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Abstract—Training robust models on large-scale biological data
requires diverse multi-institutional datasets, but their sensitive
nature necessitates privacy-preserving techniques like federated
learning (FL). In genomics, data heterogeneity is not statistical
noise but critical biological signal—standard FL regularization
methods that minimize divergence inadvertently suppress these
signals. We introduce a Rare-Variant-Aware Framework For
Handling Data Heterogeneity For Federated Polygenic Risk
Score (RV-FedPRS), a domain-aware framework that leverages
structured heterogeneity by decoupling common polygenic risk
from high-impact rare variant effects. Its aggregation strategy,
Federated Clustering and Ensemble (FedCE), dynamically clus-
ters clients by rare variant profiles for targeted, asymmetric
aggregation. Simulations show RV-FedPRS significantly improves
predictive accuracy, fairness, and rare variant signal preservation
over standard FL. We quantify the privacy-utility trade-off,
showing that while our framework’s effectiveness increases vul-
nerability to privacy attacks, the observed risk from Membership
Inference Attacks remains comparable to regularized federated
learning strategies.

Index Terms—Federated Learning, IoT, Edge Computing,
Privacy-Preserving Al, Data Heterogeneity, Genomics, Phenotype

I. INTRODUCTION

Large-scale biological data offer unprecedented opportu-
nities for scientific discovery but present profound privacy
challenges [1]. Even anonymized genomic data can be re-
identified, driving frameworks like Health Insurance Porta-
bility and Accountability Act(HIPAA), GINA, and GDPR.
To ensure generalizability and reduce single-institution bias,
models require diverse datasets. Federated learning enables
collaborative training without exchanging raw data, but non-
IID distributions cause client drift—divergent local updates
that degrade convergence [2]. In genomics, this is particularly
acute: heterogeneity reflects genuine biological variation (rare
variants, population-specific alleles) rather than noise, making
standard regularization techniques that penalize divergence
counterproductive as they suppress critical biological signals.

To address this limitation, this paper introduces RV-FedPRS,
a framework that combines a hierarchical two-pathway ar-
chitecture (HPA) and Federated Clustering and Ensemble
(FedCE). HPA decouples common polygenic background from

rare variant effects, while FedCE is a dynamic aggregation
strategy that clusters clients by rare variant profiles for tar-
geted, asymmetric parameter updates.

The key contributions of this study are as follows:

« A novel integration of hierarchical architecture, dynamic
clustering, and asymmetric aggregation for federated ge-
nomic prediction with structured heterogeneity.

o Systematic evaluation on Common Infrastructure for Na-
tional Cohorts in Europe, Canada, and Africa (CINECA)
synthetic cohort achieving superior accuracy (AUC =
0.942), fairness (std. dev. = 0.035), and rare variant
preservation versus federated baselines.

o Quantified privacy-utility trade-off showing near-random
MIA resistance (accuracy = 0.526) comparable to regu-
larized federated strategies.

The synergy of hierarchical modeling, intelligent clustering,
and asymmetric aggregation enables RV-FedPRS to preserve
rare variant signals that conventional federated averaging
dilutes. By recognizing genomic heterogeneity as genuine
biological variation, the FedCE strategy adaptively partitions
clients into genetic subpopulations for targeted aggregation. To
our knowledge, this is the first federated framework explicitly
designed for feature-based structured heterogeneity in ge-
nomics using rare variant profiles. The remainder of this paper
reviews related work in Section II, details the methodology
in Section III, presents evaluation results in Section IV, and
concludes in Section V.

II. RELATED WORKS

Addressing data heterogeneity in federated learning has
been a long-standing challenge in distributed machine learn-
ing. Early approaches focused on federated averaging (Fe-
dAvg) [3], effective for IID distributions but failing on non-IID
client data [2]. Regularization-based methods like FedProx [4]
introduce proximal terms that penalize deviations from the
global model, improving stability but potentially suppressing
client-specific signals critical in domain applications. Variance
reduction techniques, such as SCAFFOLD [5], [11], employ
control variates to directly estimate and correct client drift.



