characteristics of vacant trips, such as vacant time
and distance.

The contributions of this paper can be summarized as
follows:

• In contrast to the conventional belief, we demonstrate
that taxis in underserved areas do not have larger pas-
senger search times than those in overserved areas, and
vice versa. Surprisingly, we find that there is almost no
correlation between the passenger search time and the
level of supply-demand imbalance.

• Similarly, we find that taxis in underserved areas do not
drive farther to find their next passengers than those in
overserved areas, and vice versa. In fact, we demonstrate
that there is almost no correlation between the passenger
search distance and the level of supply-demand imbal-
ance.

• Finally, we illustrate how the level of imbalance in each
city grid in Bangkok changes spatially and temporally.
The dynamics of the imbalance level in each city grid
can be used to infer its functional use (e.g., residential,
commercial, airports, etc.), benefiting future prediction
models.

These new insights change how the recommendation and
rebalancing models should be designed, benefiting both tra-
ditional street-hail taxi and future autonomous taxi services.

The rest of this paper is organized as follows. In Section II,
we briefly discuss related work. Data and feature extraction



are explained in Section III. The analysis is discussed in
Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORK

Demand and supply of street-hail taxis have been stud-
ied extensively in the literature. On the demand side, most
studies mainly focus on demand prediction models, which
are typically created from historical pickup data. Common
prediction techniques include classical time-series models,
such as autoregressive integrated moving average [2]–[4], and
deep learning models, such as convolutional neural networks
and long short-term memory (LSTM) [5]–[7].

On the supply side, most studies focus on recommendation
models, optimal search strategy modeling, and analysis of
search behavior. The common goal of recommendation models
is to develop algorithms that help vacant taxis find their
next passengers quickly. Typically, a recommendation model
suggests a few attractive hotspots where a taxi is most likely
to find its next passenger [8]–[11]. The hotspots are typically
ranked based on criteria such as predicted demand, estimated
earnings, and expected traffic conditions. Many studies inves-
tigate the optimal passenger search strategy. The goal is to
create a mathematical model that generates an optimal search
route based on specific criteria such as maximizing revenue
or minimizing search time. A common technique employed
in these works is the Markov Decision Process (MDP) [12]–
[14]. Finally, many supply-side studies focus on analyzing
search behavior, which examines passenger search behaviors
that lead to positive outcomes, such as higher earnings. It
usually involves identifying how high-performing taxis search
for passengers [15]–[18].

Although the demand and supply of street-hail taxis have
been studied extensively, none of the existing work has quanti-
tatively analyzed the impact of the imbalance on the passenger
search time and distance. Through big data analytics, we
address this research gap by demonstrating how the supply-
demand imbalance affects passenger search time and distance.

III. METHODOLOGY

A. Data and Pre-processing

In this study, we analyze the Bangkok taxi dataset, which is
publicly provided by the Thai Intelligent Traffic Information
Center (iTIC) [1]. The dataset contains raw GPS records of
Bangkok taxis, which were collected from each taxi approxi-
mately every one to three minutes. Each GPS record contains
basic positioning data, including latitude, longitude, and times-
tamp. Moreover, for-hire light status and engine status were
also collected. The for-hire light status enables us to identify
whether a taxi is busy (i.e., carrying a passenger) or vacant
(i.e., searching for a passenger). The engine status allows us to
determine whether the vehicle engine is running. In this study,
we focus on the taxi trips in Bangkok and its surrounding
region during January, April, July, and October 2022. A map
of the study area is shown in Fig. 1. The geolocations of the
four corners of the study area are given in Table I.

Fig. 1. The study area covers Bangkok and some parts of its nearby region.
(This map is created from the open data provided by OpenStreetMap [19]
under the Open Database Licence [20].)

TABLE I
FOUR CORNERS OF THE STUDY AREA.

Corner Latitude Longitude

Upper left 13.94500 100.32750
Upper right 13.94500 100.93833
Lower left 13.49310 100.32750
Lower right 13.49310 100.93833

The raw GPS data are pre-processed as follows. Since we
only consider the period when each taxi is active (i.e., when
the engine is running), all the records with inactive engine
status are filtered out. In addition, all the records with invalid
GPS status are also filtered out. Finally, any records with
geolocations outside the study area are excluded. After the
initial pre-processing, we are left with valid records of active
taxis inside the study area. Essential features are then extracted
from these data, as described in the next section.

