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Abstract— In recent years, efforts have been made in the 

agricultural field to improve crop quality and streamline 

agricultural management by collecting and visualizing various 

data on crop growth. In this study, we focus on the "spectrum of 

light" as information on sunlight that is essential for crop growth 

and aim to capture its functions. Specifically, a spectral sensor is 

used to measure the reflectance of light for each wavelength. 

Measurement data generally contains variations, making 

classification difficult using machine learning based on linear 

separation. In this study, we attempt classification using a 

nonlinear separation method capable of high-dimensional analysis 

and report its effectiveness. Crop growth varies depending on 

location, lushness, etc. Traditionally, this work relied mainly on 

experience and subjectivity, but by quantitatively evaluating the 

distribution and changes in the visible light band, farmers can 

visually grasp the growth status of crops and determine the 

optimal harvest time. 
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I. INTRODUCTION 

In recent years, the adoption of IoT across various industries 
has been progressing. As a first step, efforts to visualize 
production activities and enhance management efficiency 
through academic research and pilot experiments have been 
reported. 

In the agricultural sector, various technologies such as 
remote monitoring using IT, UAV-based pesticide spraying, 
unmanned transport vehicles to reduce labor, and modeled plant 

factories simulating natural environments are being introduced. 
These innovations continue to contribute to the productivity 
improvement of relatively large-scale agricultural businesses. 
Research and practical experiments related to agricultural IT for 
crop growth are diverse. Particularly, by utilizing AI and 
machine learning, it is expected that environmental control 
information collected and stored through ubiquitous 
environment control systems (UECS) integrated with numerous 
sensors can be used to optimize crop growth, shorten cultivation 
periods, achieve higher yields, and ensure stable growth. 

Traditionally, farmers have relied on their long-standing 
experience, subjective judgment, and physical labor—such as 
irrigation, fertilization, and pesticide application—based on 
climate fluctuations and past knowledge, investing significant 
time to maintain crop quality through visual inspection and 
manual oversight. The utilization of IT and AI technologies will 
soon enable us to detect subtle, unseen changes in crop growth 
and take proactive actions. This will lead to multifunctional, 
automated environmental control systems. 

Additionally, techniques using hyperspectral cameras 
mounted on UAVs have been reported, allowing analysis of the 
color distribution of crops in the field to understand growth 
trends and pest damage [1][2]. These methods enable the 
visualization of large-scale fields, including greening zones and 
water sources, and help assess environmental deterioration due 
to climate change and vegetation health over wide areas. 
Moreover, such macro-level data contributes to more accurate 
harvest forecasts. 



On the other hand, the costs associated with implementing 
UECS and increased energy consumption for environmental 
control pose trade-offs with the goal of improving agricultural 
management efficiency. Excluding farm operators capable of 
absorbing these costs, many small-scale farmers are hesitant to 
adopt agricultural IT. In urban areas with dense residential 
neighborhoods and limited cultivated land nearby, it is crucial to 
focus on high-quality, high-value cultivation techniques that not 
only increase yield but also enhance sweetness and coloration to 
stabilize agricultural management. Furthermore, the decreasing 
number of new farmers and the aging farming population are 
regarded as urgent crises threatening food self-sufficiency and 
sustainability. Attracting new farmers and transferring technical 
skills are integral parts of deepening and researching agricultural 
IT—an important responsibility [3][4]. 

Historically, farmers have judged crop growth and 
environmental conditions based on their experience, know-how, 
and subjective perception, passing this knowledge to successors. 
To address this challenge, this research aims to develop 
technologies that use spectral light to quantify how well crops 
are growing via photosynthesis and nutrition, thus visually 
confirming and validating the conditions suggested by 
subjective impressions. Additionally, by accumulating and 
analyzing data, we hope to estimate the crop growth process and 
aid in future predictions. Focusing on the light spectrum 
necessary for crops to grow under sunlight, the system extracts 
wavelengths in the visible range (400–700 nm) from scattered 
light that possesses a broad spectrum. Multispectral sensors 
feature silicon filter lenses arranged in an array, each with 
different wavelengths, allowing measurement of light 
reflectance through the lenses. This enables capturing the 
distribution of crop growth based on spectral information. 

