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Abstract—The rapid expansion of IoT deployments has sig-
nificantly increased the attack surface, requiring scalable and
privacy-preserving intrusion detection systems (IDS). Federated
Learning (FL) provides a collaborative approach to train models
without sharing raw data, making it well-suited for resource-
constrained IoT devices. This paper proposes an energy-efficient
FL-IDS framework that employs CNN and LSTM models on
the UNSW-NB15 dataset. Unlike traditional FL approaches,
we incorporate energy-aware client participation, selecting clients
based on their energy budget and contribution. Experiments
conducted with 5, 10, 15, and 20 clients on the binary UNSW-
NB15 task show that CNN achieves 96.98% accuracy and LSTM
achieves 96.13%. At the same time, energy consumption scales
near-linearly with the number of clients. The results confirm a
favorable trade-off between energy cost and intrusion detection
performance. Moreover, accuracy remains stable across 5-20
clients for both CNN and LSTM models, demonstrating the
scalability of the proposed FL-IDS framework for real-world
IoT deployments.

Index Terms—Federated Learning, Intrusion Detection, IoT
Security, Energy Efficiency, Client Participation, CNN, LSTM,
UNSW-NBI1S5, Binary Classification.

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) devices
has significantly transformed the way networks operate, con-
necting billions of sensors, actuators, and intelligent systems
across critical infrastructure. While this interconnectivity of-
fers improved automation and data-driven services, it also
expands the attack surface, enabling sophisticated and large-
scale cyber threats. Intrusion detection systems (IDS) play a
vital role in safeguarding these networks. However, traditional
centralized IDS architectures are increasingly inadequate for
modern [oT environments, as they require transmitting massive
volumes of raw traffic to a central server for analysis [1], [2],
[3]. This approach not only incurs high communication and
computation costs but also introduces privacy risks and energy
inefficiencies.

Federated Learning (FL) has emerged as a promising
paradigm for addressing these challenges by enabling dis-
tributed devices to collaboratively train a shared global model
without exchanging raw data. This significantly reduces the
need for centralized data collection, improving privacy preser-
vation and bandwidth utilization. Moreover, FL allows IDS
deployments to scale dynamically across edge and fog com-
puting infrastructures, which are well-suited for IoT networks

[4]. Nevertheless, several practical issues remain unresolved,
including the impact of heterogeneous data distributions, fluc-
tuating network connectivity, and energy constraints on the
performance and scalability of FL-enabled IDS.

Recent studies have made notable progress in improving
the efficiency, explainability, and resilience of FL-based IDS.
Oki et al. evaluated the role of explainable Al in federated
IDS and demonstrated how explainability can improve the
interpretability and trustworthiness of detection outcomes [2].
Vyas et al. conducted a comprehensive survey highlighting
privacy-preserving methods and architectural trends in FL
for IoT security [1]. Rehman et al. proposed FFL-IDS, a
fog-enabled FL framework that improves real-time detection
capabilities under IoT constraints [4]. Mahadik et al. presented
an edge-intelligent FL IDS that reduces inference latency and
enhances decision speed at the network edge [5]. Similarly,
Abu Issa et al. introduced a temporal partitioning strategy to
reduce communication overhead and training delays in IoT
environments [6].

Despite these advances, a key research gap remains: the
explicit characterization of the trade-off between energy con-
sumption and detection accuracy under varying client partic-
ipation scales. While many works address performance and
communication, few provide empirical quantification of energy
behavior in federated IDS [7]. Our contributions are:

1) We propose an energy-aware client participation strategy
for FL-IDS that preserves privacy without altering the
aggregation rule.

2) We provide an empirical, quantified analysis of the
accuracy energy trade-off across K € {5,10,15,20}
clients on the UNSW-NBI15 for binary classification
task.

3) We report practical insights showing that CNN achieves
comparable accuracy at consistently lower energy than
LSTM, offering guidance for edge deployment.

4) In addition, we empirically show that both CNN and
LSTM maintain stable accuracy across increasing client
participation, demonstrating predictable scaling behavior
that is crucial for large IoT deployments.

The rest of the paper is structured as follows: Section II
reviews related work on federated intrusion detection and
energy-aware FL. Section III details the system model. Sec-



tion IV presents the experimental results and discussion for
binary detection, and Section V concludes the paper with key
findings and future direction.

