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Abstract—Privacy concerns in human monitoring systems
have become increasingly critical as surveillance technologies
proliferate in public and private spaces. Conventional detection
solutions rely on RGB-based systems, raising serious privacy
concerns due to potential identity disclosure. This paper in-
troduces AnonymEyes, a lightweight, affordable, and privacy-
enhanced human detection system utilizing Time-of-Flight (ToF)
depth cameras with edge computing devices such as the Rasp-
berry Pi. By exclusively leveraging depth data while discarding
RGB-based data, AnonymEyes enhances individual anonymity
while maintaining high detection performance. The system em-
ploys YOLOv8 Nano architecture based framework to process
ToF depth frames, achieving real-time detection on resource-
constrained environments. The system was trained and vali-
dated on over 1,500 annotated ToF depth frames encompassing
diverse poses, clothing, and appearances. The system demon-
strates exceptional metrics: 99.90% precision, 100.00% recall,
99.95% F1-score, 99.50% mAP@0.5, and 92.50% mAP@0.5:0.95
across stricter IoU thresholds. AnonymEyes represents a robust
and scalable solution for applications requiring accurate, real-
time human presence monitoring in privacy-sensitive, resource-
constrained environments.

Index Terms—Privacy-enhanced, Human Detection, Time-of-
Flight (ToF) camera, Depth Sensing, Edge Computing, Deep-
Learning, YOLOv8, Resource-constrained devices

I. INTRODUCTION

Human detection systems have become increasingly preva-
lent across diverse applications, from smart building au-
tomation and security monitoring to occupancy sensing and
space management. However, conventional solutions predomi-
nantly rely on RGB-based systems, raising significant privacy
concerns due to identity disclosure. Traditional RGB-based
detection systems, while offering high accuracy, inherently
compromise individual privacy by capturing detailed visual
data that can reveal identities. Additionally, RGB process-
ing requires substantial computational resources and higher
costs, reducing scalability for large-scale deployments. These
limitations significantly restrict the deployment of monitoring
technologies, particularly in sensitive environments such as
healthcare facilities, private offices, and residential spaces
where privacy expectations are paramount.

In response to these privacy challenges, this study introduces
AnonymEyes, a privacy-enhanced human detection system
leveraging Time-of-Flight (ToF) depth cameras (shown in
Fig. 1) with affordable edge computing devices such as the

Raspberry Pi. Through exclusive reliance on depth data and
complete omission of RGB inputs, the system enhances indi-
vidual anonymity while maintaining robust detection perfor-
mance, effectively mitigating key privacy concerns associated
with facial recognition and visual identification. The system

Fig. 1. Demonstration of the Time-of-Flight (ToF) camera.The camera emits
infrared light toward the scene and measures the round-trip travel time of
the reflected signal. The depth d is computed from the measured delay t as
d = ct

2
, where c denotes the speed of light.

employs a lightweight YOLOv8 Nano architecture trained on
ToF depth frames, enabling real-time detection on resource-
constrained edge devices. All detection operations occur lo-
cally, eliminating cloud-based computation or external data
transmission beyond initial model training and further mini-
mizing privacy concerns. To ensure robust performance across
diverse real-world scenarios, we developed a comprehensive
dataset of over 1,500 annotated ToF depth frames captured
from individuals with varying poses, clothing, heights, and
orientations. This dataset provides essential variations that
improve the system’s generalization and reliability under prac-
tical deployment conditions. This paper presents the complete
system pipeline from ToF camera calibration through depth
data acquisition, spatial transformation, and YOLO-based hu-
man detection, including dataset development, edge imple-
mentation on resource-constrained devices, and comprehensive



validation. Our results demonstrate that human detection using
ToF depth data can achieves exceptional accuracy metrics
while eliminating facial recognition capabilities and reducing
privacy invasion compared to RGB-based approaches. The sys-
tem provides a scalable, cost-effective solution (under $150)
for applications requiring reliable human presence monitoring,
with fully local processing on edge devices eliminating cloud
dependency and associated privacy risks. The key contribution
of our system can be summarized as below:

• Mitigating Privacy Risk by-Design: An end-to-end
ToF depth-based human detection framework that miti-
gates visual privacy risks by eliminating RGB data cap-
ture while achieving exceptional performance (99.90%
precision, 100.00% recall, 99.95% F1-score, 99.50%
mAP@0.5).

