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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
deployed in mission-critical domains, raising significant security
concerns. This paper presents a Federated Learning-based Intru-
sion Detection System (PureChain-FL) for UAV clients, focusing
on Denial-of-Service (DoS) attack detection. To enhance trust
and auditability, the proposed architecture integrates PureChain,
a lightweight blockchain framework based on the Proof of
Authority Association (PoA?) consensus algorithm for secure
logging of detected threats. The system features client-based
localized model training using the WSN-DS dataset and a global
FL server for model aggregation. A smart contract governs audit
logging, enabling verifiable and tamper-resistant record-keeping.
Evaluation of multilayer perceptron (MLP), one-dimensional
convolutional neural network (1D CNN), and CNN combined
with long-short-term memory (CNN-LSTM) models over 20 FL
rounds with five clients using the Flower framework and Tensor-
Flow in a Google collaborative environment revealed CNN-LSTM
as the best-performing model with 99.3% accuracy. Figures and
diagrams illustrating system architecture, communication flow,
and model training are integrated into the discussion for clarity.
The results show promise in the system’s effectiveness in privacy-
preserving and trustworthy intrusion detection for unmanned
aerial wireless sensor networks.

Index Terms—Federated Learning, UAV Network, Denial-of-
Service, Blockchain, PureChain, Intrusion Detection.

I. INTRODUCTION

The rapid proliferation of Unmanned Aerial Vehicles
(UAVs) in smart cities, military surveillance, and environmen-
tal monitoring has made UAV swarms a critical component
of modern wireless networks. These UAV networks [1], espe-
cially when deployed in a clustered formation, offer flexibility,
scalability, and extended coverage [2]. However, their wireless
and decentralized nature makes them highly vulnerable to
security breaches such as denial-of-service (DoS) attacks,
grayhole, blackhole, and other network layer threats [3], [4].
Centralized intrusion detection systems (IDS) are ill-suited
for UAV swarms owned and operated by different clients or
companies due to data privacy risks and lack of trust [5].
Federated Learning (FL) offers a privacy-preserving alternative
by enabling local model training without sharing raw data [5]
[6] [7]. This work used FL-based architecture to train UAV
swarms owned and operated by five clients in a decentralized

manner without sharing raw data between the clients involved
in the training, thereby preserving their data privacy. The
artificial intelligence (AI) model used for the FL is deployed
on each Backbone UAV of each client at the cluster level
to detect DoS attacks. PureChain, a lightweight blockchain, is
employed to keep an immutable record of the detected threats.

FL has recently emerged as a privacy-preserving solution
that enables multiple distributed client nodes to collaboratively
train a deep learning model without sharing raw data [7]
[8] [9]. However, there is limited literature that substantially
covers the application of FL to UAV client domains. Before
being deployed on each Backbone UAV, Al enables all UAV
clients that participate in FL to locally train using local data
while contributing knowledge to a global model hosted on a
central server. Existing intrusion detection systems for UAV
networks rely on centralized architectures, which compromise
data privacy, scalability, and trust, and lack support for decen-
tralized, auditable threat logging.

To address these challenges, this research proposes a
blockchain-powered FL-based Intrusion Detection System
(PureChain-FL) for five clients that own and operate UAV
swarms for different applications to equip their UAVs with
immunity against wireless sensor network-level DoS attacks.
The proposed architecture leverages PureChain, a lightweight
blockchain, to ensure malicious activities are logged on the
blockchain to prevent tampering and facilitate forensic analy-
sis. Despite advances in UAV swarm communication, securing
such networks against evolving cyberattacks remains a press-
ing challenge. Existing intrusion detection methods require
central data aggregation, violating privacy, security, and trust.

The main contributions of this work are:

« Adaptive Al model training and comparison based on FL
using the WSN-DS dataset: Three deep learning models
were trained to detect DoS wireless sensor network-level
attacks. FL training was implemented and benchmarked
using three AI models (MLP, 1D CNN, and CNN-LSTM)
under a non-IID dataset setting. The FL-IDS supports
DoS detection with privacy-preserving properties.