II. RELATED WORK

Research on FL-based intrusion detection has grown rapidly,
with contributions spanning data heterogeneity mitigation,
communication optimization, energy efficiency, and adaptive
network architectures. Bouzinis et al. proposed StatAvg, a strat-
egy that directly addresses data heterogeneity in FL for IDS by
applying statistical averaging to stabilize model convergence
and improve accuracy under non-IID conditions [8]. This work
demonstrated that careful aggregation strategies can enhance
global model performance without requiring additional client-
side resources.

Temporal and edge-assisted FL techniques have also re-
ceived considerable attention. Abu Issa et al. introduced a tem-
poral partitioning approach to reduce communication delays
and maintain accuracy in IoT IDS scenarios [6]. Mahadik et
al. explored edge-intelligent IDS designs, showing that moving
training and inference closer to the data source improves
latency and detection responsiveness [5].

Several works focus on making FL frameworks more
sustainable. Liu et al. proposed an incentive-based energy-
efficient aggregation mechanism to encourage participation
while reducing energy cost [9]. Xie et al. presented SURFS, a
hierarchical spiking neural network framework designed for
sustainable and energy-aware intrusion detection [7], high-
lighting the potential of bio-inspired approaches for low-power
operation. Chen et al. developed a hierarchical underwater IoT
IDS using FL, demonstrating its adaptability to challenging
communication environments [10].

Transfer learning and model adaptation are also emerging as
strong tools for FL-IDS. Song et al. integrated transfer learning
into FL to improve performance across heterogeneous IloT
domains [11], while Mothukuri et al. applied FL to anomaly
detection for IoT security [12], showing its ability to generalize
across different attack types. Bhavsar et al. proposed FL-IDS
for transportation IoT, highlighting its potential for real-time,
low-latency defense at the network edge [13]. Zhang et al.
introduced a secure and efficient FL architecture that enhances
robustness against poisoning attacks [14].

In addition, Yilmaz et al. investigated optimal IDS place-
ment in RPL-based IoT networks to maximize detection per-
formance and minimize communication costs [15], and Liu et
al. explored edge-analytics strategies to improve data process-
ing efficiency [16]. Broader surveys, such as Al-Garadi et al.
[3], provide an overview of federated IDS techniques, game-
theoretic strategies, and explainable Al integration, reinforcing
the maturity and diversity of approaches in this field.

While these contributions significantly advance the state of
the art, they primarily focus on accuracy and communication
overhead rather than explicitly modeling and quantifying en-
ergy consumption at scale. Unlike these works, our approach
explicitly couples client selection with energy profiling, en-
abling predictable scaling in IoT deployments. This provides

a practical design pathway for energy-aware FL-IDS systems
that preserve detection accuracy while minimizing energy con-
sumption, making them well-suited for resource-constrained
IoT environments.

III. METHODOLOGY

The proposed FL-IDS framework for IoT networks in-
tegrates lightweight deep learning with energy-aware client
participation. As illustrated in Fig. 1, multiple IoT clients train
local CNN and LSTM models on private, non-IID partitions
of the UNSW-NB15 dataset [17]. Only model parameters
are exchanged with the central aggregation server no raw
traffic is shared thereby preserving data privacy and reducing
communication overhead. The server aggregates local updates
using the FedAvg rule (1) and computes round-level energy
consumption using (2). An energy-aware selection mechanism
then determines the subset S; C K of m participating
clients, where m € {5,10,15,20}. This design allows the
FL-IDS to adaptively balance energy efficiency and detection
performance across heterogeneous IoT clients.

A. Data Preprocessing

The UNSW-NB15 dataset [17] was used to train and eval-
uate the FL-IDS. This benchmark contains both normal and
malicious network traffic, including modern attack categories
such as Fuzzers, DoS, Reconnaissance, Backdoors, Shellcode,
and Worms. The preprocessing steps were:

o Feature encoding: Categorical features were one-hot
encoded, and numerical features were normalized to the
range [0, 1].

o Label encoding: Attack categories were mapped to nu-
merical values (we focus on the binary Normal—Attack
classification task; multiclass processing follows the same
pipeline).

o Client partitioning: The dataset was partitioned across
K € {5,10, 15,20} clients using a Dirichlet distribution
to simulate realistic non-1ID data distributions.

B. Federated Learning Aggregation and Energy Modeling

The global model is updated using the standard FedAvg
aggregation rule:

W = LLk W(k)

t+1 — )
N

k=1

(D

where w,gk) denotes the local model of client £ at round ¢,
ny is the number of samples at client k, and NN is the total
number of samples across all clients.

