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Abstract— In recent years, efforts have been made in the
agricultural field to improve crop quality and streamline
agricultural management by collecting and visualizing various
data on crop growth. In this study, we focus on the "spectrum of
light" as information on sunlight that is essential for crop growth
and aim to capture its functions. Specifically, a spectral sensor is
used to measure the reflectance of light for each wavelength.
Measurement data generally contains variations, making
classification difficult using machine learning based on linear
separation. In this study, we attempt classification using a
nonlinear separation method capable of high-dimensional analysis
and report its effectiveness. Crop growth varies depending on
location, lushness, etc. Traditionally, this work relied mainly on
experience and subjectivity, but by quantitatively evaluating the
distribution and changes in the visible light band, farmers can
visually grasp the growth status of crops and determine the
optimal harvest time.
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I.  INTRODUCTION

In recent years, the adoption of IoT across various industries
has been progressing. As a first step, efforts to visualize
production activities and enhance management efficiency
through academic research and pilot experiments have been
reported.

In the agricultural sector, various technologies such as
remote monitoring using IT, UAV-based pesticide spraying,
unmanned transport vehicles to reduce labor, and modeled plant

factories simulating natural environments are being introduced.
These innovations continue to contribute to the productivity
improvement of relatively large-scale agricultural businesses.
Research and practical experiments related to agricultural IT for
crop growth are diverse. Particularly, by utilizing Al and
machine learning, it is expected that environmental control
information collected and stored through ubiquitous
environment control systems (UECS) integrated with numerous
sensors can be used to optimize crop growth, shorten cultivation
periods, achieve higher yields, and ensure stable growth.

Traditionally, farmers have relied on their long-standing
experience, subjective judgment, and physical labor—such as
irrigation, fertilization, and pesticide application—based on
climate fluctuations and past knowledge, investing significant
time to maintain crop quality through visual inspection and
manual oversight. The utilization of IT and Al technologies will
soon enable us to detect subtle, unseen changes in crop growth
and take proactive actions. This will lead to multifunctional,
automated environmental control systems.

Additionally, techniques wusing hyperspectral cameras
mounted on UAVs have been reported, allowing analysis of the
color distribution of crops in the field to understand growth
trends and pest damage [1][2]. These methods enable the
visualization of large-scale fields, including greening zones and
water sources, and help assess environmental deterioration due
to climate change and vegetation health over wide areas.
Moreover, such macro-level data contributes to more accurate
harvest forecasts.



On the other hand, the costs associated with implementing
UECS and increased energy consumption for environmental
control pose trade-offs with the goal of improving agricultural
management efficiency. Excluding farm operators capable of
absorbing these costs, many small-scale farmers are hesitant to
adopt agricultural IT. In urban areas with dense residential
neighborhoods and limited cultivated land nearby, it is crucial to
focus on high-quality, high-value cultivation techniques that not
only increase yield but also enhance sweetness and coloration to
stabilize agricultural management. Furthermore, the decreasing
number of new farmers and the aging farming population are
regarded as urgent crises threatening food self-sufficiency and
sustainability. Attracting new farmers and transferring technical
skills are integral parts of deepening and researching agricultural
IT—an important responsibility [3][4].

Historically, farmers have judged crop growth and
environmental conditions based on their experience, know-how,
and subjective perception, passing this knowledge to successors.
To address this challenge, this research aims to develop
technologies that use spectral light to quantify how well crops
are growing via photosynthesis and nutrition, thus visually
confirming and validating the conditions suggested by
subjective impressions. Additionally, by accumulating and
analyzing data, we hope to estimate the crop growth process and
aid in future predictions. Focusing on the light spectrum
necessary for crops to grow under sunlight, the system extracts
wavelengths in the visible range (400-700 nm) from scattered
light that possesses a broad spectrum. Multispectral sensors
feature silicon filter lenses arranged in an array, each with
different wavelengths, allowing measurement of light
reflectance through the lenses. This enables capturing the
distribution of crop growth based on spectral information.