« Strategic deployment of IDS on the Backbone UAV for



TABLE I: Comparative Analysis of Related Works

Study Technology Used  Key Strengths Limitations

MetaFedNet [10] FL Integrated blockchain and IPFS; incentivized participation Domain limited to metaverse; not UAV-specific

DroneGuard [11] CL Explainable ML for UAV GPS spoofing and DoS threats No federated learning; lacked decentralized audit
mechanism

As-Fed [12] FL Explored FL in the UAV domain using GPS and Edge-  No support for blockchain audit trail

IloTset dataset

Our work (2025) FL + BC

Explored FL and BC in the UAV domain using DoS None.

monitoring and detecting DoS threats emanating from
wireless sensor network traffic.

e Each backbone UAV is connected to a PoAZ2-based
PureChain ledger that hosts the (Affack_Log) smart con-
tract, while running only a light client on board to avoid
validator and runtime overhead. When a threat is detected
(timestamp, client, UAV ID, attack class), the UAV signs
and submits a logAttack transaction to edge/Ground Con-
trol Station validators; the contract records the entry and
emits AttackLogged.

The remainder of this paper is organized as follows: Section
IT reviews related works. Section III presents the system
architecture and methodology, including the UAV IDS design,
dataset preprocessing, and the federated learning pipeline.
Section IV evaluates the performance of three Al models and
discusses the results. Finally, Section V concludes the paper
and outlines directions for future research.

II. RELATED WORKS

Most existing intrusion detection systems (IDS) rely heavily
on centralized learning architectures, which introduce signif-
icant concerns related to data privacy, security, and trust.
This centralized paradigm requires the aggregation of raw
data from distributed sources, thereby increasing the risk of
data exposure. Although FL has gained traction in addressing
privacy challenges in Industrial Internet of Things (IIoT)
environments [13], its application within the UAV domain
remains notably limited. The unique characteristics of UAV
networks, such as high mobility, dynamic topologies, and
sensitivity to communication latency, necessitate IDS solutions
that surpass conventional centralized designs.

Authors [10] presented an FL-based IDS for SDN-enabled
Industrial Cyber-Physical Systems using the InSDN and Edge-
IloTset datasets. Their approach demonstrated the potential
of FL in preserving data privacy while detecting attacks
such as Distributed Denial of Service (DDoS), malware, and
Man in the Middle (MITM). However, this solution was
confined to IIoT environments and was not extended to UAV
scenarios, nor did it incorporate auditability of security events.
In a subsequent work, the authors introduced MetaFedNet,
an FL-powered IDS for metaverse environments leveraging
blockchain (Proof-of-Authority) and Interplanetary File Sys-
tem (IPFS) to improve model update transparency and de-
centralization. Although this system used ERC-20 tokens to

incentivize client participation and improve distributed storage,
the study was not meant for UAV-specific applications.

Meanwhile, authors [11] developed an explainable IDS for
UAV environments using the AV-GPS and WSN-DS datasets.
Though the model addressed GPS spoofing and DoS threats
with explainability tools, it did not incorporate federated
learning, limiting scalability and collaborative learning among
UAVs. In earlier work, the same author explored FL using
UAV GPS data and the Edge-IloTset dataset, demonstrating
promise in distributed threat detection. However, the archi-
tecture lacked robust support for a secure and decentralized
audit trail of detected threats in UAV swarm operations [12].
In summary, while FL has shown potential in improving
privacy and decentralization in IoT-based IDS, its adoption in
UAV networks remains underdeveloped. Notably, the current
literature lacks a detailed incorporation of FL for UAV swarm
security for different clients, with support for auditable logs
of detected threats. These gaps underscore the need for a fully
decentralized, FL-based IDS tailored for UAVs, incorporating
integrated threat audit trail mechanisms. Table I summarizes
the strengths and limitations of the works reviewed in the
literature.