The energy consumption of each client k is modeled as:

Ek = accomp(k) + 5 Ccomm(k)7 (2)

where Ceomp (k) and Ceomm (k) denote computation and com-
munication costs, and « and § are tunable weighting factors.
This formulation enables explicit analysis of the trade-off
between energy consumption and detection accuracy as the
number of clients increases.
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Fig. 1: System model of the proposed energy-efficient FL-IDS with energy-aware client participation and FedAvg aggregation.

C. Model Architecture

Two lightweight deep learning models were employed to
balance energy efficiency and detection performance:

o 1D-CNN: stacked convolutional layers with ReLU ac-
tivation, batch normalization, max pooling, and fully
connected layers, optimized for spatial pattern extraction.

o« LSTM: stacked Long Short-Term Memory layers fol-
lowed by dense layers, suitable for modeling temporal
and sequential dependencies in network traffic.

Both models use the Adam optimizer (Ir = 10~%), batch size
32, and categorical cross-entropy loss.

D. Energy-Aware Client Participation

To ensure energy-efficient training, clients are ranked by a
utility energy trade-off. At each round, the server selects the
top m clients that maximize the participation score:

St = Top-m (uk - )\Ek), 3)

where uy represents the utility of client k, Fj its estimated
energy cost, and A is a trade-off coefficient. This approach
maintains high accuracy while keeping energy predictable as
client participation scales. The complete training and selection
pipeline is summarized in Algorithm 1.

Threat model: We assume an honest-but-curious server
and clients that train faithfully on local data. Model updates
can be observed but not modified. Robustness to active poison-
ing attacks is out of scope and left to future work; our focus is
on energy—accuracy trade-offs under non-IID data and varying
participation scales.

E. Experimental Setup

Unless stated otherwise, results are averaged over three
random seeds where applicable; we report mean =+ std. The
framework was evaluated with K € {5,10, 15,20} clients
over 20 communication rounds. Performance was measured
using accuracy, Fl-score, energy consumption per round,
and confusion matrices. This configuration provides a clear



Algorithm 1 Energy-aware client participation for FL-IDS. At
each round, the server selects high-utility, low-energy clients
to optimize training efficiency.

1: Input: global model wy, client set K, rounds R, subset
size m, trade-off \
2: fort =1to R do
Server computes {uy, Ex }rex
estimates
: S; + Top-m clients maximizing (ux — AE})
5: for each k € S; in parallel do
Client k: receive wy; train on Dy, for E epochs to
get W,Ek); send (vvgk)7 Ey)

> utility & energy

~

Wil ¢ D es, s ng) > FedAvg
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comparison of detection effectiveness and energy efficiency
across different client scales and model types.

IV. RESULTS AND DISCUSSION

A. Overview

This section presents and analyzes the experimental results
of the proposed energy-efficient FL-IDS framework. The eval-
uation focuses on (i) detection performance using CNN and
LSTM models, (ii) the impact of client scaling on accuracy
and energy efficiency, and (iii) classification behavior through
confusion matrices. All experiments were conducted on the
UNSW-NBI35 dataset using K € {5, 10, 15,20} clients to em-
ulate varying degrees of participation and heterogeneity. The
results validate the effectiveness of the proposed energy-aware
client participation strategy, showing that carefully selecting
clients sustains high detection accuracy while significantly
reducing energy overhead.

B. Accuracy and Convergence Behavior

Both CNN and LSTM models exhibited stable convergence
across all client participation settings. As the number of clients
increased, model generalization improved because more di-
verse data contributed to global updates. At K = 20 clients,
the CNN model achieved an accuracy of 96.98%, while
the LSTM model achieved 96.13%. This confirms that high
detection performance can be maintained even under scaled
federated settings with heterogeneous, non-1ID data.

These observations are consistent with findings in
StatAvg [8] and SURFS [7], which report that increasing
data diversity improves generalization at the cost of mild
convergence delays. To further illustrate this, Fig. 2—4 shows
the accuracy trends as the number of clients increases for
both models. The CNN model maintains consistently higher
accuracy compared to LSTM, while both show stable scaling
from 5 to 20 clients. This stability across increasing clients

underscores the scalability of the proposed energy-aware FL-
IDS.
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Fig. 2: Accuracy vs. number of clients for CNN and LSTM models.
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Fig. 3: Accuracy vs. number of clients for CNN.
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Fig. 4: Accuracy vs. number of clients for LSTM.



