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Abstract 

This paper proposes a novel machine learning-based system for 
detecting micro-defects in high-quality prints by leveraging a rich 
set of pattern matching features. To ensure robustness against 
variations between the digital truth (DT) and the captured vision 
truth (VT) images, we first apply a frequency-domain correction 
to suppress noise and amplify defect signals. From the corrected 
images, we initially construct a comprehensive, 42-dimensional 
hybrid feature vector for each image patch, which includes statistical, 
LBP-based textural, and SIFT-based structural features. A 
feature importance analysis is then conducted, and a final compact 
feature set comprising only the top 10 most influential features is 
selected for training a Light GBM model. This approach allows the 
system to distinguish true defects from natural print texture 
variations with high accuracy and efficiency. Experimental results 
are expected to show that this pattern-enhanced approach 
significantly outperforms methods based on simple difference 
metrics, especially in reducing false positives on complex 
backgrounds. 
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I. INTRODUCTION  
Automated Optical Inspection (AOI) is a critical component in 
modern manufacturing for ensuring product quality [5]. In the high-
quality printing industry, a key challenge is the reliable detection of 
micro-defects from captured images (VT/VF) by comparing them 
against a digital master (DT). However, conventional methods that 
rely on simple image subtraction are notoriously sensitive to 
environmental variations such as inconsistent illumination and color 
tone shifts, often leading to an unacceptably high rate of false 
positives [1]. 

To overcome this, our research focuses on a machine learning 
approach engineered for robustness. While texture descriptors like 
LBP [3] and structural key point detectors like SIFT [4] have been 
used effectively in isolation, their true potential lies in a synergistic 
combination. Our primary contribution is a novel framework that 
integrates a specialized preprocessing step with a data-driven feature 
selection process. We first employ a frequency-domain correction 
designed to be robust against lighting and color variations, which 
actively suppresses noise while amplifying true defect signals. We 
then construct a comprehensive pattern-enhanced feature vector 
that combines statistical, textural, and structural information. 
Crucially, we demonstrate that a compact subset of these features
specifically, the top 10 most influential features identified through 
model analysis is sufficient for high-performance classification. 
This results in an efficient and highly accurate Light GBM-based 
system capable of discerning subtle defects from complex 
background patterns.. 

II. METHOD 

1) Preprocessing 
 

Defects manifest as high-frequency signals, while global 
illumination shifts are low-frequency phenomena [2]. To robustly 
isolate defects, we perform a frequency-domain correction. First, the 
DT and VT images are transformed into the frequency domain using 
a 2D Fourier Transform( ). 

 

 

 We then define a low-pass filter (e.g., a Gaussian filter) 
and a corresponding high-pass filter . A 
composite frequency representation, , is created by 
combining the low-frequency components from the DT with the 
high-frequency components from the VT, actively suppressing low-
frequency noise and amplifying high-frequency defect signals: 

 

Finally, an inverse Fourier transform  yields the corrected VT 
image, , which is globally aligned with the DT, with 
background noise minimized and critical defect information 
enhanced. 

 

2) Feature Engineering and Selection 
 

The core of our system is a two-step process of comprehensive 
feature extraction followed by data-driven feature selection to build 
a discriminative and efficient model. 
 
2.2.1. Pattern-Enhanced Feature Vector Construction 
 
A rich, 42-dimensional feature vector, , is extracted from each 
corresponding patch pair of the DT and the corrected 
VT. This vector is a concatenation of four distinct feature groups: 

 
Where, || denotes concatenation. 
 
-  Statistical & Difference Features : This group quantifies 
the basic intensity and error signals. It includes the mean, standard 
deviation, median, max, and min values for both  and as 
well as statistics from their absolute difference image. 
 
-Texture Analysis using LBP ( : To capture fine textural 
variations, we utilize Local Binary Patterns [3]. For each patch, a 
histogram of uniform LBP patterns is computed. The feature vector 

 includes statistics of the LBP image (mean, std, variance) and 



the top bins of the histogram, effectively describing the patch's 
micro-pattern composition. 

-Structural Analysis using SIFT ( : To measure structural 
changes, we apply the SIFT detector [4] on each patch. Instead of 
using the descriptors directly, we extract statistics from the detected 
key points, forming a feature vector  that includes: the total 
number of key points ( ), the spatial variance of key point 
locations ( ) and statistics of key point scales and orientations. 
This provides a robust signature of the patch's structural complexity. 

-Similarity Analysis ( : A direct measure of similarity is 
calculated using Normalized Cross-Correlation (NCC) between the 
two patches, providing a global similarity score. 

2.2.2. Feature Selection 

While the 42-D vector is comprehensive, not all features contribute 
equally. To create a more efficient and robust model, a feature 
selection process is performed. An initial Light GBM model is 
trained using all 42 features to rank them based on their feature 
importance (gain). The top 10 most influential features are then 
selected to form the final ( , compact feature vector used for 
training the definitive model. This step eliminates redundant 
information and focuses the model on the most discriminative 
patterns. 

