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Abstract—Decentralized electric vehicle (EV) charging sta-
tions face critical cybersecurity challenges that demand real-
time, privacy-preserving threat detection. Traditional centralized
monitoring and standard AI models are unsuitable for con-
strained EVSE nodes. This work introduces a federated learning
framework combined with PureChain, a Proof of Authority and
Association (PoA?) blockchain-based consensus mechanisms en-
abling secure aggregation of local models, authenticated updates,
and minimal computational overhead. Using a 1-dimensional
Convolutional neural network for detection, the system achieves
98.97% accuracy with low latency (7.99s/round). PureChain
enforces verifiable trust via validators, and the framework
delivers scalable, real-time security. Future enhancements include
explainable AI and optimization for 6G and Multi-Access Edge
Computing deployment.

Index Terms—Electric Vehicle (EV) Charging Security, Real-
Time Cyber Threat Detection, PureChain, PoA%? Consensus
Mechanism

I. INTRODUCTION

Electric Vehicle Supply Equipment (EVSE) is central to the
adoption of electric vehicles, yet the growing interconnectivity
and decentralization of EVSE networks introduce significant
cybersecurity risks [1]. Threats such as false data injection,
malware, and man-in-the-middle attacks require robust, scal-
able, and real-time security mechanisms [2], [3]. Traditional
centralized intrusion detection systems (IDS) face challenges
including latency, scalability limits, and privacy risks [4],
highlighting the need for adaptive, decentralized security ap-
proaches that leverage emerging artificial intelligence (AI)
trends [5].

Federated learning (FL) addresses these issues by allow-
ing distributed EVSE nodes to collaboratively train models
without centralizing raw data [6], lowering network over-
head and enhancing data privacy [7]. Although FL preserves
privacy, it exposes vulnerabilities in trust and model in-
tegrity, as the central server remains prone to poisoning and
compromise [8]. Blockchain offers a verifiable and tamper-
proof alternative [9], [10], yet classical consensus mechanisms
such as Proof-of-Work (PoW) and Proof-of-Stake (PoS) incur
heavy computational costs, and Proof-of-authority (PoA) risks
centralization [11], [12]. PureChain, implemented using the
Proof of Authority and Association (PoAZ?) consensus, en-
sures authenticated updates, deterministic finality, and efficient
validation via trusted nodes, achieving an optimal balance

of decentralization, scalability, and trust [13]. Performance
evaluation by the Author in [14] demonstrated that PureChain
outperforms traditional blockchain frameworks like Ethereum
and Hyperledger, achieving a 230% increase in throughput,
a 70% reduction in latency, and improved scalability, while
PoA? concurrently strengthens real-time intrusion detection.

Thus, as the author in [3] demonstrated the effectiveness
of FL for EVSE security, the integration of blockchain to
secure the full FL workflow and a systematic comparison
of neural network performance under constrained conditions
remain largely unaddressed [15]. These gaps are particularly
pressing in real-time EVSE applications, where efficiency and
latency are critical. This study proposes a unified federated Al
and PureChain a custom blockcahin framework to achieve de-
centralized, privacy-preserving, and verifiable threat detection
with real-time operation. The main contributions are threefold:

1) We propose a unified framework combining Federated
Learning with the PoA2-based PureChain blockchain
is introduced to preserve data privacy and establish
decentralized trust through secure, auditable model ag-
gregation.

2) We implement and comparatively evaluate CNN, LSTM,
and CNN-LSTM architectures within this framework
identifies CNN as the optimal model for EVSE systems,
achieving superior accuracy and low latency.

3) We demonstrate how the PoA2 consensus mechanism
is shown to secure and accelerate federated updates,
ensuring tamper-resistant validation and scalable decen-
tralized coordination across participating nodes.

The remainder of this article is organized as follows: follow-
ing Section I, the background and related work are presented
in Section II. Section III describes the proposed framework
in detail. The experimental results and their analysis are
discussed in Section I'V. Finally, Section V concludes the paper
and outlines the directions for future research.