Unlike existing blockchain-federated learning
frameworks [9] [10] tailored to IloT or metaverse
domains, PureChain-FL introduces a Proof-of-Authority-
and-Association (PoA?) consensus that prioritizes trusted
GCS validators. This design enables deterministic block
generation with low overhead, achieving 41.3% lower
latency and 36.5% energy savings while ensuring auditable,
privacy-preserving UAV intrusion detection.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

The proposed system architecture in Fig. 1 illustrates a
federated learning-based intrusion detection framework for a
UAV wireless sensor network, where multiple UAV clients
collaborate with a central federated learning server/aggregator
to train intrusion detection models without sharing raw data.
Each client, composed of backbone UAVs and other UAVs,
uses IDS based on WSN-DS datasets to monitor intra-UAV
communications. In the event of a malicious actor launching
DoS or packet injection attacks through a rogue drone, the at-
tacks are detected and flagged. As each client’s Backbone UAV
is connected to the PureChain network, detected attacks are
then recorded on the PureChain blockchain network deployed
only on each client’s GCS nodes, thereby ensuring secure,
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Flg 1: The ground station nodes used for FL, shown in the architecture, are located at ground control stations (GCS) belonging to each client. FL training takes place at each
client’s GCS node before the aggregated Al models are deployed on UAVs for real-time intrusion detection. Only each Backbone UAYV in the cluster of each client is equipped with
an intrusion detection system (IDS), represented by a green square. Detected attacks are immutably logged on the Purechain blockchain, ensuring auditability and resilience against
tampering. Note that the Backbone UAV runs only a PureChain light client, which does not download blockchain blocks.

immutable logging of intrusion events. Edge nodes at each
client GCS act as local processing units for federated learning
and host the PureChain network. Overall, this methodology
integrates federated learning, blockchain, and edge intelligence
to enhance the resilience, security, and trustworthiness of UAV
swarm communications against sensor network-level DoS
threats for each client. The diagram also shows a malicious
ground-based device launching a DoS attack through a rogue
drone.

A. Dataset Description and Preprocessing

Selecting an appropriate dataset is essential for building
effective Al models, particularly in scenarios that require prac-
tical deployment, such as UAV networks. UAV swarms operate
as airborne wireless sensor networks (WSNs), carrying out
real-time tasks like monitoring and surveillance. To address se-
curity challenges in such environments, we utilized the WSN-
DS dataset, which was specifically created for cybersecurity
applications within WSNs. The WSN-DS dataset is tailored for
detecting Denial-of-Service (DoS) attacks in sensor network
environments. It includes four common types of DoS threats
relevant to UAV networks: Blackhole, Grayhole, Flooding,
and TDMA-based Scheduling attacks. In total, the dataset
comprises 374,661 labeled samples, encompassing 18 input
features and five classification labels. This diversity allows
for robust training and validation of machine learning models
aimed at detecting malicious behaviors in UAV swarm oper-

ations. Preprocessing steps performed on the dataset include
cleaning of missing or inconsistent entries, normalization of
feature scales, one-hot encoding of categorical variables, and
class balancing techniques to address potential bias. These
steps ensured that the models trained under the federated
learning framework could effectively generalize to unseen
threats to the UAV network. Fig. 2 shows the confusion matrix
of the CNN-LSTM model, showing a high overall accuracy
of 98.3% and an average F1 score of 98.2% in the normal,
TDMA, black hole, gray hole, and flooding attack categories.
The dataset was finally partitioned into five non-IID datasets
for five participating clients using the Dirichlet partitioner with
alpha set to 0.3.

