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Abstract—Energy consumption patterns display temporal
asymmetry: peak hours (6-8 AM, 6-10 PM) feature dense,
overlapping appliance signatures, whereas off-peak periods are
cleaner but less diverse. Conventional Non-Intrusive Load Mon-
itoring (NILM) methods treat these periods uniformly, leading
to poor cross-temporal generalization and accuracy losses of up
to 65% off-peak. We propose Asymmetric Temporal Knowledge
Transfer (ATKT), a semi-supervised framework that leverages
peak-to-off-peak knowledge transfer. ATKT combines multi-head
attention for complex peak-hour disaggregation with LSTM-
based modeling for off-peak sequences, unified under an asym-
metric loss function that prioritizes peak periods. To ensure
secure and distributed deployment, the framework integrates
PureChain blockchain with a Proof-of-Authority-and-Association
(PoA?) consensus. Experiments on Energy Forecasting and Load
Forecasting datasets show significant gains, with R? scores of
0.9324-0.9647 for load data and 0.997 for energy data, outper-
forming standard LSTM baselines. The blockchain layer delivers
low latency (0.0317-0.0340s) and stable throughput (29.6-32.4
TPS), ensuring scalability. Overall, ATKT provides a compre-
hensive solution for intelligent energy management, enhancing
grid stability and facilitating the integration of renewable energy
sources.

Index Terms—Blockchain, Energy Forecasting, LSTM, PoA?,
PureChain.

I. INTRODUCTION

Energy consumption follows an apparent temporal asymme-
try that existing Non-Intrusive Load Monitoring (NILM) tech-
niques often overlook [1]. Peak periods (6-8 AM, 6-10 PM)
have overlapping appliance operations, making disaggregation
challenging despite their rich interaction signatures [2]. Oft-
peak times, though offering cleaner appliance patterns, lack
the diversity needed for robust training [3]. This asymmetry re-
flects residential energy use, where morning and evening peaks
involve simultaneous use of HVAC, water heaters, lighting,
and electronics, creating complex, overlapping signatures. Off-
peak periods, in contrast, typically feature individual appliance
cycles, like refrigeration, offering more precise but less diverse
training data.

Traditional semi-supervised disaggregation methods rely on
large labeled datasets [4]. While recent approaches show
promise, they treat all temporal periods uniformly [5], [6],
overlooking the varying information content across different

periods. Peak hours, with rich multi-appliance interaction
patterns, offer insights that could aid off-peak disaggregation,
which, while easier to identify, has limited training data.
Existing methods fail to leverage cross-temporal knowledge
transfer, missing opportunities to enhance disaggregation per-
formance.

Temporal uniformity in NILM systems causes significant
performance gaps. While baseline models perform well during
peak periods, their accuracy drops by up to 65% during
off-peak times, revealing a misalignment between training
data and real-world conditions [7]. Models trained on peak
data struggle with simpler off-peak patterns, while those
trained on off-peak data miss crucial interactions during high-
demand periods. Additionally, NILM systems face challenges
in maintaining data integrity, verifying models, and ensuring
secure deployment in distributed smart grids. These challenges
include ensuring model authenticity, maintaining auditability
for regulatory compliance, and enabling secure collaborative
learning without compromising sensitive data consumption [8].

We introduce Asymmetric Temporal Knowledge Transfer
(ATKT). This novel semi-supervised framework explicitly
leverages peak-to-off-peak knowledge transfer for enhanced
load disaggregation while addressing trust and verification
challenges through blockchain integration [9]. ATKT recog-
nizes that peak periods contain comprehensive appliance sig-
nature information that can be transferred to improve off-peak
disaggregation accuracy, while the blockchain infrastructure
ensures cryptographic verification of model integrity. This
paper makes the following contributions:

o We introduce the semi-supervised approach that explicitly
models temporal asymmetry between peak and off-peak
consumption periods, using distinct neural architectures
for each temporal context.

o Demonstration of the benefits of the asymmetric learning
approach, where off-peak performance exceeds peak per-
formance, proving successful knowledge transfer across
temporal boundaries.

¢ We present a PureChain-based smart contract architecture
that verifies ATKT models and validates predictions.



o We provide a comprehensive evaluation across multiple
energy forecasting prediction metrics.