II. BACKGROUND AND RELATED WORK

Federated Learning (FL) has become a key approach to
collaborative intelligence to preserve privacy, enabling model
training on distributed nodes without sharing raw data [13].
This not only improves data privacy, but also reduces network
bandwidth usage [19], making it ideal for sensitive decentral-
ized environments such as smart infrastructure. In the automo-



TABLE I: Summary of Relevant Studies on Federated Learning and Blockchain for Cybersecurity

Ref. FL BC AT Model Domain RT Key Contribution Identified Limitation / Gap
[3] v X Multimodal EVSE v High-accuracy FL-based IDS using  Centralized aggregator; no integrity
multimodal data checks for model updates
[16] v X FL EVSE (OCPP) v FL-based detection of protocol-level No decentralized trust mechanism
attacks
[6] v X KNN, RE, SVM EVSE v FL-based anomaly detection for  No blockchain; central aggregator risks
EVCS remain
[17] v v SVM, DT, NN, Vehicular v Hybrid FL-BC for intrusion detection =~ Aggregation remains centralized; partial
RF (VANETS) decentralization
[18] v v X Vehicular v Robust FL-BC under adversarial Not optimized for low-latency EVSE
noise environments
Proposed v v CNN, LSTM, EVSE v Decentralized FL with PureChain; Full decentralization; real-time vali-
CNN-LSTM CNN optimized for latency. dation; low latency & compact model
earning, : Blockchain, : Open Charge Point Protoco.

tive sector, FLL shows great promise, particularly in improving
cybersecurity in connected and autonomous vehicles (CAVs),
especially intrusion detection systems [20]. The application of
FL in EV charging security is also noteworthy. For instance, in
the EVSE domain, FL has demonstrated strong performance,
with Rahal et al. [3] achieving over 98% accuracy using
multimodal telemetry, and Dalamagkas et al. [16] effectively
detecting protocol-level attacks on OCPP 1.6. However, FL’s
reliance on a central aggregator introduces vulnerabilities,
which prompts researchers to explore blockchain integration
for decentralized trust [21], [22]. While some works, such as
Purohit and Govindarasu [6], focus solely on FL, others such
as Malik et al. [17] and Almaghthawi et al. [23] propose hybrid
FL-Blockchain frameworks, although often with centralized
components or lacking real-time validation. Sultana et al. [18]
highlight robustness under adversarial conditions, but do not
address EVSE-specific constraints.

A. Research Gap and Motivation

A critical review of the literature reveals a gap between
conceptual frameworks and practical deployment in real-time
cyber-physical systems, particularly regarding (1) decentral-
ized trust for FL aggregation, (2) lightweight blockchain con-
sensus suitable for low-latency environments such as EVSEs,
and (3) systematic evaluation of modern deep learning models
within a federated-blockchain context for informed model
selection. To address these gaps, this study integrates FL with
PureChain, a custom permissioned blockchain using PoA?
consensus, enabling secure, low-latency aggregation and high
throughput, while benchmarking CNN, LSTM, and CNN-
LSTM models to assess accuracy, latency, and computational
efficiency, establishing the first Al-driven blockchain solution
for EV charging infrastructure. To the best of our knowledge,
this study is the first to integrate FL. with PureChain, offer-
ing an Al-driven security solution tailored for EV charging
infrastructures. Key related works and their contributions are
summarized in Table I.

III. SYSTEM METHODOLOGY

The proposed framework, shown in Figure 1, creates a se-
cure and decentralized cyber-threat detection system for EVSE
infrastructures. It combines FL. and PureChain blockchain to
ensure privacy and trust. FL keeps data local to each EVSE

node, while PureChain secures model aggregation. Each node
trains its own Al model, and updates are sent to the blockchain
network for validation through the PoA? consensus. After
consensus, a new global model is formed and distributed to the
nodes, ensuring tamper-proof evolution and eliminating single
points of failure.

A. Federated Learning Phase

Each EVSE node k has a local dataset Dj. In each round
t, the node performs local training on Dy, to minimize its loss
function Ly, updating model weights via stochastic gradient
descentwy, 11 = wy+ — NV Ly (wg ). The central orchestrator
collects these updates, but unlike traditional FL, it does not im-
mediately compute the global model. Instead, it first proposes
a set of updates for aggregation, with federated averaging as
shown in Equation 1.

1 K
wt:?;nk'wk,t (D

where K is the total number of nodes and n, is the
number of samples at node k. This aggregation is conditional
upon validation by the PureChain network, as described in
Section III-C.

B. Al-Based Detection Engine Phase

The anomaly detection engine operates at the edge using
the latest global model wy. It processes multivariate time-
series telemetry data X (e.g., power readings, network traffic
statistics). The model computes output probabilities as § =
softmax (f(X;wy)), where f is the forward pass of the chosen
neural architecture. A classification of “anomaly” triggers an
immediate local alert and may invoke a smart contract on
PureChain to log the event immutably and notify the network.
The 1D Convolutional Neural Network (1D-CNN) employs
a hierarchical feature extraction process through sequential
convolutional operations. The architecture begins with a first
convolutional layer applying 32 filters with a kernel size of
3, performing the operation in Y; = o(X * Wj + by), where
X € REXP s the input multivariate time-series of length
L with D features, W; € R3*P*32 represents the learnable
kernel weights, * denotes the 1D cross-correlation (convolu-
tion) operation, b; is the bias vector, o is the ReLLU activation
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Fig. 1: Illustration of the proposed framework for secure and decentralized cyber threat detection in EVSE infrastructures.