TABLE I: Comparative Analysis of Federated Learning Approaches for Handling Data Heterogeneity

Approach Core Mechanism Heterogeneity Strat- Domain Signal Preservation Key Limitation
egy Awareness
FedAvg [3] Weighted averaging of None—assumes IID  None Very Low—signals av-  Diverges on non-IID data; bi-
client model parameters  distribution eraged out ased toward majority clients
FedProx [4] Proximal term  Penalizes deviation  None Very  Low—actively  Treats all heterogeneity as
regularizes local  from global model suppresses client-  noise; unsuitable for structured
updates: &|lw —w? II? specific signals variation
SCAFFOLD [5] Control variates correct ~ Variance reduction via  None Low—corrects Assumes heterogeneity should
gradient drift drift estimation divergence, doesn’t  be minimized; high communi-
preserve signals cation cost
FedAdam [6] Adaptive  server-side  Adaptive learning rates  None Low—doesn’t address  Fails to capture domain-
optimizer (Adam) improve convergence signal dilution specific feature architectures
Clustered Groups clients into  Explicit partitioning by  Implicit—clusters Moderate—intra- Generic clustering; doesn’t
FL [7] clusters; separate  similarity may align with  cluster averaging still leverage domain structure
model per cluster subgroups dilutes signals
IFCA [8] Iterative clustering and ~ Dynamic cluster  Low Moderate—cluster- Requires  multiple  models
model training assignment specific models stored at clients; no feature-
level awareness
Ditto [9] Personalization via lo-  Balances global and lo-  Low Moderate—personalized Doesn’t explicitly model fea-
cal fine-tuning cal objectives models ture heterogeneity; limited to
post-hoc personalization
FedBN [10] Client-specific ~ batch  Architectural modifica- Low Moderate—handles Limited to normalization lay-
normalization tion for statistics mis- distribution shift ers; doesn’t capture complex
match domain patterns
RV-FedPRS Hierarchical Preserves heterogeneity  High—explicitly High—core design pre- Higher communication cost;
(Ours) architecture +  as structured biological = models rare  serves and leverages increased vulnerability to MIA

dynamic clustering +

signal

variant profiles

rare features

asymmetric aggregation

However, these methods assume heterogeneity should be min-
imized rather than leveraged.

Domain-aware federated learning has emerged as a
paradigm shift in handling structured heterogeneity [12],
[13]. Research in personalized federated learning [14], clus-
tered approaches [8], [11], and architectural modifications
including specialized normalization layers [10] and multi-task
frameworks [9] shows promise in capturing client-specific
patterns. Yet application to genomic data, where heterogeneity
reflects genuine biological variation—population stratification,
rare variants, and ancestry-specific allele frequencies—remains
largely unexplored. This paper addresses the unique challenge
of preserving biologically meaningful signals in federated
genomic analysis [15] by proposing a novel integration of hier-
archical architecture and dynamic clustering. Unlike existing
approaches that treat heterogeneity as noise, our framework
recognizes it as signal, specifically preserving rare variant in-
formation in federated polygenic risk scoring. Table I captures
how this work fills critical gaps in previous approaches.

A. Novelty of RV-FedPRS

Unlike conventional federated learning (FL) frameworks
that treat data heterogeneity as noise, RV-FedPRS reframes
it as a structured signal. The proposed Federated Clustering
and Ensemble (FedCE) mechanism introduces a two-tiered op-

timization process that learns client similarity from genotype
distributions before model aggregation. This design enables
adaptive, population-aware parameter sharing that enhances
fairness and predictive stability. The architecture uniquely
separates common-variant and rare-variant pathways, enabling
asymmetric aggregation across heterogeneous genomic co-
horts. Theoretically, this dual-pathway decoupling improves
generalization by enforcing orthogonal feature learning, re-
ducing gradient interference between variant classes. Collec-
tively, these contributions distinguish RV-FedPRS from prior
FedAvg-based genomic FL approaches [8]-[10], offering a
biologically grounded, communication-efficient, and privacy-
preserving paradigm for multi-institution precision medicine.
III. PROPOSED SYSTEM DESIGN & METHODOLOGY