In this paper, we sample the fruit parts of tomatoes as target
crops and analyze the changes in spectral reflectance distribution
that are invisible to the naked eye. Since tomatoes change color
during growth through photosynthesis and eventually
accumulate acidity and sweetness before harvest, quantifying
the spectral distribution at this stage allows us to interpret the
optimal harvest timing. In agricultural information involving
nature, data uncertainty (variability) is often present. Variability
can stem from individual differences in growth, measurement
inconsistencies, and differences in sunlight reflectance caused
by crop shapes. Conventional linear analysis methods struggle
to categorize growth levels reliably under such variability [5][6].
This paper introduces a methodology using nonlinear
classification methods as an alternative to linear approaches.
While farmers have traditionally relied on visual cues such as
color to judge fruit ripeness, using this quantified indicator could
significantly assist new farmers. Furthermore, accumulating
quantified data sets can be utilized for machine learning to
classify the most appropriate harvest time based on future data
samples.

II. PROTOTYPE FOR MEASUREMENT

A. Preparation of Equipment

The primary sources of crop growth are water and sunlight.
Additionally, the weight, nutritional content, and texture of
crops are determined by photosynthesis. Photosynthesis
converts specific wavelengths of light energy into chemical

Figure 1. Show prototype of equipment (Using Multi-spectral Sensor
AS7341).

energy necessary for plant growth, producing carbohydrates and
oxygen from carbon dioxide. Among scattered light, the
wavelengths effective for photosynthesis lie within the visible
spectrum (400-700 nm). Recently, combining the visible
spectrum with near-infrared (NIR) wavelengths has been
recognized as an effective method to broadly visualize
vegetation and water source distributions on Earth, providing an
overview of crop growth conditions. The multispectral sensor
used in this research adopts AMS technology and can measure
the NIR band at 900 nm. This sensor can simultancously
quantify multiple visible light regions through digital
processing, and a portable prototype has been developed.

The concept of light morphological information refers to
capturing not only visible colors but also the roles of information
obtained from light. By extracting specific wavelength
components from the broad spectrum of scattered light emitted
from the sensor and observing the reflectance of crops, this
method aims to characterize crop features and monitor changes
during the growth process. The growth rate of crops varies
depending on conditions such as the location of fruit on the plant
and leaf density. Even when the same color appears to the human
eye, analyzing the information contrast allows us to distinguish
differences in the progress of growth. The prototype device
captures eight wavelengths in the visible spectrum: 415, 445,
480, 515, 555, 590, 630, and 680 nm.

B. Need for Normalization

The amount of sunlight received from the sun varies with
seasons and weather conditions. When measuring light intensity,
it is necessary to adapt the measurement approach to these
changes. The semiconductor used in the prototype adjusts
exposure based on measurement time and aperture size,
converting the reflected light into a measurable signal. If the
aperture remains large and the sensor is exposed to strong light
for an extended period, light reflectance can become saturated.

Conversely, in indoor environments where direct sunlight
does not reach, increasing the aperture size enhances sensitivity.
In controlled cultivation facilities, the amount of scattered light
also fluctuates over time, so maintaining a fixed exposure and
aperture may lead to saturation or low resolution at some
wavelengths. Under such conditions, changing the exposure
settings can cause variations in the measured light reflectance
levels at the same wavelength, depending on the exposure
conditions. To address this, normalization processing was
applied to compare relative values across different wavelengths.
The normalization formula is represented as Equation (1).

Xi = Xmin

yi = (1

Xmax — Xmin
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Figure 3. Show Spectral Distribution in Tomato growth degree.

Note: The units for both the vertical axes are [nm].

Furthermore, by incorporating an automatic exposure
control algorithm, the system automatically adjusts the
measurement range for each measurement, despite changes in
exposure conditions, ensuring that measurements do not fall
below the lower limit or reach saturation. This also ensures
consistency in the relative distribution of light across
wavelengths without contradictions. Traditionally, farmers have
relied on visual cues, such as color, to judge fruit ripeness.
However, using this quantified indicator can significantly aid
new farmers. Additionally, the accumulated quantified data sets
can be utilized for machine learning models to classify the
optimal harvest timing based on future data samples.