II. RELATED WORKS

The evolution of load disaggregation methodologies has
progressed from Hart’s foundational work on steady-state anal-
ysis to sophisticated deep learning approaches. Early methods
utilized power signatures and transient detection [2], [10],
while machine learning advances introduced hidden Markov
models (HMMs) for state modeling [11] and CNNs for tempo-
ral pattern recognition [6]. Recent developments have focused
on computational efficiency for smart grid applications, with
Ahakonye et al. developing low-cost CNN architectures for
frequency stability prediction [8] and time-efficient deep learn-
ing models for predicting industrial energy consumption [12].
However, these supervised approaches require extensive la-
beled datasets and treat all temporal periods uniformly, which
limits their practical deployment scalability and misses oppor-
tunities to exploit natural information asymmetry in residential
energy consumption patterns.

Semi-supervised learning has gained traction in energy
disaggregation to reduce labeling efforts, with transfer learn-
ing techniques supporting household adaptation [13]. Recent
frameworks that leverage temporal convolutional networks [1]
and domain adversarial networks for cross-household gener-
alization [4] have shown promising results. Temporal analy-
sis reveals significant asymmetry in consumption data, with
accuracy varying by up to 30% between peak and off-peak
periods [7]. However, existing semi-supervised methods treat
temporal periods uniformly, neglecting the distinct character-
istics of peak (appliance interactions) and off-peak periods
(cleaner individual patterns), a gap in current approaches.

Blockchain technology has gained prominence in energy
systems for data integrity and secure multi-party computa-
tion [14], with recent advances addressing IoT-specific chal-
lenges. Proof-of-authority and association consensus mecha-
nisms have been developed for IoT blockchain networks [15].
Meanwhile, blockchain cybersecurity trends in IoT envi-
ronments have been analyzed [9], highlighting the security
considerations essential for distributed energy systems [16].
However, blockchain applications in NILM remain limited,
lacking integration with machine learning model verification
and temporal performance validation.

The proposed framework integrates ATKT with a
blockchain-backed trust layer to bridge the identified gaps.
By leveraging temporal asymmetry, it establishes a semi-
supervised NILM system that not only enhances disaggre-
gation accuracy but also embeds cryptographic verification
of model performance. This dual design enables secure and
efficient deployment in distributed smart grid scenarios, effec-
tively addressing challenges of temporal optimization and trust
that remain unresolved in existing approaches.

ITI. MATHEMATICAL FORMULATION OF ASYMMETRIC
TEMPORAL KNOWLEDGE TRANSFER

ATKT is designed to capture the inherent differences in
energy consumption dynamics between peak and off-peak
periods. The central idea is to apply more expressive modeling
during peak hours, where load patterns are complex and
volatile, while using lighter sequential processing during off-
peak periods, where patterns are smoother. A key advancement
of ATKT lies in its asymmetric loss formulation, where peak
period errors are weighted more heavily. This ensures that the
model extracts richer representations from information-dense
peak data and transfers this knowledge to enhance off-peak
prediction.

A. Multi-Head Attention

To capture high-dimensional signature features during peak
periods, ATKT employs a multi-head attention mechanism.
Given input signatures in Equation 1.

S e REXT*128, (1)

the multi-head attention is defined in Equation 2.
MultiHead(S) = Concat(head, ..., headg) W%,  (2)

where each attention head computes Equation 3.
SWEWK" §T
T

This formulation enables the model to attend selectively to
different temporal dependencies, capturing both short-term
fluctuations and longer-range correlations present in peak-hour
data.

head; = softmax( ) SWZ-V. 3)

B. Asymmetric Temporal Processing

The processing strategy varies with temporal settings. Dur-
ing peak periods, multi-head attention is applied to exploit the
richness of load fluctuations, while during off-peak periods, a
lighter LSTM-based sequential model is sufficient, as shown
in Equation 4.

Mean(MultiHead(.S)),
LSTM(S),

if peak period

TemporalFeatures = { = peak period,

“4)

This asymmetric design ensures that model complexity is
adaptively allocated where it is most beneficial.