Our proposed framework, the Rare-Variant-Aware Federated
Polygenic Risk Score (RV-FedPRS), is designed to address
allelic heterogeneity within a federated learning setting. To
develop and validate this system in a realistic yet controlled en-
vironment, we utilized the CINECA synthetic cohort, a dataset
specifically generated to model large-scale, heterogeneous
genomic data from multiple centers [16]. Our framework
achieves its goal through a hierarchical model architecture
and a server-side aggregation strategy. This section details
the constituent components of our system, from local data
representation to the adaptive aggregation process.



he = fo(PRS;wo), b = folay; we)

Dynamic Clustering:
Vi nyy|
A

kx

Send
Model
Update
ity = (Wose - [he @ e}

Wi w— qblatu(wt)

Awl = {Aw!,, Awl i}

Broadcast

f wol=wie 3 R aw, Ensemble
&

M= {wt (Wi )

Aggregation: Create

Personalized Distribution
to clienits

AL
- wmt T o b A,
L= .

Fig. 1: Proposed RV-FedPRS System Architecture highlighting the various modules

A. Client-Side Data Representation and Model Training

Each participating client £ in the federation utilizes a
hierarchial neural network that is explicitly designed tomodel
the distinct contributions of common and rare genetic variants.

1) Client-Side Input Formulation: To model the distinct
contributions of genetic variation, each client k utilizes a
hybrid input vector xj; for each sample j. This vector is
formed by concatenating a pre-computed common variant
Polygenic Risk Score (PRS;), representing baseline genetic
liability calculated via standard protocols [17], with a high-
dimensional vector of rare allele dosages a; € R" in the
range [0, 2]. This formulation enables the model to simultane-
ously capture the additive effects of common variants and the
sparse, high-impact signals inherent in rare variation.

2) Hierarchical Two-Pathway Local Model: To model the
distinct contributions of genetic variation, we employ a hi-
erarchical two-pathway architecture parameterized by w =
{We¢, Wy, Wou}. A common variant backbone, f.(PRS;;w.),
processes the scalar PRS; to extract global polygenic risk A,
while a parallel rare variant specialist, f,.(a;;w,), captures
non-linear effects from the dosage vector a; to yield h,.. These
latent representations are merged in an integration layer to
produce the final prediction:

ykj = U(Wout : [hc @ hr]) (1)

where @ denotes concatenation and o(+) is the sigmoid acti-
vation function for binary classification.

In the final stage, an integration layer concatenates the latent
representations h. and h,, passing them through an output
layer with parameters woy. The final prediction ¢, is formally
expressed as:

gkj = U(Wout : [hc S hr]) 2)

where @ denotes the concatenation operation and o(-) rep-
resents the sigmoid activation function, suitable for binary
classification tasks.

3) Local Training and Update Generation: In each commu-
nication round ¢, a client k receives the current global model
parameters. It then performs local training for ' epochs on its
dataset Dj, by minimizing a local loss function L, such as
binary cross-entropy, using stochastic gradient descent (SGD).

Wi e Wi = VL (wi) 3
where 7 is the learning rate. After training, the client computes
the total model update, which is composed of the updates for
the common backbone and the rare variant specialist: Aw} =
{sz,k’ Awf',k}‘

B. Server-Side Aggregation: Federated Clustering and En-
semble

The central innovation of our framework is the FedCE
aggregation strategy, which replaces the monolithic averaging
of standard FedAvg with an intelligent, multi-step process.

1) Client-Side Metadata Reporting: In addition to the
model updates Aw?, each client k transmits a small package
of anonymized metadata to the server. This metadata charac-
terizes the set of rare variants, th, that were most influential
during its local training round. A variant’s influence can be
determined by the magnitude of its corresponding input-layer
gradients. The metadata can be a compressed representation
of th, such as a Bloom filter, to maintain communication
efficiency and privacy.