• Edge-Optimized Framework: Tailored YOLOv8 Nano
based framework for real-time human detection on
resource-constrained devices with fully on-device pro-
cessing, enhancing the privacy mitigating deployment
without cloud infrastructure.

• Comprehensive ToF Depth Dataset: Development and
annotation of over 1,500 ToF depth frames encompassing
diverse poses, clothing, heights, and orientations, pro-
viding a valuable resource for privacy-enhanced human
detection research.

• Cost-Effective Deployment Solution: Demonstration of
a practical, scalable system costing under $150 that
achieves exceptional metrics suitable for privacy-sensitive
applications in healthcare, smart homes, and office envi-
ronments.

II. RELATED WORKS

Human detection research spans smart building automation,
occupancy monitoring, security systems, and human-computer
interaction. Early approaches used classical computer vision
[1] and handcrafted features like HOG with SVMs [2],
facing limitations under occlusion and challenging lighting.
Deep learning approaches with CNNs [3], [4] and real-time
frameworks like YOLO and SSD [5]–[7] improved accuracy
but raised significant privacy concerns due to RGB imagery.
Alternative modalities include thermal imaging [8], LiDAR
with 3D CNNs or SVMs [9]–[11], and ToF depth sensors
[12], [13]. Luna et al. [14] achieved ∼150 fps using overhead
ToF RGB-D cameras, while Wang et al. [15] achieved 97.73%
accuracy with morphological classification. However, RGB-D
cameras compromise privacy through RGB capture, and ToF
systems face noise from reflective surfaces and occlusions.
While [16] achieved good segmentation performance with
hemisphere LiDAR, the high cost of such systems raises
scalability concerns for widespread deployment. Edge imple-
mentations show promise [17], but RGB-based [18] and RGB-
D approaches [19] lack privacy preservation, while lightweight
CNNs [20] may have insufficient frame rates. These limitations
motivate our depth-only ToF approach on low-cost edge de-
vices, eliminating RGB data entirely while achieving real-time
performance

III. PROPOSED SYSTEM

This section describes the design and implementation of
the proposed AnonymEyes system a privacy-enhanced, af-
fordable, and lightweight framework for real-time human
detection. The system leverages a Time-of-Flight (ToF) depth
camera in combination with an edge computing device, the
Raspberry Pi 5, to detect human presence using only depth
information. By operating entirely on depth data, stored in
NumPy array format, the system inherently prevents the
capture of personally identifiable visual features, enhancing
privacy.

Fig. 2. The Arducam ToF camera connects via CSI to the Raspberry Pi Model
5, serving as the central computing resource for our Edge-IoT setup.

A. System Design

The hardware configuration (see Fig. 2) employs an Ardu-
cam ToF camera mounted in an overhead position to capture
depth arrays covering the monitored area (see Fig. 4). ToF
sensing operates by emitting modulated infrared light pulses
and measuring the phase shift or return time from scene
surfaces as reviewed on. [21]. This produces dense depth maps,
unaffected by ambient lighting or surface color variations.
The system architecture comprises four primary functional
components:

1) Field-of-View calibration, Focal Length Computation
and Depth data acquisition: Continuous acquisition
of depth arrays from the ToF camera with concurrent
field-of-view calibration and focal length computation to
ensure accurate spatial measurements.

2) Adaptive Kalman-filter-based depth processing: Im-
plementation of advanced state-space filtering techniques
to reduce temporal noise and enhance depth data quality
through predictive smoothing algorithms.

3) Depth-to-image conversion: Transformation of filtered
depth maps from NumPy arrays into single-channel
grayscale images with normalized intensity values, en-
suring compatibility with the YOLOv8 Nano architecture
while preserving spatial geometry.

4) Human detection: YOLOv8 Nano-based object detection
pipeline specifically trained for human identification in
depth imagery, providing real-time inference capabilities.

As depicted in Fig. 3, these components form a sequential
processing pipeline from raw depth acquisition through noise
reduction, data formatting, and detection stages. This modular
design enables independent optimization of each component
while maintaining privacy through complete exclusion of RGB
data.



All computations, excluding the YOLOv8 Nano training
phase, are performed entirely on the edge device, eliminating
any reliance on external servers or cloud services. After
offline model training and deployment, the system functions
autonomously without network connectivity, thereby ensuring
that all depth data remains strictly local to the device and never
transmitted externally.

Fig. 3. The Overview of AnonymEyes System.