Algorithm 1: Federated Learning with Al Model
Training

Require: Local datasets D; for each node i € [1, N],
initial model wg
Ensure : Final global model wr
1fort=1¢t T do
2 Server broadcasts current global model w; to all
EVSE nodes;
for i € [1, N] do
Compute gradient V L,;(w;) on local data D;;
gH_l) = wy — NV L;(wy);
Submit local model wEtH) to PureChain for
validation ; // Key Integration
Point

Update local model: w

S W s W

7 Aggregator proposes model aggregation to
PureChain validators;
8 Await consensus approval from PureChain;

9 Upon approval, compute and distribute new

global model: w41 = 3 Zil w£t+1);

function, defined as o(z) max(0, x), introducing non-
linearity. The output Y; passes through a second convolutional
layer with 64 filters (Wy € R3*32X64) producing feature
maps Y. A subsequent 1D max-pooling layer with pool size 2
performs down-sampling via MaxPool(Y2)[i] = max(Y2[2i :
2i + 2]) reducing spatial dimensionality while retaining the
most salient features. This architecture is particularly effective
for capturing local, translation-invariant temporal motifs in
EVSE telemetry data, such as short-duration power surges or
specific network traffic bursts indicative of cyber threats. The

final stages consist of two fully connected layers that perform
non-linear transformations on the flattened feature vectors for
final classification.

C. Blockchain Integration via PureChain Phase

This phase is the core of our trust decentralization mecha-
nism. PureChain, a custom permissioned blockchain using the
PoAZ consensus mechanism, actively secures the FL workflow.
A validator v is selected to participate in a consensus round
based on a composite score as Select(v) < (R, - Q) >0,
where R, is the historical reputation, ),, is the reliability of its
past model validations, and 6 is a threshold. The aggregator’s
request to compute a new global model is treated as a
transaction. A smart contract governs this process, verifying
as Valid(u) & ChecklIntegrity(u) A CheckAuth(v).
This ensures model updates are unaltered and originate from
authorized nodes. The selected validators run the consensus
protocol (Algorithm 2). Upon successful consensus, the new
global model’s hash and metadata are immutably recorded in
a block By, with state transition as Sy = H(S; || Bt), where
H is a cryptographic hash function. This provides a tamper-
proof audit trail for the model’s entire evolution.

IV. EXPERIMENTATION AND RESULT DISCUSSION

A. Dataset Description

In this study, we uses the EVSE-CIC-2024 dataset [24] to
evaluate the proposed framework. The dataset is a compre-
hensive 36 GB collection that combines power consumption
data, network traffic (OCPP and ISO15118 protocols), and
approximately 900 hardware performance counters, captured
under both normal and attack conditions. The attack scenarios
include reconnaissance, flooding, port scans, cryptojacking,



Algorithm 2: PureChain Consensus for Secure Model
Aggregation
1 textbf() lem
Input: Validator nodes V, proposed model updates Uy,
reputation scores R
Output: w;; is approved or rejected
2 Aggregator computes wyy; from Uy;
3 for each v, € V do
4 L Score(vg) = Ry - Q;
5 Select committee: Score(vy) > T;
6 Broadcast w1, H(Uy);
7 Verify: Integrity, Authorization, Soundness;
8 if > 2/3 votes accept then
9 L Form By, append to PureChain;

10 Update Ry, Qx;

11 else
12 | Reject w41, dispute, penalize;

and backdoor intrusions, making it highly suitable for de-
veloping real-time anomaly detection systems. The data were
normalized, and categorical features were encoded. To create
a realistic FL environment, the dataset was partitioned across
K = 10 simulated EVSE nodes. The data was distributed
in an Independent and Identically Distributed (IID) manner
to establish a baseline performance. A sliding window of 10
timesteps with a stride of 1 were used to create sequential
samples, ensuring consistency in Al models. The experiments
were conducted in Python on a Google Colab environment
with a 6th Gen Intel(R) Core(TM) i5-6300U processor and
4GB of RAM. The FL process was simulated over 7' = 5
communication rounds. The PureChain consensus and ledger,
were simulated using a custom Python class to model the
overhead of cryptographic hashing, validator voting, and block
commitment during each aggregation round.