B. Trip Extraction

After the initial pre-processing, taxi trips can be extracted. A
trip is defined as a sequence of consecutive GPS records with
the same for-hire status. Two types of trips can be extracted.
They are referred to as vacant trips and busy trips. A vacant
trip, or a trip without passengers, is defined as a sequence
of consecutive GPS records with active for-hire status. In
contrast, a busy trip, or a trip with passengers, is defined
as a sequence of consecutive GPS records with inactive for-
hire status. The first GPS record in a sequence is regarded as
the starting point of the trip, and the last GPS record in the
sequence is regarded as the end point of the trip.

For each trip, we can extract its duration and distance.
The trip duration is the difference between the timestamps
at the start and end of the trip. For example, suppose that
trip A consists of four GPS points, namely p1, p2, p3, and p4.
The duration of trip A can be calculated from the difference



TABLE II
SUMMARY OF EXTRACTED TAXI TRIP DATA IN 2022.

Description Jan Apr Jul Oct

Taxis 2,874 2,657 2,754 2,826
Busy trips 520,768 482,299 553,390 575,768
Vacant trips 545,783 512,095 596,796 625,472
Total trips 1,066,551 994,394 1,150,186 1,201,240

between the timestamps of p1 and p4. The trip distance is
an aggregated sum of the distance between consecutive GPS
points in the trip. For example, suppose that trip A consists
of four GPS points, namely p1, p2, p3, and p4. Let dij be
the geographical distance between pi and pj . Then, the total
distance of trip A is estimated as d(A) = d12 + d23 + d34.

Additional filtering is performed to exclude obviously
anomalous trips. It is extremely unlikely that a passenger
will spend more than four hours in a taxi. Similarly, it is
highly unlikely that a taxi will drive continuously for more
than four hours to search for passengers without taking a
break. As a result, trips longer than four hours are considered
erroneous. A typical driving distance from one corner of the
study area to its diagonally opposite corner is around 120 km.
Therefore, trips farther than 160 km (i.e., 33% larger than
the typical longest driving distance) will also be considered
unusual. A summary of the trip data after the filtering is given
in Table II. Approximately one million trips were made by
these taxis each month.

C. Measurement of Supply-Demand Imbalance

The imbalance of supply and demand is measured by a
metric called the pickup-to-drop-off ratio (PDR). The PDR
is calculated from the ratio of the number of pickups to the
number of drop-offs in an observed space-time unit. More
formally, the PDR in an observed space s during period t can
be expressed as

PDR(s, t) =
P (s, t)

D(s, t)
(1)

where P (s, t) and D(s, t) are the number of pickups and the
number of drop-offs in the observed space-time unit (s, t),
respectively. A PDR value greater than 1 indicates that the
considered space-time unit has a higher number of pickups
than drop-offs; whereas, a PDR value smaller than 1 implies
that the considered space-time unit has a higher number of
drop-offs than pickups. Finally, the space-time unit has a
perfect supply-demand balance if its PDR value is exactly
equal to 1.

In this study, each observed space is defined as a
2 km ⇥ 2 km square grid, and each observed time period
is one hour. With this grid size, the entire study area shown
in Fig. 1 can be divided into 825 grids with 25 rows and 33
columns. Since there are 24 hours in a day, this results in a
total of 825⇥24 = 19, 800 space-time units per day. Because it
is not meaningful to analyze the space-time units where both

the number of pickups and drop-offs are zero, these space-
time units are excluded from our consideration. The PDR
values for the remaining space-time units are then calculated.
However, in a space-time unit with non-zero pickups and zero
drop-offs, the PDR value becomes unmeasurable (i.e., division
by zero). To circumvent this numerical problem, a pseudo-
count of 1 is added to both the number of pickups and the
number of drop-offs in all considered space-time units. For
example, a particular space-time unit might have 20 pickups
and zero drop-offs. After adding the pseudo-count, the PDR
ratio is computed as (20 + 1)/(0 + 1) = 21.

The mean PDR of each space-time unit is then computed for
further analysis. In this study, we focus only on weekday trips,
as most taxi trips occur on weekdays. For each space-time
unit (s, t), where s 2 {1, 2, . . . , 825} is the grid identification
number and t 2 {0, 1, . . . , 23} is the hour of the day, the mean
PDR is obtained by averaging over the PDR in the unit across
all the weekdays in the month. For example, the mean PDR
of the space-time unit (100, 8) in July 2022 is obtained by
averaging over the PDR values observed in Grid 100 during
the 8th hour, over the 21 weekdays in July 2022.