B. Methodology

1) Field-of-View Calibration and Focal Length Computa-
tion: Accurate 3D spatial mapping requires precise camera
calibration parameters. The specifications of the Arducam ToF
camera provided [22]:

θh = 62.8◦ (horizontal field of view) (1)
θv = 37.9◦ (vertical field of view) (2)

where θh denotes the horizontal field-of-view angle in degrees,
and θv represents the vertical field-of-view angle in degrees.

These field-of-view angles (see Fig. 4) are converted to focal
lengths in pixels using the pinhole camera model [23]:

fx =
W/2

tan(θh/2)
(3)

fy =
H/2

tan(θv/2)
(4)

where fx and fy are the focal lengths in pixels along the
horizontal and vertical axes, respectively, W represents the
image width in pixels, and H represents the image height in
pixels.

The principal point is assumed to be at the image center:

(cx, cy) =

(
W

2
,
H

2

)
(5)

where cx and cy denote the x and y coordinates of the
principal point (optical center) in the image coordinate system,
measured in pixels.

2) Adaptive Kalman-Filtered Depth Frame Processing:
Time-of-Flight (ToF) cameras inherently produce noisy depth
measurements due to sensor limitations and environmental
factors. To obtain stable and reliable depth readings while
maintaining computational efficiency, the system employs
an adaptive Kalman filtering approach that estimates noise
characteristics from strategic keypoints and applies uniform
temporal filtering to the entire depth frame.

Three strategic keypoints along the horizontal centerline
provide real-time noise characterization:

Left: (uL, vc) = (0,H/2) (6)
Center: (uC , vc) = (W/2, H/2) (7)
Right: (uR, vc) = (W − 1, H/2) (8)

where uL, uC , and uR denote the horizontal pixel coordi-
nates of the left, center, and right keypoints respectively, and
vc represents the vertical centerline coordinate.

Each keypoint maintains an independent Kalman filter track-
ing depth measurements over time. The measurement noise
variance is estimated as the average across the three keypoints:

σ2
meas =

1

3

∑
i∈{L,C,R}

σ2
i (t) (9)

where σ2
i (t) represents the estimated measurement noise

variance at keypoint i at time t.
Using these adaptively estimated noise parameters, a frame-

level Kalman filter is applied uniformly across all pixels. For
each pixel (u, v), the filter maintains two states:

• Depth estimate: d(u,v)t — the filtered depth value at pixel
(u, v) at time t, measured in millimeters

• Depth velocity: v(u,v)t — the temporal rate of change of
depth at pixel (u, v), measured in millimeters per frame

At each time step, the filter performs two operations for
every pixel:

(i) Prediction Step: The predicted depth d̂
(u,v)
t is estimated

from the previous depth and velocity:

d̂
(u,v)
t = d

(u,v)
t−1 + v

(u,v)
t−1 ·∆t (10)

where ∆t denotes the time interval between consecutive
depth frame acquisitions, determined by the ToF camera’s
frame rate.

(ii) Correction Step: The filtered depth d
(u,v)
t is obtained by

blending the prediction with the new measurement z(u,v)t :

d
(u,v)
t = d̂

(u,v)
t +Kt

(
z
(u,v)
t − d̂

(u,v)
t

)
(11)

where z
(u,v)
t is the raw depth measurement from the ToF

sensor at pixel (u, v) at time t, and Kt is the Kalman gain
computed using the shared measurement noise variance σ2

meas
across all pixels. The Kalman gain automatically adapts based
on the estimated measurement noise and configured process
noise, ensuring responsiveness to actual depth changes while
suppressing temporal fluctuations.



This adaptive approach provides several advantages: (1)
computational efficiency by estimating noise from only three
keypoints rather than analyzing all pixels independently, (2)
spatial awareness by sampling diverse sensor regions across
the field of view, and (3) automatic adaptation to changing
environmental conditions affecting sensor noise characteris-
tics. The filtered depth frame Dt = {d(u,v)t |∀(u, v)} provides
temporally stable measurements that preserve spatial geometry
while suppressing sensor noise, creating a robust foundation
for the subsequent depth-to-image conversion and human
detection stages.