C. Energy Efficiency and Scaling

Figure 5 shows the relationship between total energy con-
sumption per round and the number of clients. Energy con-
sumption grows near-linearly with client scaling, reflecting
predictable computational and communication costs. CNN
consistently required less energy than LSTM across all set-
tings, confirming its suitability for edge deployments with
limited resources.

This trend aligns with prior energy-efficient FL strate-
gies [9], [7], which emphasize balancing energy cost and learn-
ing utility. Importantly, energy-aware client selection preserved
accuracy while avoiding the unnecessary energy overhead that
comes with random participation.
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Fig. 5: Total energy per round (J) versus number of clients for CNN
and LSTM. Energy scales near-linearly with client count; CNN remains
consistently lower than LSTM.

D. Confusion Matrix Analysis

The confusion matrices in Fig. 6 and Fig. 7 illustrate the
final-round classification outcomes for CNN and LSTM at
K = 20 clients. The CNN model demonstrates a strong
balance between true positives and true negatives, with mini-
mal misclassifications. In contrast, the LSTM model achieves
slightly higher recall, indicating a stronger tendency to detect
attacks, even at the cost of more false alarms. This trade-off
highlights complementary strengths: CNN excels in precision
and energy efficiency, while LSTM favors sensitivity to intru-
sions.

E. Performance Metrics

The evaluation of the proposed FL-IDS framework is based
on four standard classification metrics: accuracy, precision,
recall, and F1-score, derived from the confusion matrix. Let
TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively. These metrics
are computed as:

N B TP + TN @
CCHRAYY = TP TN + FP + FN
TP
Precision = (5)

TP +FP
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Fig. 6: Binary UNSW-NB15 (Normal vs. Attack) confusion matrix at X = 20
clients using CNN model.
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Fig. 7: Binary UNSW-NB15 (Normal vs. Attack) confusion matrix at X = 20
clients using LSTM model.

TP
freeall = Tp PN ©)
Fl-score = 2 x Precision X Recall -

Precision + Recall
Accuracy provides the overall correctness of the model, pre-
cision measures the proportion of correctly identified attacks
among all predicted attacks, recall quantifies the proportion
of actual attacks correctly detected, and F1-score provides a
balanced measure between precision and recall.
Table I summarizes the key performance indicators de-
rived from the confusion matrices for CNN and LSTM at
K = 20 clients. CNN achieves higher accuracy and precision



with lower energy consumption, making it ideal for energy-
constrained IoT devices. LSTM yields slightly higher recall,
which may be advantageous in intrusion detection scenarios
where minimizing false negatives is critical.

TABLE I: Performance metrics for binary classification (Normal vs. Attack)
at K = 20 clients.

Model Accuracy Precision Recall F1 Score
CNN 0.9698 0.9472 0.9587 0.9529
LSTM 0.9613 0.9297 0.9503 0.9399

Replacing the proposed energy-aware selection with random
client sampling reduced accuracy by approximately 0.5—1.2 pp
at 20 clients and increased total energy by 6-9%. These results
confirm that the client participation strategy is the primary
driver of energy savings, not model-specific optimization.

FE. Comparative Analysis

To contextualize the effectiveness of our approach, Table
IT compares our results with key representative works. Un-
like SURFS and StatAvg, our approach integrates explicit
energy-awareness without compromising accuracy. Table II
summarizes the energy-awareness and reported accuracy of
our approach compared with representative cited works.

TABLE II: Comparison with state-of-the-art based on energy-awareness and
accuracy.

Work Energy-aware  Accuracy
This work Yes 96.98 %
SUREFS [7] No 98.5%
StatAvg [8] No 97.0%
Incentive FL [9] Yes N/AT

V. CONCLUSION

This paper presented an energy-aware client participation
strategy for federated intrusion detection in IoT networks.
Using the UNSW-NB15 dataset and lightweight CNN and
LSTM models, the framework achieved up to 96.98% accuracy
while maintaining predictable energy scaling under varying
client participation levels (K € {5,10,15,20}). The results
demonstrate that CNN provides comparable accuracy at lower
energy cost compared to LSTM, making it well-suited for
resource-constrained edge environments. Importantly, accu-
racy remains stable as the number of clients increases, con-
firming the scalability and robustness of the proposed FL-IDS
design. Future work will focus on integrating adaptive client
selection with compression and quantization techniques to fur-
ther reduce overhead, as well as hardware-in-the-loop testing
to validate real-world energy behavior. Overall, this work pro-
vides practical insights for designing energy-efficient, privacy-
preserving, and scalable IDS solutions for next-generation [oT
deployments.
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