In this paper, we sample the fruit parts of tomatoes as target 
crops and analyze the changes in spectral reflectance distribution 
that are invisible to the naked eye. Since tomatoes change color 
during growth through photosynthesis and eventually 
accumulate acidity and sweetness before harvest, quantifying 
the spectral distribution at this stage allows us to interpret the 
optimal harvest timing. In agricultural information involving 
nature, data uncertainty (variability) is often present. Variability 
can stem from individual differences in growth, measurement 
inconsistencies, and differences in sunlight reflectance caused 
by crop shapes. Conventional linear analysis methods struggle 
to categorize growth levels reliably under such variability [5][6]. 
This paper introduces a methodology using nonlinear 
classification methods as an alternative to linear approaches. 
While farmers have traditionally relied on visual cues such as 
color to judge fruit ripeness, using this quantified indicator could 
significantly assist new farmers. Furthermore, accumulating 
quantified data sets can be utilized for machine learning to 
classify the most appropriate harvest time based on future data 
samples. 

II. PROTOTYPE FOR MEASUREMENT 

A. Preparation of Equipment 

The primary sources of crop growth are water and sunlight. 
Additionally, the weight, nutritional content, and texture of 
crops are determined by photosynthesis. Photosynthesis 
converts specific wavelengths of light energy into chemical 

energy necessary for plant growth, producing carbohydrates and 
oxygen from carbon dioxide. Among scattered light, the 
wavelengths effective for photosynthesis lie within the visible 
spectrum (400–700 nm). Recently, combining the visible 
spectrum with near-infrared (NIR) wavelengths has been 
recognized as an effective method to broadly visualize 
vegetation and water source distributions on Earth, providing an 
overview of crop growth conditions. The multispectral sensor 
used in this research adopts AMS technology and can measure 
the NIR band at 900 nm. This sensor can simultaneously 
quantify multiple visible light regions through digital 
processing, and a portable prototype has been developed. 

The concept of light morphological information refers to 
capturing not only visible colors but also the roles of information 
obtained from light. By extracting specific wavelength 
components from the broad spectrum of scattered light emitted 
from the sensor and observing the reflectance of crops, this 
method aims to characterize crop features and monitor changes 
during the growth process. The growth rate of crops varies 
depending on conditions such as the location of fruit on the plant 
and leaf density. Even when the same color appears to the human 
eye, analyzing the information contrast allows us to distinguish 
differences in the progress of growth. The prototype device 
captures eight wavelengths in the visible spectrum: 415, 445, 
480, 515, 555, 590, 630, and 680 nm. 

B. Need for Normalization 

The amount of sunlight received from the sun varies with 
seasons and weather conditions. When measuring light intensity, 
it is necessary to adapt the measurement approach to these 
changes. The semiconductor used in the prototype adjusts 
exposure based on measurement time and aperture size, 
converting the reflected light into a measurable signal. If the 
aperture remains large and the sensor is exposed to strong light 
for an extended period, light reflectance can become saturated. 

Conversely, in indoor environments where direct sunlight 
does not reach, increasing the aperture size enhances sensitivity. 
In controlled cultivation facilities, the amount of scattered light 
also fluctuates over time, so maintaining a fixed exposure and 
aperture may lead to saturation or low resolution at some 
wavelengths. Under such conditions, changing the exposure 
settings can cause variations in the measured light reflectance 
levels at the same wavelength, depending on the exposure 
conditions. To address this, normalization processing was 
applied to compare relative values across different wavelengths. 
The normalization formula is represented as Equation (1). 
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Figure 1.  Show prototype of equipment (Using Multi-spectral Sensor 

AS7341). 



Furthermore, by incorporating an automatic exposure 
control algorithm, the system automatically adjusts the 
measurement range for each measurement, despite changes in 
exposure conditions, ensuring that measurements do not fall 
below the lower limit or reach saturation. This also ensures 
consistency in the relative distribution of light across 
wavelengths without contradictions. Traditionally, farmers have 
relied on visual cues, such as color, to judge fruit ripeness. 
However, using this quantified indicator can significantly aid 
new farmers. Additionally, the accumulated quantified data sets 
can be utilized for machine learning models to classify the 
optimal harvest timing based on future data samples. 