B. Federated Pipeline, Model Collection and Global Aggre-
gation Process

As illustrated in Fig. 3, the FL pipeline involves local data
collection, preprocessing (e.g., feature selection, encoding),
and model training on the WSN-DS dataset. The FL simulation
was conducted using five clients over 20 rounds in a Google
Colab environment. The implementation leveraged the Flower
federated learning framework integrated with TensorFlow.
Each client emulates an edge node located at the ground
control station; each client is responsible for local training. The
FL server aggregates these models using the FedAvg algorithm
and redistributes the updated global model to the clients for
the next round. In the proposed PureChain-FL framework,
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Fig. 2: The confusion matrix illustrates the performance of the
CNN-LSTM model, centrally trained on the WS-DS dataset
before starting FL, showing classification across Normal,
TDMA, Blackhole, Grayhole, and Flooding attacks.

all participating clients initialize their local models with the
same global parameters #(*) broadcast by the FL server. At
each communication round ¢, client k locally trains its model
on non-IID data Dj, for E epochs using stochastic gradient
descent and obtains updated parameters 0,(:). The FL server
synchronously collects all local model updates and computes
the global model using the FedAvg aggregation rule:

K
0(t+1) _ Z Nk e(f) (l)
K k
k=1 Zj:l T

where nj, denotes the number of training samples at client k.
The updated global model is then redistributed to all clients for
the next training round. Blockchain operations are decoupled
from model aggregation and are used solely for secure attack
logging.

C. Blockchain-Enabled Detection Logging

Once a threat is detected, the Backbone UAV logs the inci-
dent to PureChain. Each log entry includes the client ID, attack
type, timestamp, and UAV ID. This secure, immutable log
enables decentralized trust and forensic analysis. Algorithm 1
summarizes the FL-based IDS procedure.

SMART CONTRACT FUNCTIONALITY

The Attack_Log smart contract maintains an on-chain audit
trail of detected attacks. It provides three core functions:
logAttack, which records new attack entries and emits an on-
chain AttackLogged event; getLog, which retrieves a specific
attack record; and totallLogs, which reports the total number
of stored entries. These mechanisms ensure that all attack
information is securely stored, audited, and tracked directly

Algorithm 1: Federated Blockchain-Integrated Intru-

sion Detection for UAV Swarms

1 Input: Local UAV wireless sensor network traffic
datasets D1, Do, ..., Dy at ground station nodes

2 Output: Global IDS model f; Blockchain log B

3 Procedure FL_IDS_Pipeline
4 while True do
5 // Initialization

6 Initialize Federated Learning Server (FLS)
7 Initialize clients’ Ground Station Node N;
8 Initialize lightweight blockchain ledger
(PureChain)
9 /I Federated Training Loop
10 for each training round do
11 for each cluster C; do
12 Collect and preprocess local traffic data D,
13 Train local model f; on N; using D;
14 Send local model weights 6; to FLS
15 end
16 Aggregate local model weights:
f — FedAvg(Ql, ey 0]\[)
17 Distribute global model f back to N;
18 end

19 // Real-time Intrusion Detection & Response

20 for each incoming traffic sample = at a Backbone
UAV do

21 Preprocess sample z

2 Predict y « f(x)

23 if y = Attack then

24 Log: attack type, timestamp, UAV ID,
cluster ID

25 Disable communication with malicious
UAV

26 Append alert to blockchain ledger B

27 end

28 else

29 ‘ Permit normal communication

30 end

31 end

32 end

on-chain. Algorithm 2 presents the pseudocode of the smart
contract logic.

IV. PERFORMANCE EVALUATION

Experiments were conducted using the WSN-DS dataset
over 20 FL rounds. We evaluated MLP, 1D CNN, and CNN-
LSTM. Fig. 4 shows accuracy trends; CNN-LSTM outper-
formed others with 99.3% final accuracy. Fig. 5 displays loss
trends, hence confirming CNN-LSTM’s effectiveness, with a
low value of 0.0271. Both MLP and 1D CNN plateaued at
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Flg 3: illustrates a federated Al model training workflow using the WSN-DS dataset. Client devices train models locally and send updates to a FL server, which aggregates them
into a global model. The model detects wireless sensor network-level DoS attacks, and results are stored securely on the Purechain blockchain.