C. Forward Pass

In the ATKT forward pass, the input sequence X is trans-
formed into feature signatures via stacked 1D convolutions
ConvID(XT). Meanwhile, contextual information is derived
using a multilayer perceptron (MLP), yielding Context =
MLP(features). The temporal features and related embed-
dings are then concatenated to form a joint representation,
Combined = [TemporalFeatures; Context]. This combined
vector is finally passed through another MLP followed by
a softmax layer, producing the model’s prediction § =
Softmax(MLP(Combined)).

if off-peak period.
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Fig. 1: Illustration of the proposed framework

D. Asymmetric Loss Function
The training objective explicitly encodes the asymmetric
importance of peak and off-peak data in Equation 5.

L= Erecon + O-lﬁconf + 0-5£constraint> (5)

where the reconstruction loss is given in Equation 6.

1 N
Erecon = N szng - yzHga (6)

i=1
with temporal weighting in Equation 7.

2.0,
1.0,

if peak period,
peak p %

if off-peak period.

Additional terms regularize confidence estimation in Equa-

tion 9,
[-:conf = - Zlog(ci)a (8)

and enforce physical constraints on energy balance as in
Equation 9.

)
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This asymmetric weighting ensures that the model prioritizes
learning from high-variability peak data while still maintaining
generalization during off-peak intervals.

Our ATKT model incorporates the proof-of-authority and
association (PoA?) consensus mechanism [15], which enables
model storage. The PureChain-based structure employs smart
contracts for secure model storage and validation. It allows
transparent attention pattern validation across a smart contract
with key functions such as storePredictionInput ()
to record load disaggregation inputs with packed

temporal context, including peak/off-peak indicators,
storePredictionOutput () which stores multi-head
attention predictions as packed appliance proportions,
and validatePrediction () /getPrediction ()
for attention mechanism verification and asymmetric
learning validation. The blockchain maintains records of
attention head performance that inform our temporal context
partitioning, with functions like getModelStats ()
tracking prediction accuracy across different temporal periods,
unpackAppliances () decoding the 64-bit packed
appliance data structure, and hasDatasetAccess ()
managing data sharing permissions.

Algorithm 1: ATKT Attention Pattern Validation
Input: Validators V/, attention patterns A, contract C,
temporal context T, threshold 7 = 0.85
Output: contractAddressatkr, Avalidated
Initialize #°, buffer B = 1024;
Deploy Cleployed DEPLOY (6°);
Activate validators Vicive <= REGISTER(V, Ceployed s
while system = active do
St < RANDOMSAMPLE(A, 0.7 4]);
foreach a; € S; in parallel do
(X,Y) < PACKTEMPORAL(T,);
wi ! < PROCESSATKT(0*, X,Y);
Submit (95F, |T,|, metrics,, );

if GroundTruth,,gijup. then
t+1 ‘Tc‘ t+1.
A <_ Za,; W

n a;

acc +— VALIDATEPREDICTION(A!*1);

if acc > 7 then
L break

return contractAddressarir, Avalidated;




IV. RESULTS DISCUSSION AND ANALYSIS
A. Dataset Description and Experimentation

This study uses two data sets: Energy Forecasting [17] and
Load forecasting [18].In the energy forecasting dataset has
features like load, temperature, month, day, hour, weekend,
season which were used while load forecasting dataset has
load, temperature, hour, day, month as features used. The
experiments were conducted on a Windows 11 Pro system with
an Intel Core i5-8500 CPU at 3.00 GHz and 32GB of RAM.
Visual Studio Code was used to carry out the experiments. The
PureChain network was accessed through MetaMask with the
smart contract written in Solidity and deployed using Remix
IDE.

B. Results

This study evaluates the performance of the ATKT model
and LSTM for energy consumption prediction using Loss, root
mean squared error (R?), and mean absolute error (MAE).
Loss provides a general measure of model error during train-
ing, R? reflects how well the model captures data patterns,
and MAE quantifies practical prediction accuracy by averaging
error magnitudes. Together, these metrics provide a compre-
hensive evaluation of model performance, encompassing train-
ing efficiency and real-world predictive reliability. Figure 2
illustrates the ATKT model’s learning process on the Load
Forecast dataset. Over 50 epochs, both training and validation
losses steadily decrease, with training loss dropping from
0.045 to 0.020. The validation loss shows a similar trend but
remains slightly higher, indicating effective learning without
overfitting. The MAE improves from 0.047 to 0.020, while
the R? score increases from 0.70 to 0.95, reflecting significant
gains in model accuracy and fit.
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Fig. 2: Graph for ATKT Model using Load forecast dataset

Figure 3 shows the strong predictive performance of the
ATKT model on the Energy Forecasting dataset, indicating
regular underlying patterns in energy consumption. The model
converges rapidly, with the training loss approaching zero
within the first 10 epochs and remaining stable, while the val-
idation loss remains consistently low. This suggests minimal
risk of overfitting and that the multi-head attention mechanism
effectively captures temporal correlations. The MAE stabilizes
at approximately 0.005, and the R? score reaches 0.999,
reflecting high prediction accuracy.