III. METHODOLOGY 

In this section, we explain how to use machine learning to 
tell different growth stages of tomatoes apart by analyzing how 
their light spectral patterns differ. We aim to construct a 
classification model for a group of data representing the 
distribution of wavelengths measured and normalized by light 
spectrum, which is plotted as multiple classes of point clouds on 
a two-dimensional plane. The method used to create this model 
is the Support Vector Machine (SVM). Geometrically, it is 
formulated by maximizing the non-interference zone (margin) 
M, which separates each point cloud from the boundary line that 
classifies the point clouds (equation). Furthermore, the data used 
in this study consists of sampled data, which is treated separately 
as training data and test data. The point x plotted on a two-
dimensional plane and the parameters W and b are formulated in 
vector form (2) as follows: 

For vectors 
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The separating hyperplane in n-dimensional space is 
expressed by equation (3). 

Next, this paper applies a classification model that allows 
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A. Linear Machine Learning 

Recently, artificial intelligence (AI) has become common in 
many fields. It can learn from past data automatically and make 
decisions or classifications without human help. Machine 
learning is a type of AI where computers learn from data to 
create models that can recognize patterns. 

*�  units inside the margin equation (5). This means that it 
also permits points to exist in the opposite region of the 
classification boundary. This is because there is a certain degree 
of variation in the fruit measurements sampled during the crop 
growth process. This variation may arise from measurement 
errors of the sensors in the actual measurements or from light 
scattering coming from different directions contaminating the 
sensor readings. Here, *�  represents the degree to which the 
training data �� is allowed to protrude inside the margin, serving 
as a parameter when optimizing the SVM, represented by the 
following equation: 
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In this research, we take measurements of light spectra from 
tomatoes, normalize the data, and then plot these data points as 
clusters in a two-dimensional space. We then build a machine 
learning model to classify these points. The method we use is 
called Support Vector Machine (SVM). SVM finds a boundary 
that separates the different groups of points while keeping the 

 
Figure 3.  Show Spectral Distribution in Tomato growth degree. 

Note: The units for both the vertical axes are [nm]. 

 
Figure 2.  Show Spectral Distribution of Selected between Light 

Wavelength in Visible light regin as Pairplot. 

Note: The units for both the vertical and horizontal axes are [nm]. 



largest possible margin — the space between the boundary and 
the nearest points from each group. 

The data includes a training set (used to teach the model) and 
a test set (used to check accuracy). The points are represented 
mathematically as vectors, and the boundary (or hyperplane) is 
described by a specific equation. Because plants grow under 
natural conditions, measurements can fluctuate slightly due to 
sensor errors or scattered light. So, the SVM allows some points 
to be on the wrong side of the boundary, within a margin of error 
called ξ. The model balances fitting the data well with allowing 
some errors to avoid overfitting — which is controlled by a 
parameter called C. A small C makes the model more flexible 
but less strict, while a large C makes it stricter and less tolerant 
of errors. 

The second term of the equation includes the objective 
function. A smaller cost parameter C allows *�  to be larger, 
resulting in looser constraints. Conversely, a larger C restricts  *� 
from being large, preventing the training data from existing 
inside the margin or crossing the classification boundary into the 
opposite region. C becomes a hyperparameter that determines 
the performance of the SVM. 

 

B. Adopt RBF-Kernel Method 

In the previous example, it seems that classification can be 
achieved using a linear SVM, but better classification is 
expected if a curved boundary is used.  

In the previous example, it appears that classification is 
possible using a linear SVM, but using a curved boundary can 
be expected to achieve better classification. Linear SVM seeks 
to find an optimal boundary for sample data in each of two 
regions to be classified by a straight line. 

Looking at the sample data in each region, for example, 
samples located near one another tend to be similar. Specifically, 
if the reflectance at the same frequency in spectral measurements 
is similar, the characteristic values of crop growth obtained as a 
result of those measurements will also tend to be similar. If we 
think of this as similarity, we can expand on it as follows: When 
two samples with two-axis parameters are located nearby, the 
similarity of the samples will differ depending on whether the 
slopes of their indices, as a single index, tend to be the same or 
completely different. Therefore, we will reconsider this from the 
perspective of regression analysis. If the mean of each sample is 
set to 0, the covariance of the samples can be expressed as the 
correlation coefficient multiplied by the standard deviation. In 
this case, the larger the positive or negative the value, the higher 
the correlation; conversely, the closer the value is to 0, the lower 
the correlation. 

