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Abstract—Software-defined vehicles must learn at the edge
under tight energy and latency budgets, yet many blockchain—-FL
stacks run consensus per client update, overworking validators
and slowing rounds. We address this granularity mismatch by
co-scheduling consensus with FL: finalize one block after each
round of aggregation, converting O(n) update commits into
O(1) round commits. Instantiated with PoA® and evaluated via
energy—delay metrics (EDP/ED?P) on four IoV/IDS datasets with
{5,10,20} clients and {10,20,30} rounds, the policy preserves
accuracy while improving efficiency. In CICIoV2024, the valida-
tor energy drops by 64-83% and updates/s increases from +5%
(5 clients) to +82% (20 clients); BurST-ADMA, CICIDS2018,
and VeReMi show 15-38% energy cuts. Gains scale with clients
and rounds and remain robust under non-IID skew and client
churn. Demonstrated with PoA? but protocol-agnostic, the rule
integrates directly into existing FL pipelines for energy-efficient,
blockchain-based client coordination.

Index Terms—Edge computing, Energy efficiency, Feder-
ated learning, Intrusion detection, PoA? consensus, PureChain,
Software-Defined Vehicles (SDV)

I. INTRODUCTION

Software-defined vehicles (SDVs) replace fixed func-
tion electrical/electronic (E/E) stacks with edge-intelligent,
software-driven platforms capable of continuous evolution [1].
By integrating vehicle-to-everything (V2X) communication,
roadside units (RSUs), and mobile edge computing (MEC),
SDVs enable service-oriented architectures and over-the-air
(OTA) update pipelines for perception, control, and safety
at fleet scale [2]. Looking ahead, sixth-generation (6G)
roadmaps emphasize ultra-reliable low-latency communication
(URLLC), massive connectivity, and energy-efficient edge
learning, further motivating on-vehicle model training for
safety-critical workloads [3]. These architectural and latency
constraints render centralized training impractical at scale,
favoring on-vehicle updates coordinated across many SDVs.

Federated learning (FL) addresses these constraints by train-
ing models collaboratively in distributed vehicular nodes while
keeping raw data locally. By transmitting only gradient or
weight updates, FL reduces backhaul usage and preserves
privacy, aligning with bandwidth and latency limits in mobile
edge settings [4], [5]. To cope with mobility and heterogene-
ity, recent designs incorporate adaptive client selection and
aggregation policies aware of non-independent and identically
distributed (non-1ID) data, as well as intermittent participa-
tion [6]. However, FL alone does not provide verifiable or

accountable update provenance among partially trusted stake-
holders [7]. This leaves room for attacks such as model poi-
soning and coordinated misbehavior, motivating an auditable
validation layer to certify contributions and outcomes [8], [9].

An auditable validation layer is naturally realized with
blockchain ledgers, which offer immutable logging, decen-
tralized verification, and programmable policy enforcement
for model-update workflows [8], [9]. In vehicular FL, such
ledgers can certify update provenance and aggregation out-
comes among partially trusted stakeholders (vehicles, RSUs,
validators), improving reliability under heterogeneous partici-
pation [10]. However, the cost of consensus often dominates
both energy and latency; edge-oriented studies emphasize ac-
counting for per-round expenditure in constrained devices [5],
while surveys note that validator power draw and commit
overhead remain under-addressed at scale [3]. Complementing
these perspectives, early analyzes for autonomous vehicles
catalog practical design challenges and validation pathways
for blockchain-enabled FL [11]. These observations motivate
aligning commit granularity with the FL round, validating once
per round rather than per update; a policy we adopt in our
design.

The core gap is that many blockchain—FL integrations
validate per client update, inflating the validator work, energy,
and round latency [10]. This granularity is misaligned with the
round-level aggregation of FL, creating structural inefficiency
at the commit layer [S5]. We address this with a co-scheduled
consensus that finalizes a single PoA? block after each FL
round. Collapsing per-update commits into a round-level com-
mit reduces consensus from O(n) to O(1) blocks/round, yield-
ing validator-efficient, latency-aware finality while retaining
auditability (round hash/metadata; no raw features/labels). Our
contributions are:

1) A blockchain—FL co-design that aligns block validation
with FL rounds, replacing per-update commits with one
round-level commit (O(n)— O(1)).