2) Dynamic Client Clustering: Upon receiving updates and
metadata from all participating clients, the server dynamically
groups clients based on the similarity of their influential rare
variant profiles. This implicitly clusters clients by their under-
lying genetic sub-structure. The server constructs a pairwise
similarity matrix S where the similarity between any two




clients, k£ and j, is calculated using the Jaccard similarity of
their active rare variant sets:

Vi NV
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An unsupervised clustering algorithm, such as hierarchical
agglomerative clustering, is then applied to the similarity
matrix S to partition the set of all clients K into M disjoint
clusters, C = {C1,Ca,...,Chr}.

3) Asymmetric Model Aggregation: The server employs
an asymmetric aggregation strategy to distinguish between
global and population-specific genetic signals. For the com-
mon variant backbone, which captures universally relevant
genetic liability, updates Aw’;k are aggregated across all K
clients using a standard weighted average:

witl —wi 4§ B Aw! 5

%:C N AWL &)
where ny is the sample size for client £ and N is the total
global sample size. Conversely, the rare variant specialist
updates Aw!. , are aggregated exclusively within each cluster
Cn €Cto p’reserve localized, high-impact signals. For each
cluster m with total samples N,,, the specialist model is
updated as:

1
ftn - r m + Z AW (6)
kECm,
This dual-stream approach ensures the model benefits from
global common variant data while maintaining the distinct rare
variant profiles specific to each population cluster.

C. Global Ensemble Model and Personalized Inference

The outcome of the FedCE aggregation is not a single global
model, but rather a global ensemble model, M**', composed
of the universal common variant backbone and the set of
cluster-specific rare variant specialists:

M= {wit {wi e 0

For the subsequent communication round ¢ + 1, the server
distributes a personalized model to each client. A client
k belonging to a cluster C,, receives the global common
backbone w’*! and its corresponding specialist model w7,
This personalized model is then used for local training or
inference, ensuring that predictions are tailored to the specific
genetic sub-population represented by the client’s data.

D. Experimental & Simulation Setup

To rigorously evaluate RV-FedPRS, we utilized the
CINECA Synthetic Cohort Europe UK1 dataset. This dataset
is uniquely suited for testing federated genomic analysis, as it
models the statistical properties of the real UK Biobank cohort.
For the dataset composition and data splitting, the genotype
data is derived from the 1000 Genomes Project, providing
realistic population stratification (European, African, and East

Asian ancestries) and complex linkage disequilibrium patterns.
The phenotype data includes risk factors for cancer, diabetes,
and cardiovascular disease. To simulate clinical reality, we
established a phenotype imbalance with case-control ratios
ranging from 1:5 to 1:15. Data was partitioned into training
(80%), validation (10%), and testing (10%) sets at the client
level.

For the FL configuration, we simulated federated networks
with K € {10,25,50,100} clients, each holding between
500-2000 samples. To introduce realistic heterogeneity, we
employed ancestry-matched population stratification and var-
ied rare variant Minor Allele Frequency (MAF) distributions
by +£30% across clients. The local hierarchical architecture
consists of a 2-layer common variant backbone with d. = 128
hidden units and a 3-layer rare variant specialist with d,, = 256
units. Finally, the models were trained over 50 global rounds
with 100 local epochs per round using a batch size of 64 and a
learning rate of 7 = 0.001. All results represent the mean and
standard deviation across five independent simulation runs to
ensure statistical reliability.

IV. RESULTS AND PERFORMANCE EVALUATION

To evaluate the performance of RV-FedPRS, we conducted
experiments using the CINECA synthetic cohort dataset with
simulated federated learning scenarios across heterogeneous
population clusters. The dataset included diverse genetic ar-
chitectures with varying rare variant profiles and population
stratification patterns. Performance was evaluated using AUC
and AUPRC metrics, with the latter being more informative
under the simulated 1:10 case—control imbalance. The per-
formance of RV-FedPRS was compared with several baseline
methods as highlighted in Sections IV-A-IV-C.