This covariance can also be thought of as an inner product 
operation where each sample is multiplied together. If the 
similarity between samples is evaluated not only by the dot 
product between them but also by the distance between them, it 
becomes easier to understand if we change the idea of inverse 
proportion, where the smaller the sample distance, the higher the 
similarity. Therefore, by introducing a Gaussian kernel (RBF 
kernel), we can determine that the larger its value, the higher the 
similarity. This can be expressed mathematically as equation (9). 

This is exactly what is meant by finding a nonlinear 
classification boundary. Several methods have been proposed to 
find such a nonlinear classification boundary using a curve. In 
equation (2), we consider converting a two-dimensional vector 
into a higher-dimensional vector using a certain function φ. 
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The good thing about the above formula (8) is that it means 
that the formula is expressed as a three-dimensional linear 
function. Although there is no guarantee that this method can be 
easily generalized, classification using linear problems that did 
not work well in the original dimensions may be possible in 
higher dimensions. This method can be said to enable linear 
classification by converting the dimensions of the data to higher 
dimensions by selecting the function φ appropriately. 

 

IV. EXPERIMENT 

Using the UECS environment as an experimental field, we 
set up a tomato cultivation site. Every summer around the Obon 
holiday, we rebuild the beds to conduct new experiments with 
different crops. The beds are made using coconut fibers as a 
medium, which acts as a root-supporting solution that allows 
roots to absorb water and liquid fertilizer. Since pesticides are 
applied weekly, we used a prototype to measure the light spectra 
of fruits and leaves just before pesticide spraying. 

In this experiment, tomato seedlings grew over a meter tall, 
and about five weeks after planting, fruits developed on the 
lower and middle parts of the plants. These fruits changed color 
from green (immature) to orange-yellow (almost ripe) and then 
to red. Based on their color, we measured their light spectra (see 
Figures 5). We collected about 70 samples of fruits for each 
color. Over time, the green fruits turned orange-yellow, and the 
orange-yellow ones turned red, indicating that the fruits continue 
to grow and ripen. The spectral data for green and red fruits 
showed that the normalized reference wavelengths ranged from 
a maximum of 445 nm to a minimum of 630 nm. The differences 
at other wavelengths reflected variations in the fruits' growth 
stages. Notably, during the transition from green to red, 
significant changes were observed at wavelengths 415 nm, 515 
nm, 555 nm, and 680 nm. The 415 nm wavelength corresponds 
to the blue part of visible light, and its intensity increased as the 
fruits ripened. 

 



On the other hand, wavelengths of 515 nm and 555 nm, 
corresponding to the yellow-green region, and 680 nm, in the red 
region, all showed decreasing light intensities. This suggests that 
measuring the multispectral light reflected by the crops could be 
linked to how farmers visually judge fruit ripeness. 
Traditionally, wavelengths in the near-infrared range (above 900 
nm), along with 680 nm, have been used to calculate the 
Normalized Difference Vegetation Index (NDVI), which 
indicates plant vitality. Our discussion focuses on grouping 
visible light wavelengths and examining how the light 
distribution changes during plant growth. However, this is a 
complex topic because analyzing light wavelengths related to 
growth over time in a simple 2D or 3D space is difficult, 
especially considering the effects of time and growth stages. 

In our experiment, we used tomato plants grown in a 
controlled environment. From the eight visible-spectrum 
wavelengths measured, we selected two wavelengths—515 nm 
and 555 nm—as features for classification (see Figure 6). We 
applied a Support Vector Machine (SVM) to classify the plant 
growth stages based on these features. The model was trained 
using specific parameters: a penalty parameter C set to 100 and 
a training set proportion T of 0.2, which controls the margin 
width. 

Before training, we performed data preprocessing by 
removing outliers—data points outside the interquartile range 
(IQR) in a box plot—to reduce measurement variability. This 
preprocessing made it easier to find optimal classification 
boundaries compared to using raw data directly (see Figure 4). 
To evaluate the classification performance, we used a confusion 
matrix. Although some false positives and false  

negatives remained, the accuracy stayed above 50%,  

indicating decent classification ability (see Figure 6). The 
results also imply that outliers in the training data, if present in 
other datasets, could hinder classification results in a 2D space, 
pointing to limitations of this approach. Next, we explain our 
new separation method using dimensionality expansion. Linear 
SVMs sometimes fail to achieve linear separation using a 

straight line (or hyperplane). This occurs, for example, when 
data intermingle on a two-dimensional plane, like an 
interference zone on the negative side of the ideal margin, 
making it impossible to classify data in this zone. This is referred 
to as linear separation being impossible. 