Table I compares model performance during peak and off-
peak periods for two datasets, highlighting the effectiveness
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Fig. 3: Graph for ATKT model using Energy Forecasting
dataset

TABLE I: ATKT Model Performance Results

. Load Forecast | Energy Forecasting
ATKT Metric Data Scenario Data Scenario
Peak R? 0.9324 0.9977
MAE 0.0201 0.0043
R? 0.9647 0.9980
Off-Peak | —yrrp 0.0176 0.0042

of the ATKT approach. In the Load Forecast dataset, off-
peak performance (R? = 0.9647, MAE = 0.0176) surpasses
peak-period results (R? = 0.9324, MAE = 0.0201), suggesting
that peak-period patterns enhance off-peak predictions. In the
Energy Forecasting data scenario, both periods show similar
high performance (R? = 0.997, MAE = 0.005), reflecting the
ATKT framework’s ability to capture regular consumption
patterns. The low MAE values indicate practical prediction
accuracy, while the high R? scores demonstrate the model’s
capability in capturing key consumption trends.

TABLE II: LSTM Model Performance Results

Load Forecast | Energy Forecasting

ATKT Metric Data Scenario Data Scenario
Peak R? 0.8553 0.9965
MAE 0.0364 0.0279
R? 0.6636 0.9835
Off-Peak ' —yrry 0.0542 0.0347

Table II illustrates the LSTM’s variable performance on
the Load Forecast data scenario, with apparent differences
between peak and off-peak periods. During peak times, the
model achieves an R? of 0.8553 and an MAE of 0.0364,
indicating decent performance. However, its accuracy drops
during off-peak periods, with R? falling to 0.6636 and MAE
increasing to 0.0542. On the Energy Forecasting Dataset, the
LSTM performs much better overall. Peak period performance
is excellent, with an R? of 0.9965 and MAE of 0.0279, while
off-peak performance remains strong, with an R? of 0.9835
and MAE of 0.0347. This consistent performance suggests that
the dataset contains strong temporal patterns that the LSTM
can effectively capture.

Table III compares previous studies [3], [7]. They reported
high error rates, with MAE values of 2.4123 and 13.271, but
did not provide R? scores or specify the testing conditions. Our
study demonstrates the ATKT model, achieving a significant
R2 score of 0.9965 (Peak) and 0.9835 (Off-Peak) periods, and
MAE values ranging from 0.0279 to 0.0347.



TABLE III: Comparison of different existing works

Author Season RZ MAE
[7] Not Specified | Not Specified | 2.4123
[3] Not Specified | Not Specified | 13.271
Our Work Peak 0.9965 0.0279
Off Peak 0.9835 0.0347
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Fig. 4: PureChain Performance

Figure 4 illustrates the PureChain blockchain’s performance
with the ATKT framework for energy forecasting, demonstrat-
ing its effectiveness for reliable predictions. The data shows
strong scalability, with latency remaining consistently low
(0.0317 to 0.0340 seconds) as transaction loads increase from
30 to 200, exhibiting less than 7% variation. Throughput is
stable at 29.6 to 32.4 transactions per second (TPS), with
only a 9% fluctuation. This highlights the PoA? consensus
mechanism’s ability to efficiently handle varying verification
demands without performance degradation, maintaining re-
sponse times under 40 milliseconds while processing over 30
transactions per second.

V. CONCLUSION

The ATKT framework successfully addresses the temporal
asymmetry challenge in energy forecasting by leveraging the
rich information content of peak periods to enhance off-
peak predictions. The integration of blockchain technology
ensures secure and verifiable deployment in distributed smart
grid environments. This approach provides utilities with a
comprehensive solution for intelligent energy management
systems that enhance grid stability and facilitate renewable
energy integration, representing a significant advancement in
energy forecasting.
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