2) An energy-latency modeling framework (EDP/ED?P)
capturing validator power, client participation, and non-
IID severity.

3) Empirical validation in vehicular IDS benchmarks (CI-
CIoV2024, VeReMi, BurST-ADMA, CICIDS2018): ac-
curacy is preserved; validator energy drops by up to 83%
and throughput increases by up to 82% on CICIoV2024



at larger client counts, with 15-38% energy reductions
observed on the other datasets.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on blockchain—-FL in vehicular
systems. Section III presents the system model. Section IV
discusses the experimental setup, evaluation, and analysis.
Section V concludes with future directions.

II. BACKGROUND AND RELATED STUDIES

In vehicular-edge deployments, the governing constraints:
latency, bandwidth, and privacy, favor local edge learning
orchestrated across vehicles and RSUs rather than a centralized
cloud [3], [5]. FL meets these requirements by collaboratively
training models at distributed vehicular nodes while keeping
raw data local; By exchanging only gradients or weights,
FL reduces backhaul and preserves privacy within mobile-
edge budgets [4], [5]. To remain effective under mobility and
heterogeneity, recent designs add resource-aware scheduling
and adaptive client selection, with aggregation policies that
account for non-IID data and intermittent participation [6].
For sensitive telemetry, privacy-preserving pipelines (e.g. ho-
momorphic encryption) protect updated contents without ex-
porting raw streams [6]. However, communication and syn-
chronization bottlenecks persist in latency-sensitive intelligent
transportation systems, and stochastic participation continues
to affect convergence stability at scale, motivating per-round
budgeting of energy and communication and the addition of
an auditable validation layer to certify update provenance and
outcomes [3], [5].

Blockchain-assisted federated learning employs distributed
ledgers and smart contracts to ensure immutable logging, de-
centralized verification, and policy orchestration under partial
trust [8]. In vehicular contexts, this concept enhances relia-
bility among heterogeneous participants and supports energy-
aware consensus for latency-sensitive workloads [10]. Recent
systematizations outline design parameters across consensus,
identity, incentives, and storage configurations [12], [13].
However, asynchronous and fully decentralized variants often
suffer from high communication or validation overhead when
committing per client update [14], [15]. To mitigate valida-
tor energy and latency costs, we adopt round-synchronous
finality—one blockchain commit per FL round—aligning con-
sensus granularity with learning cadence while preserving
auditability and model integrity.

These observations expose a system gap: many BCFL pro-
totypes validate at the transaction/update level, mismatching
FL’s round-level semantics and inflating validator workload,
energy, and end-to-end round time [14], [15]. Previous ve-
hicular BCFL evidences the coupling between consensus and
energy [10], while edge FL studies advocate a per-round ac-
counting for device constraints [5]. We co-schedule consensus
with training rounds, one ledger commit per round, to match
the unit of commitment to learning cadence and close this
systems gap.

Algorithm 1 Energy-Aware Client Selection at RSU (Step 2)

Require: Candidate SDVs C, residual energy F;, link qual-
ity ¢;, uplink rate R;, update size M (bits), compute
energy e; ", round budget Bound, min/max cohort
Kuin, Kmax, fairness history h;, weights «, 3, v, , safety
factor n€ (0,1), small € >0

Ensure: Selected set S C C

. e T E;—min E ~
1: Normalize: F; < s i
h;—min h

max h—min h

q;—mingq

—_— hz —
max g—min g

2: for all i € C do

3: e %{Ptx; e; e 4 ;7P

4: eligible; < (e; < nkj)

s wi a4 Bh (1 - hi) = St

6: end for

7: Sort C by u; (desc.; tie T E;)

8: S+, Fueq+0

9: for all 7 in sorted C do

10: if eligible; and |S| < Kpax and Eyged +€; < Bround
then

11: S+SuU {Z}, Fused ¢ Fusea + €

12: end if

13: end for

14: if |S| < Kppin then
15: for all 7 in sorted C\ S do

> guarantee progress

16: if eligible; then

17: S«Su{i}

18: end if

19: if |S| = Kpin then
20: break

21: end if

22: end for

23: end if

24: return S

III. SYSTEM METHODOLOGY

We co-schedule FL with the ledger: clients train locally,
RSUs aggregate, and the chain seals one PoA? block per round
rather than per update. Round-level commits, energy-aware
client selection, and backlog-aware multi-RSU aggregation
yield scalable, resource-efficient security for SDVs without
altering models or features.

