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Abstract—This paper proposes an improved discrete spider 

monkey optimization based method using a dynamic penalty 

function with partial constraint violation acceptance for 

vending machine column optimization considering sales and a 

replenishment cycle. The conventional method has a challenge 

that it only searches for feasible regions. To address the 

challenge, the proposed method added a dynamic penalty 

function in order to search for infeasible regions. Moreover, 

partial constraint violation acceptance rate is introduced to 

obtain high quality solutions. Effectiveness of the proposed 

method is verified by comparing with the conventional method, 

a method with only a static penalty function, a method with only 

a dynamic penalty function with actual vending machine data. 

Keywords—Improved discrete spider monkey optimization, 

dynamic penalty function, partial constraint violation acceptance, 

combinatorial optimization, vending machine column 

optimization, Industrial applications 

I. INTRODUCTION  

In Japan, there are approximately 2.19 million beverage 
vending machines (VMs), which have become an integral part 
of daily life [1]. Inside a VM, multiple storage spaces  called 
columns are installed, and the capacity of each column is 
predetermined. Since demand varies for each product, 
allocating an insufficient number of columns to high-demand 
products can lead to premature stockouts and, consequently,  
lost sales opportunities. Therefore, the placement of products 
in various columns of VMs is directly linked to sales 
improvement. It can be formulated as a combinatorial 
optimization problem that considers both total sales values 
and a replenishment cycle. In VMs, regular replenishment is 
required. By allocating the larger-capacity columns to high-
demand products, the replenishment cycle can be extended 
and the number of deliveries reduced. However, since there 
are various capacities of columns and various demands of 
products, the problem cannot be solved easily. Reducing 
delivery frequency offers three main advantages. First, it 
decreases carbon dioxide (CO2) emissions associated with 

transportation. In 2022, the transportation sector accounted for 
18.5% of Japan’s energy-related CO2 emissions [2]. Thus, 
reducing the number of deliveries is an effective measure 
against greenhouse gas emissions [3]. Second, it helps control 
transportation costs amid rising fuel prices. In recent years, 
fuel costs have placed a growing burden on companies, and 
reducing delivery frequency can mitigate this impact. Third, it 
helps alleviate the burden on workers. Since 2024, Japan has 
enforced legal regulations on overtime work [4], making 
improvements in work efficiency increasingly important. 
Taken together, reducing the number of deliveries is 
significant from environmental, economic, and labor 
perspectives. 

    Several approaches have been proposed for the VM column 
optimization problem (VMCOP). Miyamoto et al. regarded 
the problem as a combinatorial optimization problem and 
attempted optimization using Tabu Search (TS) and Multiple 
Start Local Search, confirming their effectiveness [5]. 
Takeuchi et al. formulated the problem with the objective of 
maximizing long-term profit margins and applied the Life 
Span Method, an extension of TS, to improve performance [6]. 
However, it has been pointed out that the solutions obtained 
by these methods remain limited, and that there is still room 
for further improvement [7-9]. Meanwhile, in the field of 
evolutionary computation, the usage of multi-point search 
algorithms with multi-population has been reported to 
improve solution quality [8-11]. Conventional multi-point 
search algorithms mainly employed static multi-populations 
in which the number of multi-populations was fixed and the  
number of search points in each population was fixed. The 
authors applied this framework to the VMCOP and proposed 
MP-IMA, a method based on static multi-populations, 
confirming its effectiveness [8]. More recently, methods that 
dynamically vary the number of search points and the 
population structure have emerged. It has been demonstrated 
that they can derive solutions superior to those obtained with 
traditional approaches [12-17]. Dynamic multi-population 



methods are characterized by the ability to vary the number of 
search points within each population, adjust the number of                                                                                                
populations, and reconfigure the group structure. Among 
various approaches, only Discrete Spider Monkey 
Optimization (DSMO) possesses all three of these features. It 
is therefore expected to yield superior solutions. Based on this 
perspective, Koyama et al. improved DSMO for the VMCOP  
and proposed IDSMO, verifying its effectiveness [18-20]. 
However, in IDSMO, all solutions that violated constraints 
were excluded from the search space. Such infeasible 
solutions (ISs) were neither evaluated nor selected. As a result, 
the searchable region was restricted, and the flexibility of the 
search process was reduced. It made broad exploration 
difficult. Consequently, in the VMCOP addressed in the 
previous studies, penalty functions have not been introduced. 
Solutions that violated constraints were excluded from the 
search space [5-9, 18-23]. In contrast, the penalty function 
method originated from Courant’s work on the calculus of 
variations in 1943 [24]. It has since been integrated with 
evolutionary algorithms, for example through the introduction 
of dynamic penalty functions for nonlinear constrained 
optimization problems by Joines and Houck [25]. A notable 
feature of this approach is that it allows the evaluation of 
solutions that do not strictly satisfy the constraints but 
nevertheless yield good objective function values. This 
property has been regarded as effective for maintaining 
diversity in the early stages of the search and for avoiding 
premature convergence to local optima [25][26]. 