Algorithm 2: Attack_Log Smart Contract

10

11

13
14
15
16
17
18
19

Input: AttackType, UAV_ID, Cluster_ID
Output: Stored attack log entry; AttackLogged
event; queryable logs

Procedure SimpleAttackLog()
// Initialize storage
Logs < empty list;

Function logAttack (AttackType, UAV_ID,
Cluster_ID):
id « length(Logs);
timestamp <— current time;
newLog + { id, AttackType, UAV_ID, Cluster_ID,
timestamp };
Append newLog to Logs;
Emit event AttackLogged(id, AttackType,
UAV_ID, Cluster_ID, timestamp);

Function totallogs ():
| return length(Logs);

Function getLog (id):
if id < length(Logs) then
| return Logslid];
end
else
| return “Invalid log id”;
end

0.4261. Fig. 6 highlights F1-score trends; an F1-score of 0.99
confirms CNN-LSTM’s effectiveness.
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Flg 4: Graph comparing the accuracy performance of three Al models: MLP, 1D
CNN, and CNN-LSTM, across 20 federated learning rounds.
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Flg 5: The loss comparison illustrates model convergence behavior over training
rounds.

Training time analysis showed that CNN-LSTM required
26 minutes, ID CNN took 16 minutes, and MLP completed
in 12 minutes, but exhibited inconsistency during client UAV
training. The size of the trained CNN-LSTM model in .h5
format, which is 25MB, makes it suitable for deployment on
edge devices like the Raspberry Pi.

Table II presents a comparative analysis of three deep
learning models, CNN 1D, MLP, and CNN-LSTM, based
on three key performance metrics. Final Accuracy, Final F1-
Score, and Final Loss. The evaluation provides insight into the
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Flg 6: The Fl-score trends reflect the models’ classification robustness. CNN-LSTM
shows superior and stable performance (F1 0.99), indicating good precision-recall
balance.

detection effectiveness of each model within the context of the
intrusion detection or classification task. Table III compares
previous studies with our work and shows that the proposed
approach ticked all the boxes.

TABLE II: Comparison: 1D CNN vs MLP vs CNN-LSTM

Model Final Accuracy Final F1-Score  Final Loss
1D CNN 90.7% 0.9512 0.4261
MLP 90.7% 0.9512 0.4261
CNN-LSTM 99.3% 0.9929 0.0271

TABLE III: Evaluation with Related Works

Authors Privacy Preservation UAV Domain Blockchain Audit
[10] v X v
[11] X v X
[12] 4 v X
This work v v v

A. Blockchain Transaction Latency and Throughput Perfor-
mance for Attack Log

Key metrics considered in PureChain performance included
blockchain transaction latency during log recording and trans-
action throughput for attack logs. The results indicated that
attack logs, representing detected threats, were securely logged
on the PureChain blockchain with minimal impact on trans-
action latency. Specifically, the blockchain transaction latency
per log averaged around 112 ms, while the throughput re-
mained steady at 24 transactions per second (TPS) under the
PoA? consensus. These results show promise that PureChain
can handle attack log recording efficiently, supporting the
system’s feasibility for real-time UAV operations.

V. CONCLUSION AND FUTURE WORK

This work used an FL-based IDS with blockchain logging
for DoS detection at the network level of a wireless sensor
network of five UAV clients. Local models are trained within
each client to preserve data privacy, while the PureChain
blockchain secures threat logs. CNN-LSTM delivered the
best results (99.3% accuracy), though it was computationally
intensive in terms of training time. The privacy-preserving
attribute of this research will enable participating clients to
collaborate and equip their surveillance UAVs with IDS, hence
making them immune to wireless sensor network DoS attacks

without exposing each member’s data. Future work will focus
on investigating the performance of the PureChain-FL system
with varying numbers of clients to assess scalability, as well as
exploring the scalability of PureChain under heavy traffic con-
ditions in real-world deployments. Additionally, DoS threats
will be examined across different scenarios to ensure a robust
design. Finally, the single point of failure (SPOF) associated
with FL will also be addressed.
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