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Abstract—Dynamic resource allocation under uncer-
tainty remains a central challenge in operations
research, particularly in capital-intensive industries
such as open-pit mining, where inefficient dispatching
decisions can lead to substantial productivity losses
and increased operational costs. This paper presents
a Deep Reinforcement Learning (DRL) framework
for the dynamic truck assignment problem in open-
pit mining, with a dual emphasis on performance
optimization and policy interpretability. The problem
is modeled as a Markov Decision Process and im-
plemented within a discrete-event simulation environ-
ment that captures the stochastic behavior of truck–
shovel interactions. A Deep Q-Learning approach with
neural network function approximation is employed
to learn adaptive dispatching policies directly from
simulated experience. To promote transparency and
industrial applicability, Explainable Artificial Intelli-
gence techniques based on Shapley values are applied
to interpret and validate the learned decision strate-
gies. Experimental results demonstrate that the pro-
posed framework substantially outperforms heuristic
dispatching methods while providing interpretable
insights that support trust and deployment in real
mining operations.

Index Terms—Deep Q-Learning, Explainable AI,
Truck Dispatching, Markov Decision Process, Open-
Pit Mining, Discrete-Event Simulation, Interpretable
Reinforcement Learning

I. INTRODUCTION

Efficient truck dispatching is a critical operational
problem in open-pit mining, where resource allo-
cation decisions must be made under uncertainty
and tight operational constraints. Poor dispatch-
ing decisions can lead to congestion, underuti-

lization of equipment, and significant productivity
losses. This paper proposes a Deep Reinforcement
Learning (DRL) framework for dynamic truck dis-
patching that simultaneously optimizes operational
performance and enhances decision interpretabil-
ity.

The truck–shovel assignment problem is formulated
as a Markov Decision Process (MDP) and em-
bedded within a discrete-event simulation environ-
ment that captures the stochastic and asynchronous
nature of mining operations. A Deep Q-Learning
(DQL) agent learns dispatching policies directly
from simulated experience, without requiring an
explicit model of system dynamics.

The application of reinforcement learning to mining
systems builds upon a substantial body of prior
research. Foundational work by Bellman [1] and
Watkins and Dayan [2] established the theoretical
basis for dynamic programming and Q-learning.
More recent advances in Deep Q-Networks [3] have
enabled reinforcement learning methods to scale to
complex, high-dimensional environments. In min-
ing applications, Noriega et al. [4] and Huo et al. [5]
demonstrated the effectiveness of DRL for haulage
optimization, while de Carvalho and Dimitrakopou-
los [6] and Chiarot et al. [7] explored reinforcement
learning under operational constraints.

Despite promising performance gains, most existing
studies focus primarily on aggregate productivity
metrics and provide limited insight into the ratio-



nale behind learned decisions. In industrial mining
environments—characterized by high capital costs,
safety considerations, and strong operational ac-
countability—this lack of interpretability presents
a significant barrier to adoption. Dispatching deci-
sions must not only be effective but also explainable
to engineers, operators, and managers.

This study explicitly addresses this gap by in-
tegrating Explainable Artificial Intelligence (XAI)
techniques into the reinforcement learning pipeline.
By leveraging SHAP (SHapley Additive exPlana-
tions), we provide transparent, post-hoc explana-
tions of dispatching decisions, highlighting how
system-level and agent-level features influence pol-
icy behavior. This interpretability enables validation
against domain knowledge, increases trust in the
learned policy, and supports its use as a prac-
tical decision-support tool in real mining opera-
tions.

The remainder of the paper is organized as follows.
Section II presents the operational framework and
mining environment. Section III details the MDP
formulation and Deep Q-Learning implementation.
Section IV describes the discrete-event simulation
environment. Section V presents experimental re-
sults and interpretability analysis. Section VI con-
cludes the paper and outlines future research direc-
tions.

II. OPERATIONAL FRAMEWORK

This section formalizes the truck dispatching prob-
lem as a sequential decision-making task under un-
certainty. The environment, decision variables, and
reward structure are defined within a reinforcement
learning framework to ensure alignment between
learned policies and operational objectives.

A. Loading and Haulage Processes

The loading and haulage cycle consists of four
stages: (i) loading at the shovel, (ii) hauling to the
destination, (iii) unloading material, and (iv) return-
ing for the next loading operation. The dispatching
decision—selecting which shovel an available truck
should be assigned to after unloading—constitutes
the core optimization problem.