3) Depth-to-Image Conversion: To prepare depth data for
the YOLOv8 Nano detection network, filtered depth maps
from the Adaptive Kalman-Filter processing stage are con-
verted into single-channel grayscale images. The conversion
leverages OpenCV (Open Source Computer Vision Library) to
transform NumPy array-based depth representations into im-
age format, with depth values normalized to the 0-255 intensity
range. This standardized representation preserves spatial ge-
ometry and depth discontinuities while ensuring compatibility
with the YOLO architecture and enabling efficient real-time
inference.

4) Human Detection: The detection module employs the
YOLOv8 Nano architecture, specifically trained for processing
single-channel depth imagery. The model takes preprocessed
depth frames as input and outputs bounding box predictions
with associated confidence scores.

Fig. 4. Human detection process using the overhead ToF camera system.
The AI module processes depth data to detect multiple human subjects within
the field of view, demonstrating the system’s capability for real-time human
presence detection while maintaining privacy through depth-only sensing.
HFOV, VFOV, and DFOV represent horizontal, vertical, and diagonal field-
of-view angles, respectively, defining the ToF camera’s coverage area.

The training dataset comprises over 1,500 annotated ToF
depth frames, encompassing diverse poses, clothing types, and
appearances to ensure robust performance under real-world
variability. The model learns to recognize human silhouettes
and depth discontinuities rather than texture or color cues,
enhancing privacy while retaining robustness.

C. Dataset and Model Training

The dataset captures realistic variations in appearance and
positioning, enabling generalization across typical human

Fig. 5. An example frame from our dataset, which contains 1501 frames
with different scenarios such as different outfits, positions, and accessories
like caps, headset, backpacks, etc.

monitoring scenarios. Fig. 5 shows example frames with dif-
ferent positions, outfits, postures, and accessories. The dataset
comprises 1,501 frames from 2 unique subjects, split into
training (70%, 1,051 frames), validation (15%, 225 frames),
and test (15%, 225 frames) sets with subject-independent
partitioning to ensure unbiased evaluation. Despite the limited
number of subjects, the diversity in appearance and pose
supports effective training for depth-based detection.

The model employs the YOLOv8 Nano architecture [24], a
lightweight YOLO variant optimized for resource-constrained
devices, trained on the ToF depth frames with diverse appear-
ances and poses. Training was conducted on NVIDIA Tesla T4
GPU workstation using data augmentation (horizontal flipping
p = 0.5, mosaic augmentation, and albumentations
including Blur, MedianBlur, ToGray, and CLAHE), the
AdamW optimizer [25] (β1 = 0.9, β2 = 0.999, weight
decay=0.0005) with a base learning rate of 0.002 and a cosine
annealing scheduler, batch size of 16, input resolution of
640 × 640 pixels, and early stopping (patience=25 epochs,
monitoring validation mAP@0.5) to prevent overfitting, con-
verging at epoch 98.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the AnonymEyes system across three
dimensions: real-time system performance on edge devices,
YOLOv8 Nano model accuracy using precision, recall, F1-
score, and mAP metrics, and system scalability. The results
demonstrate that AnonymEyes achieves superior performance
while mitigating privacy risks, positioning it as a viable
alternative for privacy-sensitive applications.

A. System Performance

The AnonymEyes system demonstrates robust real-time
performance on the Raspberry Pi 5 edge computing platform.
The complete processing pipeline achieves total latency:

ttotal = tacquisition + tkalman + tconversion + tdetection (12)

where ttotal represents total frame processing time, with each
component t denoting processing time for depth data ac-
quisition, Kalman filtering, depth-to-image conversion, and
YOLOv8 detection. This achieves approximately 15 frames



TABLE I
REPORTED PERFORMANCE COMPARISON WITH EXISTING WORKS

Study Metrics System Cost Model and Method

Luna et al. 2016 [14]

F1 Score: 99.57%
Recall: 99.57%
Precision: –.–%
FPS: ∼ 150 FPS

At least over
1000 USD Local Maxima Detection, ROI Estimation, PCA-Based Classifier

Wang et al. 2019 [15]

F1 Score: 95.04%
Recall: 100.00%
Precision: 90.55%
FPS: ∼ 40 FPS

At least over
1500 USD Local Pooling Maxima Search Shallow CNN Classification

Seliunina et al. 2025 [16]

F1 Score: 97.00%
Recall: –.–%
Precision: 98.00%
FPS: ∼ – FPS

At least over
16000 USD

Multi-Channel LiDAR Processing, Positional Encoding, MaskDINO-Based
Human Detection

AnonymEyes

F1 Score: 99.95%
Recall: 100.%
Precision: 99.90%
mAP@0.5: 99.50%
mAP@0.5:0.95: 92.50%
FPS: 15 FPS

148 USD Adaptive Kalman-filtered based depth processing, YOLOv8 Nano, Edge
Computing

per second (FPS) with ttotal < 100ms per frame, sufficient for
real-time human presence monitoring applications.