A. Edge Layer: Local Training

SDVs perform on-device updates on non-IID IDS logs and
vehicular telemetry; raw data never leaves the vehicle; only
gradients are shared. Each node reports residual energy, uplink
rate, and link quality to enable energy-aware scheduling and
avoidance of stragglers. The result is a pool of candidate up-
dates with resource telemetry, which feeds the client selection.

B. RSU Layer: Energy-Aware Client Selection

The RSU serves as the first decision point, selecting the
SDVs for the current FL round under an explicit energy
budget Biound. Algorithm 1 shows candidates ranking using
a multi-objective utility over residual energy, link quality,
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Fig. 1: Proposed system model of Energy-Aware FL

fairness history, and estimated cost. The top-ranked vehicles
are admitted subject to a knapsack-like budget constraint,
which yields the selected set S. This prioritizes capable nodes,
enforces fair participation, and keeps the round energy within
limits.

C. RSU Layer: Aggregation and Coordination

Selected client updates are aggregated at RSUs as in Algo-
rithm 2, using a sample-weighted FedAvg variant with per-
update clipping and compression to bound communication.
When the backlog exceeds a threshold, updates are offloaded
to neighboring RSUs for multi-RSU coordination. The RSU
emits a consolidated Aw plus metadata (cohort size, com-
pression ratio, energy stats, hashes). This package feeds the
blockchain layer for validation and commit.

D. PoA? Layer: Blockchain Consensus

The blockchain layer provides governance, traceability, and
round-level authentication. Instead of sealing one block per
client update, the validators commit one block per FL round.
A scheduled leader proposes a block that includes the round
identifier, the hash of the aggregated update produced in
Algorithm 2, and energy/participation metadata. Validators
attest; When the quorum is reached within a timeout, the block
is appended and broadcast. This block-per-round coupling
reduces the validator energy while preserving an immutable
audit trail.

Algorithm 2 RSU Aggregation & Scheduling (Step 3)

Require: Selected clients S, local updates {(w;,n;)}, com-
pression rate ¢ € (0,1], cross-RSU queue Q, backlog
limit Lppax

Ensure: Aggregated update Aw and metadata m

1: for all i € S in parallel do

2: w; <+ Clip(w;, 7); w; + Compress(w;, ¢)

3: end for

4: N + ZiES n;

s: FedAvg: Aw <), s X w;

6: if |Q| > Lyax then > multi-RSU load balancing
7: OffloadToPeerRSU(Aw)

8: end if

9: m < {round_id, |S|, N, ¢, hash(Aw), energy_stats}

10: return (Aw,m)

E. Redistribution Layer: Model Delivery

After PoA2 validation, the committed global model is
redistributed to participating SDVs, closing the FL loop.
This delivery immediately seeds the next local round under
tight energy and bandwidth budgets. The combination of
redistribution to commit per round block ensures that only
the model approved by consensus propagates. Round-level
integrity and traceability are preserved without additional
overhead. Figure 1 summarizes the four-stage pipeline from



client training to global model redistribution.

IV. EXPERIMENTATION AND RESULT DISCUSSION
A. Datasets Description

We evaluated four datasets: BurST-ADMA [16],
VeReMi [17], CICIoV2024 [18], and CICIDS2018 [19],
covering industrial IoT traffic, V2X misbehavior, smart-city
IoV flows, and a general-purpose IDS baseline. Continuous
features are standardized (z-score), and categorical fields
follow each dataset’s native schema; train/validation/test
splits are disjoint by session/route or time window to prevent
leakage, and labels are harmonized with benign versus
attack/misbehavior for uniform metrics. The experiments
were run on a hosted VM (Python 3.11.13, ~13 GB RAM)
using TensorFlow Federated and Matplotlib. Consensus is
simulated in Google Colab via a lightweight, PoAZ-style
round-level commit policy: one block is finalized per FL
round containing the aggregator’s model hash and round
metadata (timestamp, validator set, modeled energy counters);
no raw features or labels are persisted, allowing us to isolate
round-level commits from per-update validation in terms of
validator energy and wall-clock time.