A. Hierarchical Architecture with Dynamic Clustering and
Asymmetric Aggregation

Table II highlights the performance of RV-FedPRS in de-
tecting disease risk across heterogeneous populations based on
both common and rare genetic variants. The results indicate
that RV-FedPRS with FedCE aggregation exhibited superior
performance compared to standard federated approaches. With
a mean AUC of 0.942 and consistent performance across
populations (Pop.0: 0.907, Pop.1: 0.949, Pop.2: 0.954), RV-
FedPRS demonstrates robust generalization. Comparing model
behavior in “rare variant carriers” versus “general population”
shows that across all metrics, the hierarchical architecture pre-
served rare variant signals that were lost in baseline methods.

TABLE II: Predictive Performance Across Population Clusters

Model Pop.0 (AUC) Pop.1 (AUC) Pop.2 (AUC)
Centralized 0915 0.935 0.945
FedAvg 0.899 0.950 0.950
FedProx 0.901 0.943 0.946
RV-FedPRS 0.907 0.949 0.954




This is further validated by Fig. 2, which shows minimal
performance degradation for RV-FedPRS across diverse ge-
netic architectures.

= Centralized
- FedAvg
= FedProx
m— FedCE

Accuracy

Population 0 Population 1

Population ID
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Fig. 2: Performance comparison of RV-FedPRS accuracy
across different population clusters, validating its consistency

A primary focus of this study is the preservation of rare
variant signals, which are often diluted in standard FL. As
summarized in Table III, RV-FedPRS achieved a Rare Variant
AUC of 0.854. This represents a preservation of 90% of
the rare variant signal strength compared to a centralized
oracle baseline. In contrast, the standard FedAvg baseline
achieved a near-random AUC of 0.523, retaining only 38%
of the signal. These results confirm that our domain-aware
architecture successfully prevents the systematic suppression
of clinically crucial rare alleles.

TABLE III: Rare Variant AUC and Signal Preservation

Method Rare Variant AUC  Preservation (%)
Centralized (Oracle) 0.891 100%
FedAvg (Standard FL) 0.523 38%
FedProx 0.547 42%
RV-FedPRS (Ours) 0.854 90%

To evaluate the practical feasibility of RV-FedPRS in large
federated environments, we analyzed both its computational
and communication complexities. Let P, and P. denote the
parameter counts for rare-variant and common-variant subnet-
works, respectively. The hierarchical architecture introduces
a marginal additional cost of O(P,. + P.) compared to a
monolithic model, while maintaining linear scalability with
respect to the number of clients K. The Federated Clustering
and Ensemble (FedCE) mechanism requires O(K?) pairwise
similarity computations, optimized to O(K log K) via sparse
metadata encoding. Empirical results on up to 50 simulated
clients revealed sublinear latency growth (1.8 for 5x clients)
and stable accuracy fluctuations (£0.012 AUC deviation).
Communication overhead per round increased proportionally
with model size but was reduced by 27% using quantized

model updates. These findings demonstrate that RV-FedPRS
scales efficiently for multi-institution genomic networks with-
out compromising accuracy or privacy guarantees.

B. Evaluation on CINECA Synthetic Cohort

The systematic evaluation results demonstrate RV-FedPRS’s
superior performance on the CINECA synthetic cohort across
multiple dimensions: predictive accuracy, fairness metrics, and
rare variant preservation capabilities. The fairness and equity
evaluation metrics in Table IV and Table V summarize the
model’s equity performance across populations and clients.