1. METHODOLOGY

In this section, we explain how to use machine learning to
tell different growth stages of tomatoes apart by analyzing how
their light spectral patterns differ. We aim to construct a
classification model for a group of data representing the
distribution of wavelengths measured and normalized by light
spectrum, which is plotted as multiple classes of point clouds on
a two-dimensional plane. The method used to create this model
is the Support Vector Machine (SVM). Geometrically, it is
formulated by maximizing the non-interference zone (margin)
M, which separates each point cloud from the boundary line that
classifies the point clouds (equation). Furthermore, the data used
in this study consists of sampled data, which is treated separately
as training data and test data. The point x plotted on a two-
dimensional plane and the parameters W and b are formulated in
vector form (2) as follows:

For vectors
X; = (xi1.xi2)T
w = (Wi, wip)" @)
WTXi+b=0 (i=012-,N) ®3)

The separating hyperplane in n-dimensional space is
expressed by equation (3).

Next, this paper applies a classification model that allows
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Figure 2. Show Spectral Distribution of Selected between Light
Wavelength in Visible light regin as Pairplot.

Note: The units for both the vertical and horizontal axes are [nm].
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A. Linear Machine Learning

Recently, artificial intelligence (Al) has become common in
many fields. It can learn from past data automatically and make
decisions or classifications without human help. Machine
learning is a type of Al where computers learn from data to
create models that can recognize patterns.

&, units inside the margin equation (5). This means that it
also permits points to exist in the opposite region of the
classification boundary. This is because there is a certain degree
of variation in the fruit measurements sampled during the crop
growth process. This variation may arise from measurement
errors of the sensors in the actual measurements or from light
scattering coming from different directions contaminating the
sensor readings. Here, &; represents the degree to which the
training data x; is allowed to protrude inside the margin, serving
as a parameter when optimizing the SVM, represented by the
following equation:

N
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In this research, we take measurements of light spectra from
tomatoes, normalize the data, and then plot these data points as
clusters in a two-dimensional space. We then build a machine
learning model to classify these points. The method we use is
called Support Vector Machine (SVM). SVM finds a boundary
that separates the different groups of points while keeping the



largest possible margin — the space between the boundary and
the nearest points from each group.

The data includes a training set (used to teach the model) and
a test set (used to check accuracy). The points are represented
mathematically as vectors, and the boundary (or hyperplane) is
described by a specific equation. Because plants grow under
natural conditions, measurements can fluctuate slightly due to
sensor errors or scattered light. So, the SVM allows some points
to be on the wrong side of the boundary, within a margin of error
called & The model balances fitting the data well with allowing
some errors to avoid overfitting — which is controlled by a
parameter called C. A small C makes the model more flexible
but less strict, while a large C makes it stricter and less tolerant
of errors.

The second term of the equation includes the objective
function. A smaller cost parameter C allows &; to be larger,
resulting in looser constraints. Conversely, a larger C restricts §;
from being large, preventing the training data from existing
inside the margin or crossing the classification boundary into the
opposite region. C becomes a hyperparameter that determines
the performance of the SVM.

B. Adopt RBF-Kernel Method

In the previous example, it seems that classification can be
achieved using a linear SVM, but better classification is
expected if a curved boundary is used.

In the previous example, it appears that classification is
possible using a linear SVM, but using a curved boundary can
be expected to achieve better classification. Linear SVM seeks
to find an optimal boundary for sample data in each of two
regions to be classified by a straight line.

Looking at the sample data in each region, for example,
samples located near one another tend to be similar. Specifically,
if the reflectance at the same frequency in spectral measurements
is similar, the characteristic values of crop growth obtained as a
result of those measurements will also tend to be similar. If we
think of this as similarity, we can expand on it as follows: When
two samples with two-axis parameters are located nearby, the
similarity of the samples will differ depending on whether the
slopes of their indices, as a single index, tend to be the same or
completely different. Therefore, we will reconsider this from the
perspective of regression analysis. If the mean of each sample is
set to 0, the covariance of the samples can be expressed as the
correlation coefficient multiplied by the standard deviation. In
this case, the larger the positive or negative the value, the higher
the correlation; conversely, the closer the value is to 0, the lower
the correlation.

This covariance can also be thought of as an inner product
operation where each sample is multiplied together. If the
similarity between samples is evaluated not only by the dot
product between them but also by the distance between them, it
becomes easier to understand if we change the idea of inverse
proportion, where the smaller the sample distance, the higher the
similarity. Therefore, by introducing a Gaussian kernel (RBF
kernel), we can determine that the larger its value, the higher the
similarity. This can be expressed mathematically as equation (9).