B. Performance Evaluation

We evaluated the proposed co-scheduled consensus mech-
anism against conventional per update in four benchmark
datasets (CICIoV2024, BurST-ADMA, CICIDS2018, and
VeReMi) with client sizes ranging from 5 to 20 and training
horizons of 10-30 rounds. Performance was measured in terms
of energy consumption, throughput in rounds per second,
and model update rates. Figure 2 shows that co-scheduling
substantially reduces validator energy across all client scales.
At 20 clients, the total energy drops from nearly 950 J under
fixed consensus to below 170 J with coscheduling, yielding
over 70% reduction. This trend holds across datasets.
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Fig. 2: Total energy vs. clients at a=0.3.

Figure 3 shows that co-scheduling not only reduces energy
but also improves throughput. Updates per second scale more
rapidly with coscheduling, achieving +23.3% improvement
at 10 clients in CICIoV2024. This reflects the benefit of
committing one block per round rather than per client, thus
reducing consensus overheads. Figure 4 summarizes the per-
centage deltas in the datasets in the canonical setting of 10
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Fig. 3: Updates/s vs. clients at a=0.3.
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Fig. 4: Cross-dataset percentage deltas at clients = 10, rounds
= 10 (WA = (cosched — fixed)/fixed x 100). Missing
throughput values are shown as “n/a”.
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Fig. 5: Scalability heatmap (CICIoV2024, o=0.3): total en-
ergy saved (J) across clients xrounds; darker indicates larger
savings.

clients and 10 rounds. Although only CICIoV2024 provides
complete throughput traces, energy savings remain substantial
in all datasets, confirming that the benefits generalize beyond
a single workload.

To assess scalability, Figure 5 provides a heatmap of the
total energy saved in CICIoV2024. The energy savings grow
monotonically with both the client population and the training
horizon, reaching over 2200 J at 20 clients and 30 rounds. This
confirms the advantages of the co-scheduling compound in
larger and longer FL runs. Together, these results demonstrate
that co-scheduled consensus simultaneously reduces validator



TABLE I: SDV BCFL design comparison

Ref. Year FL Type Commit Scope Ledger Energy
[10] 2020 AV BCFL (analysis) X X v X
[5] 2022 Edge FL X X X v
[9] 2022  Vehicular BCFL X X v v
[14] 2022 Fully-decentralized BCFL X X v X

This work 2025 Round-level BCFL v v v v

Legend — Commit: one block per FL round; Scope: RSU-aggregated round
validation; Ledger: blockchain present; Energy: energy-aware
scheduling/modeling.

energy and increases throughput in SDV settings, with gains
strengthening as clients and rounds scale, underscoring suit-
ability for resource-constrained SDV edge deployments.

Table 1 contrasts the prior BCFL with our round-level
design: earlier work omits a ledger [5] or lacks round-level
commit and RSU-scope validation [10], [11], [15], with val-
idator costs largely unquantified. We commit one PoA? style
block per round, validate in the scope of the RSU, and use
energy-aware scheduling, improving auditability, scalability,
and efficiency.

V. CONCLUSIONS

We presented a round-level, blockchain-coordinated FL
scheme for SD-ITS that finalizes one PoA? block after each
RSU aggregation and couples this with energy-aware client
selection and backlog-aware multi-RSU aggregation. Across
BurST-ADMA, VeReMi, CICIDS2018, and CICIoV2024, de-
tection quality is preserved while the validator energy drops
substantially (CICIoV2024: 64-83%; others: 15-38%), up-
dates/s increases (up to +82% at larger fleets), and EDP/ED?P
improves. Savings grow with clients and rounds and remain
stable under non-IID skew and client churn, indicating good
data/scale efficiency. By aligning consensus with FL rounds,
the design reduces validator overhead and strengthens au-
ditability without altering models or features, enabling practi-
cal and verifiable edge learning.

Future work will emphasize hardware-in-the-loop evalua-
tion on vehicular edge platforms with detailed latency, com-
munication, and energy profiling. This includes lightweight,
contract-automated consensus with reputation-aware validator
selection, adaptive sampling with compression/quantization,
and validation across broader datasets and driving scenar-
ios. Further analysis will assess the impact of networking
overhead, block propagation, and smart-contract execution on
system efficiency, as well as convergence behavior, robustness
to adversarial updates, and model stability beyond aggregate
detection performance.
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