In contrast, nonlinear methods can be interpreted as mapping 
features to higher dimensions. This is equivalent to adding a 
height axis to the interference differences that exist within the 
plane. In other words, differences in height can be used to 
differentiate the data intermingled in the interference zone. It is 
easy to imagine that the hyperplane found in this way will be a 
plane that separates three dimensions, with a normal vector that 
is not parallel to either the plane axis or the height axis. Figure 
(5) shows a graph of the hyperplane found for the data plot 
shown in Figure (4). 

When the hyperplane separated in this way is projected onto 
a two-dimensional plane, the boundary is curved, as shown in 
Figure (6). Although data plots projected onto a plane are 

 
Fig. 4. Show 2D-Spectral Distribution of Selected between Light 

Wavelength (515-555 [nm]) in Visible light regin as scattered. 

Note: The units for both the vertical and horizontal axes are 
normalized relative values. 

 
Fig. 5. Show Spectral Distribution by Linear-SVM (left) and Confusion 

Matrix between growth. 

Note: The units for both the vertical and horizontal axes are 
[nm]. Each axis represents the frequency, and the numbers in the 

boxes represent the degree of fit. Between red and ripe-red of 
Tomato are compared. 

  
Fig. 6. Show 3D-Spectral Distribution of Selected between Light 

Wavelength (515-555 [nm]) in Visible light regin using RBF kernel. 

Note: Each axis represents 2d- Light Wavelength and result of 
models using RBF-argolism (case parameter at C=1.0, γ=0.5). 



partially intersecting, they are linearly separable on a spatial 
hyperplane. In this method, a Gaussian function (Gaussian 
kernel) is used as the high-dimensional function, as shown in 
equation (9). The cost parameter C determines the degree of 
tolerance for misclassification. The smaller the kernel parameter 
γ, the simpler the decision boundary; the larger the value, the 
more complex the decision boundary. 

In this study, we aimed to determine the growth level of 
vegetation. We demonstrated how to handle and analyze data 
sets containing outliers, which are issues that arise when 
classifying measured data. Furthermore, the SVM-based 
machine learning used in this study allowed us to tune 
parameters to the tolerance for outliers and the complexity of the 
boundary in classification. This demonstrated that even if linear 
separation is not possible, classification using a high-
dimensional hyperplane is possible by expanding the 
dimensionality. 

 

V. CONCLUSION 

In this study, we used a prototype measuring device to 
conduct experiments to quantify the degree of growth of 
agricultural crops during the growth process through visible 
light multispectral (light wavelength) analysis. The growth and 
sweetness of agricultural crops are influenced not only by 
photosynthesis by sunlight, but also by complex conditions such 
as sunshine hours and irrigation timing. In the past, this work 
relied mainly on experience and subjectivity, but by 
quantitatively evaluating the distribution and changes of the 
visible light band, farmers can more accurately grasp the growth 
status of crops. When applying machine learning using 
conventional support vector machines (SVM) to classify growth 
levels and optimize classification, data preprocessing was 
effective for raw data that may contain outliers, but we attempted 
classification using a nonlinear separation method that allows 

high-dimensional analysis and demonstrated its effectiveness 
visually. In the future, it will become increasingly important to 
evaluate classification characteristics from the differences in 
classification due to different learning algorithms and tuning of 
learning parameters. It is expected that quantified light spectrum 
distribution information will be used as additional information 
for automatic sorting machines and harvesting robots. 
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Fig. 7. Show Linear Separation in Higher Dimension between growth red 

Tomato and ripe-red Tomat with Spectral Distribution for model 
suitability after applying RBF kernel. 

Note: Each axis represents the frequency, and the numbers in the 
boxes represent the degree of fit. 

 
Fig. 8. Show 2D projection of Linear Separation in Higher Dimension 

between growth red Tomato and ripe-red Tomat with Spectral 
Distribution. (Left figure: RBF case RBF γ=1.5, Right igure: Hyper-

parameter case C=10) 

Note: Each axis represents the frequency, and the numbers in the 
boxes represent the degree of fit. 