For modeling clarity, trucks and shovels are as-
sumed to be homogeneous, with identical load
capacities and normally distributed loading and
unloading times. While simplified, this assumption
allows controlled analysis of learning behavior and
isolates the effects of dispatching logic from equip-
ment heterogeneity.

B. Open-Pit Mining Environment

The environment is modeled as a two-dimensional
spatial system with fixed shovel and dump loca-
tions. The simulation includes three shovels, four
dumps, and ten trucks. Each shovel follows prede-
fined material routing rules: ore is transported to
crushers, waste to waste dumps, and low-grade ore
to stockpiles. When multiple crushers are available,
ore is routed to the least utilized facility to promote
balanced downstream processing.

C. Truck Dispatching Variables

The environment state is represented using feature
vectors that encode both global system conditions
and agent-specific information.
State Representation: Global features include queue
lengths at each shovel and dump, as well as the nor-
malized remaining simulation time. Agent-level fea-
tures capture each truck’s current location (encoded
as a one-hot vector), remaining travel time, and
residual operation time. This representation pro-
vides sufficient information to capture congestion,
spatial distribution, and temporal efficiency.
Action Space: At each decision epoch, the agent
assigns an available truck to one of the eligi-
ble shovels that has not yet reached its extrac-
tion threshold. This formulation reflects operational
constraints while allowing dynamic adaptation to
evolving system conditions.
Reward Function: The reward function is designed
to balance productivity maximization with conges-
tion mitigation:

R =


−Queue time, W,

Low-grade ore− Trucks in queues, S,
Pure ore− Queue time, C,

(1)
whereW , S , and C denote waste dumps, stockpiles,
and crushers, respectively.



This structure reflects operational priorities com-
monly observed in mining practice. Ore deliveries
to crushers are directly rewarded due to their high
economic value, while queue times are penalized
to discourage congestion. Low-grade ore deliveries
are incentivized but adjusted by queue penalties
to prevent excessive buildup at stockpiles. Waste
handling is treated as necessary but non-value-
adding, and is therefore penalized primarily through
waiting time. While the reward terms are not ex-
plicitly weighted, their relative influence emerges
naturally from operational frequencies and system
dynamics.

Although alternative reward formulations are pos-
sible, empirical observations during training indi-
cated that the learned policy is robust to moderate
variations in reward scaling, consistently exhibiting
congestion-aware and productivity-oriented behav-
iors. A systematic sensitivity analysis of reward
design constitutes an important direction for future
research.

III. DEEP REINFORCEMENT LEARNING

Truck dispatching is modeled as a stochastic se-
quential decision-making problem solved using
Deep Q-Learning. The MDP is defined by the tuple
〈S,A,P,R, γ〉, where γ ∈ [0, 1] is the discount
factor.

A. Deep Q-Learning Implementation

The action-value function q(s, a;w) is approxi-
mated using a neural network with parameters w,
which are updated using temporal-difference learn-
ing:

wt+1 = wt + α
(
r + γmax

a′
q(s′, a′;wt)

− q(s, a;wt)
)
∇wq(s, a;wt).

(2)

This model-free approach is particularly well suited
to mining operations, where explicit transition mod-
els are difficult to obtain due to stochastic loading
times, equipment interactions, and dynamic traffic
conditions.

IV. OPEN-PIT MINE SIMULATION

The simulation environment provides a virtual
testbed for evaluating reinforcement learning–based
dispatching strategies. It integrates discrete-event
modeling of truck–shovel interactions with stochas-
tic ore type discovery in order to realistically cap-
ture the operational dynamics of open-pit mining
systems.

A. Discrete-Event Simulation Framework

The mining operation is modeled as a discrete-
event system in which each event represents a
key transition in the truck loading and haulage
process. Events are processed chronologically using
a priority queue, enabling accurate representation
of the stochastic and dynamic behavior of the
system.

Each event is defined by a tuple
(time,truck,event_type,position,index),
which specifies the simulation time, the
truck involved, the event type (ARRIVAL or
DEPARTURE), the facility category (shovel or
dump), and the corresponding facility index. This
event-driven formulation ensures deterministic
state transitions while maintaining computational
efficiency and scalability.