IV. SUPPLY-DEMAND IMBALANCE ANALYSIS

A. Impact of Imbalance on Search Time and Distance

In this section, we analyze the characteristics of passenger
search time and distance to examine how they change with
varying levels of supply-demand imbalance. For analytical
purposes, we divide the space-time units into the following
three categories based on their mean PDR values:

• Underserved units–These are low-demand units with
fewer pickups than drop-offs. An underserved unit is
defined as a space-time unit with a mean PDR value
smaller than 0.95.

• Balanced units–These are units with approximately
equal numbers of pickups and drop-offs. A balanced unit
is defined as a space-time unit with a mean PDR value
between 0.95 and 1.05.

• Overserved units–These are high-demand units with a
higher number of pickups than drop-offs. An overserved
unit is defined as a space-time unit with a mean PDR
value greater than 1.05.

A box plot shown in Fig. 2 illustrates the mean vacant time of
the vacant trips originating in the underserved, balanced, and
overserved space-time units in July 2022. It can be observed
that the characteristics of the mean vacant time in these
three groups are similar. There is no substantial evidence to
suggest that the vacant trips originating in an underserved
unit have significantly longer duration than those originating
in an overserved unit, and vice versa. The medians of the
mean vacant time in the underserved, balanced, and overserved
units are 22.68 minutes, 23.79 minutes, and 24.13 minutes,
respectively. Thus, we observe only a slight increase in the
median as the mean PDR increases. Similar characteristics are
also observed in January, April, and October 2022; however,
results are omitted due to space limitations.
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Fig. 2. A box plot of the mean vacant time of trips originating in the
underserved, balanced, and overserved space-time units in July 2022.
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Fig. 3. Mean vacant time of trips originating in each space-time unit and
its corresponding mean PDR. The data presented on this plot are from July
2022.

Fig. 3 illustrates the mean vacant time of the vacant trips
originating in each space-time unit and its corresponding mean
PDR in July 2022. Clearly, there is no strong correlation
between the mean vacant time and the mean PDR. The
Pearson correlation coefficient between these two variables is
only 0.07, which confirms that they are almost uncorrelated.
Surprisingly, this suggests that the vacant trips originating
from an underserved unit do not have a longer duration than
those from an overserved unit. In other words, taxis in low-
demand areas do not have longer passenger search times
than those in high-demand areas. In fact, there is almost no
correlation between the type of areas and the duration of
search time. This observation is consistent across the four
months investigated in 2022, as shown in the second column
of Table III.

Next, we investigate if there is a relation between the
passenger search distance and the mean PDR. In other words,

TABLE III
CORRELATION BETWEEN MEAN PDR, MEAN VACANT TIME, AND MEAN

VACANT DISTANCE.

Correlation Coefficient

Month Mean PDR vs Mean PDR vs

Mean Vacant Time Mean Vacant Distance

Jan 0.08 0.08
Apr 0.08 0.09
Jul 0.07 0.09
Oct 0.10 0.11
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Fig. 4. A box plot of the mean vacant distance of trips originating in the
underserved, balanced, and overserved space-time units in July 2022.

we analyze whether taxis in underserved areas need to drive
farther to find their next passengers compared to those in
overserved areas. A box plot shown in Fig. 4 illustrates the
mean vacant distance of the vacant trips originating in the
underserved, balanced, and overserved space-time units in July
2022. We observe that the characteristics of the mean vacant
distance in these three groups are not significantly different.
There is no substantial evidence to suggest that the vacant trips
originating in an underserved unit have significantly larger
distances than those originating in an overserved unit, and
vice versa. The medians of the mean vacant distance in the
underserved, balanced, and overserved space-time units are
9.21 km, 9.30 km, and 9.86 km, respectively. Apparently, the
median of the vacant distance slightly increases as the mean
PDR increases. Similar characteristics are also observed in
January, April, and October 2022. Results are omitted due to
space limitations.

