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Abstract

This paper proposes a novel machine learning-based system for
detecting micro-defects in high-quality prints by leveraging a rich
set of pattern matching features. To ensure robustness against
variations between the digital truth (DT) and the captured vision
truth (VT) images, we first apply a frequency-domain correction
to suppress noise and amplify defect signals. From the corrected
images, we initially construct a comprehensive, 42-dimensional
hybrid feature vector for each image patch, which includes statistical,
LBP-based textural, and SIFT-based structural features. A
feature importance analysis is then conducted, and a final compact
feature set comprising only the top 10 most influential features is
selected for training a Light GBM model. This approach allows the
system to distinguish true defects from natural print texture
variations with high accuracy and efficiency. Experimental results
are expected to show that this pattern-enhanced approach
significantly outperforms methods based on simple difference
metrics, especially in reducing false positives on complex
backgrounds.
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I. INTRODUCTION

Automated Optical Inspection (AO]) is a critical component in
modern manufacturing for ensuring product quality [5]. In the high-
quality printing industry, a Key challenge is the reliable detection of
micro-defects from captured images (VT/VF) by comparing them
against a digital master (DT). However, conventional methods that
rely on simple image subtraction are notoriously sensitive to
environmental variations such as inconsistent illumination and color
tone shifts, often leading to an unacceptably high rate of false
positives [1].

To overcome this, our research focuses on a machine learning
approach engineered for robustness. While texture descriptors like
LBP [3] and structural key point detectors like SIFT [4] have been
used effectively in isolation, their true potential lies in a synergistic
combination. Our primary contribution is a novel framework that
integrates a specialized preprocessing step with a data-driven feature
selection process. We first employ a frequency-domain correction
designed to be robust against lighting and color variations, which
actively suppresses noise while amplifying true defect signals. We
then construct a comprehensive pattern-enhanced feature vector
that combines statistical, textural, and structural information.
Crucially, we demonstrate that a compact subset of these features—
specifically, the top 10 most influential features identified through
model analysis—is sufficient for high-performance classification.
This results in an efficient and highly accurate Light GBM-based
system capable of discerning subtle defects from complex
background patterns..
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II. METHOD
1) Preprocessing

Defects manifest as high-frequency signals, while global
illumination shifts are low-frequency phenomena [2]. To robustly
isolate defects, we perform a frequency-domain correction. First, the
DT and VT images are transformed into the frequency domain using
a 2D Fourier Transform(F).

Fpr(u,v) = F{DT(x,y)},
Fyr(u,v).= F{VT(x,y)}

We then define a low-pass-filter H;p (u, v) (e.g., a Gaussian filter)
and a corresponding high-pass filter Hyp (u,v) = 1 — Hyp(u,v) . A
composite frequency representation, Heorr(u,v), is created by
combining the low-frequency components from the DT with the
high-frequency components from the VT, actively suppressing low-
frequency noise and amplifying high-frequency defect signals:

Feorr (U, v) = Fpr(u,v) * Hyp(u, v) + Fyr(u,v) * Hyp(u, v)

Finally, an inverse Fourier transform (F~1) yields the corrected VT
image, VT.orr(X,y), which is globally aligned with the DT, with
background noise minimized and critical defect information
enhanced.

VTeorr (X, ¥) = T_l{Fcorr (u,v)}

2) Feature Engineering and Selection

The core of our system is a two-step process of comprehensive
feature extraction followed by data-driven feature selection to build
a discriminative and efficient model.

2.2.1. Pattern-Enhanced Feature Vector Construction

Arich, 42-dimensional feature vector, Vyqcn, is extracted from each

corresponding patch pair (Ppr, P.orr) of the DT and the corrected

VT. This vector is a concatenation of four distinct feature groups:
Vpatch = [Ustat“vLBPllvsiftl|Usim]

Where, || denotes concatenation.

- Statistical & Difference Features (vgq.): This group quantifies
the basic intensity and error signals. It includes the mean, standard
deviation, median, max, and min values for both Ppr and P, as
well as statistics from their absolute difference image.

-Texture Analysis using LBP (v pp): To capture fine textural
variations, we utilize Local Binary Patterns [3]. For each patch, a
histogram of uniform LBP patterns is computed. The feature vector
v, gp includes statistics of the LBP image (mean, std, variance) and
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the top bins of the histogram, effectively describing the patch's
micro-pattern composition.

-Structural Analysis using SIFT (vg;,): To measure structural
changes, we apply the SIFT detector [4] on each patch. Instead of
using the descriptors directly, we extract statistics from the detected
key points, forming a feature vector vy, that includes: the total
number of key points (Nyp), the spatial variance of key point
locations (agos) and statistics of key point scales and orientations.
This provides a robust signature of the patch's structural complexity.

-Similarity Analysis (Vgy,): A direct. measure of similarity is
calculated using Normalized Cross-Correlation (NCC) between the
two patches, providing a global similarity score.