Memory utilization remains below 2GB during operation,
with the YOLOv8 Nano model requiring approximately 6MB
of storage. The system maintains stable performance across
extended periods without memory leaks or degradation, suit-
able for continuous deployment.

B. Model Performance

The YOLOv8 Nano model demonstrates exceptional de-
tection performance on the custom ToF depth dataset. Train-
ing convergence analysis (Fig. 6) shows steady improvement
across all metrics, with the model achieving optimal per-
formance after approximately 100 epochs. The best model
checkpoint, selected based on highest validation mAP@0.5,
was evaluated on the held-out test set.

Quantitative evaluation on the independent test dataset
yields the following comprehensive metrics:

• Precision: 99.90% - indicating minimal false positive
detections

• Recall: 100.00% - demonstrating excellent detection sen-
sitivity

• F1-Score: 99.95% - confirming balanced precision-recall
performance

• Mean Average Precision (mAP@0.5): 99.50% - validat-
ing accurate localization at IoU threshold 0.5

• Mean Average Precision (mAP@0.5:0.95): 92.50% -
maintaining high accuracy across stricter IoU thresholds

The training curves indicate robust convergence with total
loss decreasing from initial high values to near-zero levels.
Box regression loss and classification loss components both
demonstrate consistent improvement, reflecting the model’s
ability to accurately predict bounding boxes and classify
human subjects in depth imagery. Evaluation across different

poses, clothing variations, and spatial positions confirms the
model’s generalization capability.

Fig. 6. Training and validation performance curves of the YOLOv8 Nano
model, showing loss components and detection metrics (precision, recall, and
mAP) over training epochs.

Table I summarizes reported performance of our method
against prior works and state-of-the-art methods for contextual
comparison. Results demonstrating that AnonymEyes achieves
competitive metrics while operating on significantly more cost-
effective hardware. The F1-score of 99.95% is higher than the
values reported by Luna et al. [14]’s 99.57%, Wang et al. [15]’s
95.04%, and Seliunina et al. [16]’s 97.00%, while a recall of
100% is consistent with the highest recall values reported in
prior works [14] [15]. Furthermore, AnonymEyes achieves a
precision of 99.90%, which is comparable to the precision
reported by Seliunina et al. [16] (98.00%), while maintaining
substantially lower system cost (148 USD vs. 16,000 USD)
and providing comprehensive mAP metrics across multiple
IoU thresholds. Note that, values from Table I for prior
works are taken directly from their respective publications;
‘–’ indicates the metric was not reported in the original work.



C. System Scalability

The AnonymEyes system supports scalable deployment
from single installations to large-scale distributed networks. At
$148 per unit with 8-10 watt power consumption, the low-cost
hardware enables cost-effective multi-point scaling. Each unit
operates independently with edge-based processing, ensuring
linear scaling characteristics without centralized bottlenecks
or single points of failure. Moreover, 15 FPS processing
adequately covers typical monitoring scenarios [26], with
optimization potential through model quantization or hardware
acceleration.

V. LIMITATION AND FUTURE WORK

Although AnonymEyes achieves strong detection perfor-
mance on resource-constrained edge devices, several limita-
tions remain. The system currently operates at approximately
15 FPS on a Raspberry Pi 5, which may be insufficient
for applications requiring higher temporal resolution; future
work will investigate optimization through quantization, and
hardware acceleration. Future extensions should explore multi-
camera fusion and temporal consistency models to address
occlusion, coverage limitations, and detection stability in dy-
namic scenes.

VI. CONCLUSION

This paper presents AnonymEyes, a privacy-enhanced hu-
man detection system that balances accuracy with privacy in
resource-constrained environments. By using ToF depth data
instead of RGB imagery, the system provides cost-effective,
real-time monitoring with competitive detection performance,
while enhancing privacy. With a total cost under $150 and fully
edge-based processing, AnonymEyes demonstrates practical
scalability for deployment in privacy-sensitive environments
such as healthcare facilities, smart homes, and office spaces.
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