Fig. 5 illustrates the mean vacant distance of the vacant
trips originating in each space-time unit and its corresponding
mean PDR in July 2022. Similar to what was observed earlier
in the case of the mean vacant time, there is no strong
correlation between the mean vacant distance and the mean
PDR either. The Pearson correlation coefficient between these
two variables is only 0.09, indicating that they are almost
uncorrelated. This implies that the vacant trips originating in
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Fig. 5. Mean vacant distance of trips originating in each space-time unit and
its corresponding mean PDR. The data presented on this plot are from July
2022.

an underserved unit do not have a longer distance than those in
an overserved unit. In other words, taxis in low-demand areas
do not have a longer passenger search distance than those
in high-demand areas. In fact, there is almost no correlation
between the type of areas and the passenger search distance.
The Pearson correlation coefficients shown in the last column
of Table III confirm that this observation is consistent across
all four months considered in 2022.

B. Spatiotemporal Variation of Imbalance

In this section, we analyze the spatial and temporal varia-
tions of the mean PDR values. Fig. 6 illustrates the percentage
of underserved, balanced, and overserved space-time units in
four periods of the day in July 2022. It can be observed that
the proportion of each space-time unit type is similar across
the four periods of the day. In each period, approximately
20% of the units are underserved, 10% are balanced, and
70% are overserved. Clearly, the Bangkok taxi supply-demand
is heavily imbalanced, with mostly overserved units. Similar
characteristics are also observed in January, April, and Oc-
tober; however, results are omitted due to space limitations.

Next, we investigate how the mean PDR in each grid
changes with the time of day. Fig. 7 illustrates the mean PDR
in four periods of the day across all grids. Recall that the study
area consists of 825 grids with 25 rows and 33 columns. We
can observe that the mean PDR of a grid cell may change over
time. For example, a grid cell can be an overserved unit in the
morning and turn into an underserved unit in the evening.
This is likely a characteristic of a residential area where the
number of pickups is expected to be larger than the number of
drop-offs in the morning, and vice versa in the evening. This
suggests that the functionality of a grid cell could be inferred
based on its PDR value. The temporal variation of the mean
PDR in a particular area could help predict its functionality
(e.g., residential, commercial, etc.).
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Fig. 6. Percentage of underserved, balanced, and overserved space-time units
in four periods of day in July 2022.

Finally, two grid cells distinctively stand out in Fig. 7. For
convenience, we will use a coordinate (i, j) to refer to the grid
in row i and column j. The first distinctive grid is (12, 23),
where the Suvarnabhumi International Airport (BKK) is lo-
cated. This grid is heavily overserved. The mean PDR peaks
in the 06:00-11:59 period, then decreases in the afternoon and
evening. The second distinctive grid is (24, 15), where the Don
Mueang International Airport (DMK) is located. Similarly, this
grid is mostly overserved. Like the BKK airport grid, its mean
PDR also peaks in the 06:00-11:59 period, then decreases in
the afternoon and evening.

V. CONCLUSION

In this study, we conduct a comprehensive quantitative
analysis of how the supply-demand imbalance affects pas-
senger search time and passenger search distance. This has
not been investigated in the literature. More than four million
Bangkok taxi trips in January, April, July, and October 2022
were thoroughly analyzed. Surprisingly, our analysis shows
that the imbalance level and the passenger search time are
almost uncorrelated. The correlation coefficient between the
imbalance level and the passenger search time is close to
zero. Consequently, taxis in underserved (low-demand) areas
do not have longer passenger search times than those in
overserved (high-demand) areas, and vice versa. This new
insight invalidates the conventional perception that taxis would
have a harder time finding new passengers in underserved
areas. A similar characteristic is also observed in the passenger
search distance.

Ultimately, our analysis reveals that, on average, the pas-
senger search times and distances of taxis in underserved
and overserved areas are indifferent. While it is more likely
to spot passengers in high-demand areas, the taxis have to
compete more intensely. As a result, it lengthens the cruising
times and distances, making them indistinguishable from those
in low-demand areas. These valuable insights provide new
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perspectives on designing a recommendation model. It is
clear from these insights that recommending taxis to visit a
series of attractive high-demand hotspots will not effectively
improve the passenger search time and distance. The model
should move beyond the simplistic assumption that drivers in
underserved areas will have a harder time finding passengers.
Instead, the model should consider other factors that prac-
tically influence driver behavior, such as profitability, traffic
conditions, and driver preferences.
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