B. Model Performance

TABLE II: Comparison of Model Performance Metrics

Model Accuracy  Latency (s)  Throughput  Scalability
CNN 98.97% 7.9856 0.4102 0.048897
LSTM 59.18% 60.9486 0.0497 0.000657
CNN+LSTM 74.60% 89.8028 0.0339 0.000126

The performance of the three AI models within the
federated-PureChain framework is summarized in Table II.
The metrics are defined as follows: Latency is the total
time per FL. communication round (local training, communi-
cation, and PureChain consensus); Throughput is the number
of model updates processed per second at the aggregator-
PureChain interface; and Scalability is a composite score
calculated in Equation 2.

A
Scalability = ceuracy

2
Latency x Model Size @

providing a measure of efficiency under constrained re-
sources. The CNN model demonstrated superior performance
across all key metrics. It achieved the highest accuracy
(98.97%) and the lowest latency (7.99 s/round), resulting
in a throughput of 0.4102 updates/s, which is an order of
magnitude higher than the LSTM and CNN-LSTM models.
Consequently, its scalability score (0.048897) was signifi-
cantly higher, underscoring its suitability for a distributed
environment with limited resources. Figure 2 shows the five-
round communication process, where the CNN model reached
98.97% final accuracy, outperforming the CNN+LSTM hybrid
74.60% and LSTM 59.18%. With more than 94% accuracy in
Round 1 and a 39.79% margin above LSTM and 24.37% above
hybrid CNN+LSTM, CNN exhibited faster convergence and
stronger FL capability.

Round 1 Round 2 Round 3 Round 4 Round 5

Accuracy (%)

%
=1

r
wn

Il CNN (Proposed) HWLSTM

Fig. 2: Progression of accuracy over five FL rounds.

TABLE III: Model Efficiency

Model Inference Time (s) Training Time (s) Model Size (MB)
CNN 0.000102 312.5 2.3
LSTM 0.000283 721.3 6.8
CNN+LSTM 0.000177 869.7 8.5

A deeper analysis of computational efficiency, shown in
Table III, reinforces CNN’s advantages. The CNN model not
only has the fastest inference time (0.000102 seconds) but
also the shortest training time and the most compact size (2.3
MB). In contrast, the LSTM and CNN-LSTM models, with
their larger parameter counts and complex gating mechanisms,
incur significantly higher training costs and memory footprints,
rendering them impractical for deployment on typical EVSE
edge hardware. Table IV highlights that most prior works
lack decentralized trust or real-time validation, relying on
centralized aggregators. Our proposed CNN with PureChain
stands out with 98.97% accuracy, low latency (7.99s/round),
and efficient resource usage (CPU 2.07%, 64MB RAM).
It also achieves full decentralization using PoA2 consensus
and supports real-time threat detection. This positions our



system as a robust and scalable solution for secure EVSE
environments.

TABLE IV: Comparative performance

Ref. Accuracy Scalability Efficiency Mitigation / Real-
(%) Latency Time
[3] >98% Not reported ~ Not reported Centralized ag-  Partial
gregator; no in-
tegrity checks
[6] N/S Not reported ~ Not reported Optimized pro-  Partial
cessing speed
[16] N/S Not reported ~ Not reported Protocol-level Yes
detection only
[17] N/S Partial Not reported Centralized Yes
decentraliza- aggregation
tion remains
[18] N/S Not reported ~ Not reported Robust under  Yes
noise; not
EVSE-specific
Proposed 98.97 % 0.048897 CPU 2.07%; Latency: Yes
(Scalability Mem 64 MB;  7.99s/round;
Score) Power 1.85 W Inference:
0.000102s

V. CONCLUSION

This paper presented a secure federated Al-blockchain
framework that combines FL with the PureChain blockchain
with a consensus mechanism based on PoA? to secure smart
EV charging stations. The system protects data privacy at local
EVSE nodes and ensures decentralized trust through verified,
immutable aggregation. Experiments on the EVSE-CIC-2024
dataset identified CNN as the best-performing model, achiev-
ing 98.97% accuracy with 7.99-second latency per round
and 0.000102-second inference time. LSTM variants showed
higher delay and computational demand. The framework
delivers a scalable and tamper-resistant defense for EVSE
infrastructure. Future directions include real testbed deploy-
ment, XAl-based model interpretation, and optimization for
6G/Multi-Access Edge Computing environments to improve
real-time efficiency and compatibility with legacy systems.
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