2.2.2. Feature Selection

While the 42-D vector is comprehensive, not all features contribute
equally. To create a more efficient and robust model, a feature
selection process is performed. An initial Light GBM model is
trained using all 42 features to rank them based on their feature
importance (gain). The top 10 most influential features are then
selected to form the final (V;,;), compact feature vector used for
training the definitive model. This step eliminates redundant
information and focuses the model on the most discriminative
patterns.

3) Classification and Postprocessing

The final stage of the system translates the extracted feature vectors
into a clean, interpretable defect map. The selected 10-dimensional
feature vectors (Vse;) are first normalized using a StandardScaler,
where each feature x; in the vector is transformed to its scaled
version Xx;:
Xi — Hi

0i
Here, y; and o; are the mean and standard deviation of the ith
feature, respectively. These scaled feature vectors are then input into
a trained Light GBM model, which outputs a probability score

x; =

p € [0,1] for each patch: These scores are assembled into a raw
probability map P(x,y). This raw map is first converted into a
binary mask M, (x,y) by applying an optimized threshold T :
1 ifP(x,y) >t
Mp(x,y) = ’ ;
b(®) { 0 otherwise

To regularize the mask, a sequence of morphological operations is
applied using a structuring element K. A morphological opening
(Mp, ° K) removes small noise, and a subsequent closing (My, * K)
fills minor gaps. The final refinement step involves analyzing each
remaining connected component (contour) €. A component is
retained only if it satisfies a set of geometric constraints:

Area(C) € [Amin, Amax] A AspectRatio(C) € [Rumin, Rmax]

This filtering ensures that only objects with defect-like morphology
are present in the defect mask.

III. EXPERIMENTS AND RESULT.

1) Experimental setup
The system's generalization capability was evaluated on a private
industrial dataset of 19 distinct print groups, collected from a
commercial photo card manufacturing process. Due to a non-
disclosure agreement, this dataset cannot be made publicly available.
These were partitioned into a training set (11 groups), validation set
(3 groups), and test set (5 groups). To demonstrate the importance of
diverse data, we compare two models:
-Model SG (single- Group): Trained and validated using data from
only one group (group 1)
-Model MG (Multi-Group): Trained and validated using data from
all 14 training/validation groups.
Performance was measured using object-based metrics (Precision,
Recall, F1-Score). Model SG was evaluated on a held-out portion
of its own group 1 data (seen domain), while Model MG was
evaluated on the unseen test set of 150 images from 5 groups (unseen
domain)



2) Quauntative Results

The experimental results, summarized in Table 1, highlight the
trade-off between specialization and generalization. Model SG
achieves an impressive F1-score of 0.8895 on its own familiar data,
establishing a benchmark for in-domain, overfitted performance.
However, a model overfitted to one domain is not practical for
industrial use.

Our proposed Model MG, trained on diverse data, demonstrates
strong generalization. It achieves a high mean F1-score of 0.8603
across all 5 unseen test groups. A particularly noteworthy finding,
detailed in Table 3, is the performance on group 11. On this unseen
group, Model MG reached an F1-score of 0.949, This demonstrates
that the multi-group training strategy not only provides robust
average performance but can also achieve better accuracy on
entirely new data.

G Mean Score (per image) |
rou

P Precision Recall F-1 Score
Single- 0.9040 0.9475 0.8895
Group
Multi- 0.8528 0.9359 0.8603
Group

Table 1. Overall Performance Summary (Averaged per Images)

The consistency of Model MG across different unseen groups is
also high, with a low standard deviation of 0.068 between the group-
average F1-scores, indicating reliable performance regardless of the
print batch.

# of Mean Score (per image)
Group Precision Recall F-1 Score
13 0.819 0.990 0.849
8 0.826 0.939 0.843
11 0.956 0.973 0.949
17 0917 0.920 0.910
7 0.746 0.857 0.751

Table 2. Inter-Group Performance Consistency of Model MG

3) Qualitive Analysis

The qualitative results’ mirrored the quantitative findings.
Model MG proved highly robust, correctly identifying 664 out of
696 total defects across the test set (95.4% recall). While its
aggregated object precision was 47.0%, indicating some over-
sensitivity, this was mainly concentrated in a few highly challenging
images (e.g., group_8/img-0330.png, F1-score: 0.000). The model's
ability to achieve perfect scores (Fl-score: 1.000) on many other
images (e.g., group_13/img-0041.png) underscores its effectiveness.

IV. CONCLUSION AND FUTURE WORK

This paper quantitatively demonstrated the necessity of a multi-group
training strategy for building a truly generalizable defect detection
system. While a model specialized to a single domain (Model SG)
can achieve high in-domain accuracy, it fails to adapt to new data.
Our proposed model (Model MG), trained on a diverse dataset, not
only achieves robust average performance on unseen data but also
shows it can reach near-specialized performance (F1-score of 0.949)
on certain new domains. This proves that diverse training is not just
a defensive measure against performance degradation but a proactive
strategy to achieve high, consistent accuracy in real-world industrial
applications. Future work could explore adaptive thresholding
techniques to further reduce false positives.
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