3) Classification and Postprocessing 
 

The final stage of the system translates the extracted feature vectors 
into a clean, interpretable defect map. The selected 10-dimensional 
feature vectors ( ) are first normalized using a StandardScaler, 
where each feature  in the vector is transformed to its scaled 
version : 

 

Here, and  are the mean and standard deviation of the th 
feature, respectively. These scaled feature vectors are then input into 
a trained Light GBM model, which outputs a probability score 

  for each patch. These scores are assembled into a raw 
probability map . This raw map is first converted into a 
binary mask  by applying an optimized threshold : 

 

 
To regularize the mask, a sequence of morphological operations is 
applied using a structuring element . A morphological opening  

removes small noise, and a subsequent closing  
fills minor gaps. The final refinement step involves analyzing each 
remaining connected component (contour) . A component is 
retained only if it satisfies a set of geometric constraints: 
 

 
 
This filtering ensures that only objects with defect-like morphology 
are present in the defect mask. 

III. EXPERIMENTS AND RESULT. 

1) Experimental setup 
The system's generalization capability was evaluated on a private 
industrial dataset of 19 distinct print groups, collected from a 
commercial photo card manufacturing process. Due to a non-
disclosure agreement, this dataset cannot be made publicly available. 
These were partitioned into a training set (11 groups), validation set 
(3 groups), and test set (5 groups). To demonstrate the importance of 
diverse data, we compare two models: 
-Model_SG (single- Group): Trained and validated using data from 
only one group (group_1) 
-Model_MG (Multi-Group): Trained and validated using data from 
all 14 training/validation groups. 
Performance was measured using object-based metrics (Precision, 
Recall, F1-Score). Model_SG was evaluated on a held-out portion 
of its own group_1 data (seen domain), while Model_MG was 
evaluated on the unseen test set of 150 images from 5 groups (unseen 
domain) 
 
 

Figure 1. Flow Chart 



2) Quauntative Results 

The experimental results, summarized in Table 1, highlight the 
trade-off between specialization and generalization. Model_SG 
achieves an impressive F1-score of 0.8895 on its own familiar data, 
establishing a benchmark for in-domain, overfitted performance. 
However, a model overfitted to one domain is not practical for 
industrial use. 
Our proposed Model_MG, trained on diverse data, demonstrates 
strong generalization. It achieves a high mean F1-score of 0.8603 
across all 5 unseen test groups. A particularly noteworthy finding, 
detailed in Table 3, is the performance on group_11. On this unseen 
group, Model_MG reached an F1-score of 0.949, This demonstrates 
that the multi-group training strategy not only provides robust 
average performance but can also achieve better accuracy on 
entirely new data. 

Group 
Mean Score (per image) 

Precision Recall F-1 Score 

Single- 
Group 

0.9040 0.9475 0.8895 

Multi-
Group 

0.8528 0.9359 0.8603 

Table 1. Overall Performance Summary (Averaged per Images) 

The consistency of Model_MG across different unseen groups is 
also high, with a low standard deviation of 0.068 between the group-
average F1-scores, indicating reliable performance regardless of the 
print batch. 

# of 
Group 

Mean Score (per image) 

Precision Recall F-1 Score 

13 0.819 0.990 0.849 

8 0.826 0.939 0.843 

11 0.956 0.973 0.949 

17 0.917 0.920 0.910 

7 0.746 0.857 0.751 

Table 2. Inter-Group Performance Consistency of Model_MG 

3) Qualitive Analysis 
The qualitative results mirrored the quantitative findings. 

Model_MG proved highly robust, correctly identifying 664 out of 
696 total defects across the test set (95.4% recall). While its 
aggregated object precision was 47.0%, indicating some over-
sensitivity, this was mainly concentrated in a few highly challenging 
images (e.g., group_8/img-0330.png, F1-score: 0.000). The model's 
ability to achieve perfect scores (F1-score: 1.000) on many other 
images (e.g., group_13/img-0041.png) underscores its effectiveness. 

IV. CONCLUSION AND FUTURE WORK 

This paper quantitatively demonstrated the necessity of a multi-group 
training strategy for building a truly generalizable defect detection 
system. While a model specialized to a single domain (Model_SG) 
can achieve high in-domain accuracy, it fails to adapt to new data. 
Our proposed model (Model_MG), trained on a diverse dataset, not 
only achieves robust average performance on unseen data but also 
shows it can reach near-specialized performance (F1-score of 0.949) 
on certain new domains. This proves that diverse training is not just 
a defensive measure against performance degradation but a proactive 
strategy to achieve high, consistent accuracy in real-world industrial 
applications. Future work could explore adaptive thresholding 
techniques to further reduce false positives. 
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