This is exactly what is meant by finding a nonlinear
classification boundary. Several methods have been proposed to
find such a nonlinear classification boundary using a curve. In
equation (2), we consider converting a two-dimensional vector
into a higher-dimensional vector using a certain function .

D(x;) = (@1(x), P2 (%), , Py (xz))T

0(x) = (@1(x;), p2(x;), -, @ (DT (7
X = (X, Xi2)"

B(x;) = (Xp1, Xizs X5)" (8)

K(xi, %) = oV lxi—xj]? 9)

The good thing about the above formula (8) is that it means
that the formula is expressed as a three-dimensional linear
function. Although there is no guarantee that this method can be
easily generalized, classification using linear problems that did
not work well in the original dimensions may be possible in
higher dimensions. This method can be said to enable linear
classification by converting the dimensions of the data to higher
dimensions by selecting the function ¢ appropriately.

IV. EXPERIMENT

Using the UECS environment as an experimental field, we
set up a tomato cultivation site. Every summer around the Obon
holiday, we rebuild the beds to conduct new experiments with
different crops. The beds are made using coconut fibers as a
medium, which acts as a root-supporting solution that allows
roots to absorb water and liquid fertilizer. Since pesticides are
applied weekly, we used a prototype to measure the light spectra
of fruits and leaves just before pesticide spraying.

In this experiment, tomato seedlings grew over a meter tall,
and about five weeks after planting, fruits developed on the
lower and middle parts of the plants. These fruits changed color
from green (immature) to orange-yellow (almost ripe) and then
to red. Based on their color, we measured their light spectra (see
Figures 5). We collected about 70 samples of fruits for each
color. Over time, the green fruits turned orange-yellow, and the
orange-yellow ones turned red, indicating that the fruits continue
to grow and ripen. The spectral data for green and red fruits
showed that the normalized reference wavelengths ranged from
a maximum of 445 nm to a minimum of 630 nm. The differences
at other wavelengths reflected variations in the fruits' growth
stages. Notably, during the transition from green to red,
significant changes were observed at wavelengths 415 nm, 515
nm, 555 nm, and 680 nm. The 415 nm wavelength corresponds
to the blue part of visible light, and its intensity increased as the
fruits ripened.
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Fig. 4. Show 2D-Spectral Distribution of Selected between Light
Wavelength (515-555 [nm]) in Visible light regin as scattered.

Note: The units for both the vertical and horizontal axes are
normalized relative values.

On the other hand, wavelengths of 515 nm and 555 nm,
corresponding to the yellow-green region, and 680 nm, in the red
region, all showed decreasing light intensities. This suggests that
measuring the multispectral light reflected by the crops could be
linked to how farmers visually judge fruit ripeness.
Traditionally, wavelengths in the near-infrared range (above 900
nm), along with 680 nm, have been used to calculate the
Normalized Difference Vegetation Index (NDVI), which
indicates plant vitality. Our discussion focuses on grouping
visible light wavelengths and examining how the light
distribution changes during plant growth. However, this is a
complex topic because analyzing light wavelengths related to
growth over time in a simple 2D or 3D space is difficult,
especially considering the effects of time and growth stages.

In our experiment, we used tomato plants grown in a
controlled environment. From the eight visible-spectrum
wavelengths measured, we selected two wavelengths—515 nm
and 555 nm—as features for classification (see Figure 6). We
applied a Support Vector Machine (SVM) to classify the plant
growth stages based on these features. The model was trained
using specific parameters: a penalty parameter C set to 100 and
a training set proportion T of 0.2, which controls the margin
width.

Before training, we performed data preprocessing by
removing outliers—data points outside the interquartile range
(IQR) in a box plot—to reduce measurement variability. This
preprocessing made it easier to find optimal classification
boundaries compared to using raw data directly (see Figure 4).
To evaluate the classification performance, we used a confusion
matrix. Although some false positives and false

negatives remained, the accuracy stayed above 50%,

indicating decent classification ability (see Figure 6). The
results also imply that outliers in the training data, if present in
other datasets, could hinder classification results in a 2D space,
pointing to limitations of this approach. Next, we explain our
new separation method using dimensionality expansion. Linear
SVMs sometimes fail to achieve linear separation using a

565

Fig. 5. Show Spectral Distribution by Linear-SVM (left) and Confusion
Matrix between growth.