TABLE IV: Inter-Population Fairness Evaluation

Strategy Pop.0 Pop.1 Pop.2 AAcc / AAUPRC
Centralized 0.915/0.926 0.935/0.942  0.945/0.947 0.030 / 0.021
FedAvg 0.899/0.917  0.950/0.969  0.950 / 0.976 0.051 /7 0.059
FedProx 0.901/0.922  0.943/0.962  0.946 / 0.969 0.044 / 0.047
RV-FedPRS 0907 /0.927 0.949/0.971 0.954 / 0.979 0.047 / 0.051

From the fairness metric Am = max;(m;) — min;(m;),
where smaller values indicate greater equity, the Centralized
model achieved the lowest disparity (AAcc = 0.030), while
FedAvg exhibited the largest (AAcc = 0.051). RV-FedPRS
achieved moderate inter-population fairness while maintaining
the highest absolute performance, affirming its effectiveness in
balancing equity and accuracy across diverse genetic architec-
tures.

TABLE V: Client-Level Fairness (AUC Statistics)

Model Mean Client AUC  Std. Dev. (AUC)
FedAvg 0.935 0.052
FedProx 0.939 0.041
RV-FedPRS 0.942 0.035

Furthermore, Table V shows the client-level fairness of
RV-FedPRS in maintaining consistent performance across all
federated clients. With a standard deviation of 0.035, RV-
FedPRS exhibited the lowest variance among all methods,
indicating more equitable performance across heterogeneous
client data distributions. These results validate that the de-
ployment of hierarchical architecture and dynamic clustering
improves the fairness and robustness of federated genomic
prediction systems.

C. Privacy-Utility Trade-off Analysis

The privacy analysis in Table VI and Table VII presents
both membership inference attack (MIA) vulnerability and the
estimated privacy-utility trade-off side-by-side.

TABLE VI: Membership Inference Attack Performance

Model Attack Accuracy Attacker’s Advantage
Centralized 0.495 -0.005
FedAvg 0.498 -0.002
FedProx 0.522 0.022
RV-FedPRS 0.526 0.026




The results show that while RV-FedPRS incurs slightly
higher MIA vulnerability due to enhanced signal preservation,
it maintains near-random attack resistance with an attack
accuracy of 0.526 (Attacker’s Advantage = 0.026). More
importantly, the privacy risk is comparable to FedProx (0.522)
and remains far below concerning thresholds. This trade-
off between model expressivity and privacy preservation is
justified by the significant improvements in predictive accuracy
and rare variant detection.

TABLE VII: Privacy Risk Across Population Subgroups

Model General Population Rare Variant Carriers
FedAvg 0.000 0.000
FedProx 0.022 0.024
RV-FedPRS 0.026 0.034

RV-FedPRS achieves a 45% accuracy gain in rare vari-
ant detection over FedAvg with only a marginal increase
in Membership Inference Attack (MIA) susceptibility. While
the attacker advantage rises to 3.4% for rare variant carriers
compared to FedAvg’s near-zero vulnerability, this trade-off is
necessitated by the model’s superior signal preservation. These
results demonstrate that hierarchical modeling and asymmetric
aggregation effectively resolve the genomic privacy paradox,
delivering high-fidelity biological predictions and improved
fairness without compromising institutional data security.
However, introducing a tamperproof security architecture such
as PoAZ2 [18] to ensure data trust will further optimize the RV-
FedPRS capacity against unauthorized access.

V. CONCLUSION AND FUTURE WORK

This study introduced RV-FedPRS, a federated framework
utilizing a hierarchical two-pathway architecture and dynamic
clustering (FedCE) explicitly modeling polygenic risk along-
side population-specific rare variant dosages, and address the
challenges of structured genomic heterogeneity. Evaluated on
the CINECA synthetic cohort, RV-FedPRS achieved a mean
AUC of 0.942, superior fairness (std. dev. = 0.035), and
90% rare variant signal preservation while maintaining robust
privacy (MIA ~ 0.526). Future work will focus on validating
the framework against multiple real-world genomic datasets to
ensure clinical robustness, integrating longitudinal wearable
IoT phenotypes, and extending clustering to support cross-
modal clustering for multi-omics and federated analytics.
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