B. Stochastic Modeling of Ore Type Discov-
ery

Geological uncertainty is incorporated through
probabilistic modeling of ore type discovery at each
loading event. Each shovel operates according to
predefined material composition distributions, as
summarized in Table I.

TABLE I: Material type probabilities by shovel

Shovel Ore Waste Low-grade

Shovel 1 0.50 0.30 0.20
Shovel 2 0.40 0.40 0.20
Shovel 3 0.35 0.45 0.20

For shovel i, the probability of extracting material
type k is defined as pi,k = ni,k/

∑
k′ ni,k′ , where

ni,k denotes the expected number of extractions of



material k according to the mine plan. This for-
mulation preserves overall production targets while
introducing realistic local variability in material
composition.

C. Simulation Assumptions

To ensure learning stability and analytical tractabil-
ity, the simulation relies on several simplifying
assumptions, summarized in Table II.

TABLE II: Key simulation assumptions

Category Assumption

Equipment Homogeneous trucks and shovels
with identical capacities and travel
speeds

Spatial Fixed two-dimensional layout with
predefined deterministic haulage
routes

Operations No equipment failures or
maintenance-related interruptions

Information Perfect state observability at all deci-
sion epochs

These assumptions allow the analysis to focus
on the core dispatching dynamics while isolating
the effects of reinforcement learning. Extensions
incorporating equipment heterogeneity, stochastic
failures, and partial observability are identified as
important directions for future work.

V. EVALUATION AND RESULTS

The proposed framework was evaluated through
simulation experiments assessing convergence be-
havior, policy performance, and interpretabil-
ity.

A. Policy Performance Comparison

Table III compares the RL-based policy against
benchmark dispatching strategies.

TABLE III: Average performance across different
dispatching policies

Policy Ave Ore Ave Waste Ave Stockpile

Random 117.197 63.632 90.339
Shortest Queue 93.938 61.000 101.698
RL-Based 154.000 40.000 91.000

The RL-based policy significantly outperforms both
benchmarks, achieving higher ore production while
reducing waste handling and maintaining balanced
stockpile utilization. Although the experimental
setup considers a fixed-scale scenario with ho-
mogeneous equipment, the results demonstrate the
agent’s ability to learn non-myopic dispatching be-
havior that accounts for system-wide interactions.
Evaluating robustness under varying fleet sizes,
shovel configurations, and demand patterns repre-
sents a natural extension of this work.

B. Interpretable Model Analysis Using
SHAP

To interpret the learned dispatching policy, we em-
ploy SHAP (SHapley Additive exPlanations), an ex-
plainability method grounded in cooperative game
theory. SHAP attributes a contribution value to each
input feature by computing its marginal impact
on the model’s output across all possible feature
coalitions. This provides a consistent and locally
accurate explanation of individual decisions.

In the context of reinforcement learning, SHAP is
applied post hoc to the trained Q-network to explain
why a particular action was selected in a given
state. For each dispatching decision, SHAP values
quantify how features such as queue lengths, truck
locations, and remaining travel times influence the
estimated action values.

Beyond individual instances, we analyzed SHAP
values across multiple decision points and simula-
tion episodes, observing consistent patterns. Queue
lengths at shovels and crushers systematically ex-
ert strong influence on action selection, indicating
congestion-aware behavior. Spatial distribution of
trucks contributes to anticipatory routing decisions,
while remaining travel times affect prioritization
under time pressure. These aggregated observations
suggest that the learned policy consistently follows
rational operational principles, rather than relying
on isolated or incidental behaviors.

VI. CONCLUSIONS AND FUTURE WORK

This paper demonstrates that Deep Reinforcement
Learning, integrated with discrete-event simulation,



can learn effective and interpretable dispatching
policies for open-pit mining operations. The pro-
posed framework outperforms heuristic baselines
while providing transparent insights into decision-
making through SHAP-based explanations.

While the experimental evaluation focuses on a
fixed-scale, homogeneous setting, the results high-
light the potential of DRL as a scalable and trust-
worthy decision-support tool. Future work will ex-
tend the framework to heterogeneous fleets, stochas-
tic equipment failures, alternative reward formula-
tions, and multi-agent learning architectures. Fur-
ther systematic analysis of interpretability metrics
over long horizons will also strengthen the inte-
gration of explainable reinforcement learning in
industrial applications.
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