Note: The units for both the vertical and horizontal axes are
[nm]. Each axis represents the frequency, and the numbers in the
boxes represent the degree of fit. Between red and ripe-red of
Tomato are compared.

straight line (or hyperplane). This occurs, for example, when
data intermingle on a two-dimensional plane, like an
interference zone on the negative side of the ideal margin,
making it impossible to classify data in this zone. This is referred
to as linear separation being impossible.

In contrast, nonlinear methods can be interpreted as mapping
features to higher dimensions. This is equivalent to adding a
height axis to the interference differences that exist within the
plane. In other words, differences in height can be used to
differentiate the data intermingled in the interference zone. It is
easy to imagine that the hyperplane found in this way will be a
plane that separates three dimensions, with a normal vector that
is not parallel to either the plane axis or the height axis. Figure
(5) shows a graph of the hyperplane found for the data plot
shown in Figure (4).

When the hyperplane separated in this way is projected onto
a two-dimensional plane, the boundary is curved, as shown in
Figure (6). Although data plots projected onto a plane are

3D Projection of the Data
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Fig. 6. Show 3D-Spectral Distribution of Selected between Light
Wavelength (515-555 [nm]) in Visible light regin using RBF kernel.

Note: Each axis represents 2d- Light Wavelength and result of
models using RBF-argolism (case parameter at C=1.0, 7 =0.5).



Linear Separation in Higher Dimensions
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Fig. 7. Show Linear Separation in Higher Dimension between growth red
Tomato and ripe-red Tomat with Spectral Distribution for model
suitability after applying RBF kernel.

Note: Each axis represents the frequency, and the numbers in the
boxes represent the degree of fit.

partially intersecting, they are linearly separable on a spatial
hyperplane. In this method, a Gaussian function (Gaussian
kernel) is used as the high-dimensional function, as shown in
equation (9). The cost parameter C determines the degree of
tolerance for misclassification. The smaller the kernel parameter
v, the simpler the decision boundary; the larger the value, the
more complex the decision boundary.

In this study, we aimed to determine the growth level of
vegetation. We demonstrated how to handle and analyze data
sets containing outliers, which are issues that arise when
classifying measured data. Furthermore, the SVM-based
machine learning used in this study allowed us to tune
parameters to the tolerance for outliers and the complexity of the
boundary in classification. This demonstrated that even if linear
separation is not possible, classification using a high-
dimensional hyperplane is possible by expanding the
dimensionality.

V. CONCLUSION

In this study, we used a prototype measuring device to
conduct experiments to quantify the degree of growth of
agricultural crops during the growth process through visible
light multispectral (light wavelength) analysis. The growth and
sweetness of agricultural crops are influenced not only by
photosynthesis by sunlight, but also by complex conditions such
as sunshine hours and irrigation timing. In the past, this work
relied mainly on experience and subjectivity, but by
quantitatively evaluating the distribution and changes of the
visible light band, farmers can more accurately grasp the growth
status of crops. When applying machine learning using
conventional support vector machines (SVM) to classify growth
levels and optimize classification, data preprocessing was
effective for raw data that may contain outliers, but we attempted
classification using a nonlinear separation method that allows

Linear Separation in Higher Dimensions
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Fig. 8. Show 2D projection of Linear Separation in Higher Dimension
between growth red Tomato and ripe-red Tomat with Spectral
Distribution. (Left figure: RBF case RBF ¥ =1.5, Right igure: Hyper-
parameter case C=10)

Note: Each axis represents the frequency, and the numbers in the
boxes represent the degree of fit.

high-dimensional analysis and demonstrated its effectiveness
visually. In the future, it will become increasingly important to
evaluate classification characteristics from the differences in
classification due to different learning algorithms and tuning of
learning parameters. It is expected that quantified light spectrum
distribution information will be used as additional information
for automatic sorting machines and harvesting robots.
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