 Based on the above background, this paper proposes the 
following improvement to IDSMO aiming to expand the 
search space while balancing solution quality and search 
flexibility: 

1) A dynamic penalty term is introduced into the 
objective function based on the number of unassigned 
products for the constraint that each product must be 
assigned to at least one column (Proposal 1). 

The conventional update rule, which excluded all ISs, is 
revised. With this revision, all solutions can be evaluated and 
selected according to their penalized objective function values. 
However, introducing the penalty term alone often led to final 
best solutions that did not satisfy the constraints. This caused 
challenges with the stability of the search outcomes. Therefore, 
we propose further improvements. Namely, in addition to the 
penalty term, we incorporate a framework in which ISs are 
conditionally accepted during the solution update process. In 
this study, two strategies for controlling the degree of 
constraint violation acceptance are adopted and compared: 

2) A static acceptance scheme: ISs are accepted with a 
fixed rate throughout the search process (Proposal 2). 

3) A dynamic acceptance scheme: The acceptance rate 
changes over time as the search progresses. In the early 
stages, a high acceptance rate is applied to maintain 
diversity, while, in the later stages, the rate is gradually 
reduced to guide the search toward stricter constraint 
satisfaction (Proposal 3). 

Using actual VM data, we compared the Proposed Method 
1 (Proposal 1 + Proposal 2) and the Proposed Method 2 
(Proposal 1 + Proposal 3) with the conventional IDSMO 
approach [20]. The results confirmed the effectiveness of the  
both proposed methods. Furthermore, these results were 
validated by the Friedman test and the Wilcoxon signed-rank 
test with the Holm correction as a post hoc analysis. 

II. A PROBLEM FORMULATION OF A VENDING MACHINE 

COLUMN OPTIMIZATION PROBLEM  

A. Decision Variables 

This study utilizes decision variables ���� (���� ∈ 0,1)  to 

indicate whether product � is assigned to column � of VM 
. 

Specifically, ���� = 1  means that product �  is placed in 

column  � of VM 
, while ���� = 0 indicates that it is not. 

B. The Proposed Objective Function 

The objective function in [20] aims to maximize both the 
replenishment cycle of products in VMs and the total sales 
values. In this study, the objective function is further extended 
by introducing a dynamic penalty term (Proposal 1), which 
enables the evaluation of ISs. max�� × min����� , ���� � + (1 − �) × ��� −  �!"#$%� (1) 
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where ����  is the time until the �-th cold product in the 
-

th VM sells out, ����  is the time until the �-th hot product 

in the 
-th VM sells out, ��� is a total sales value, � is a 
weighting coefficient representing the relative importance 
of replenishment cycle, @�� is the set of columns allocated 
to cold products in the 
-th VM, (�  is the demand for 

product �, '�� is the capacity of the �-th column in the 
-
th VM,  �� is the set of cold products allocated to the 
-
th VM, @�� is the set of columns allocated to hot products 
in the 
-th VM,  �� is the set of hot products allocated to 
the 
-th VM, /�� is the unit price of product � in the 
-

th VM, 23  is the penalty coefficient, $  is the current 
number of objective function evaluations, 6  is the 
maximum number of objective function evaluations, � is 
the coefficient controlling the growth rate of the penalty 
term, :� is the indicator that takes the value 1 if product � 

is unassigned in all VMs, and 0 otherwise, and A� is the 

number of products. 

Equation (2) calculates the sales duration of cold product �  in the 
 -th VM. It divides the total assigned column 
capacity by the demand for that product. Equation (3) gives 
the sales duration for hot product � in the same way. Equation 
(4) computes the total sales value. It sums the product of the 
assigned quantity and the unit price for all products in a VM. 
Equation (5) represents a dynamic penalty function for the 
constraint that each product must be assigned to at least one 
column (Proposal 1). The magnitude of the penalty changes 
dynamically according to the number of unassigned products 
and the progress of objective function evaluations. This design 
allows a certain degree of freedom for ISs in the early stages 
of the search, while gradually guiding the search toward  
constraint satisfaction as the search progresses. In other words, 
solutions with many unassigned products or ISs in the later 



stages of the search receive larger penalties. Namely, solutions 
with larger penalties are less likely to be evaluated as 
favorable in terms of objective function value.  

C. Constraints 

& ����
�∈0*+,0-+
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���� = 0(� ∈  �� , � ∈ @��) (9) ���� = 0(� ∈  �� , � ∈ @��) (10) 

    Equation (6) defines the allocation constraint that every 
column in VM 
  must be assigned exactly one product. 
Equation (7) and (8) state that each cold product and each hot 
product, respectively, must be allocated to at least one column 
in VM 
.  Equation (9) prevents cold products from being 
assigned to columns designated for hot products. Similarly, 
Equation (10) prohibits hot products from being assigned to 
columns designated for cold products. 

III. OVERVIEW OF DISCRETE SPIDER MONKEY OPTIMIZATION 

WITH DYNAMIC MULTI-POPULATIONS 

The IDSMO utilized in this study is based on Spider 
Monkey Optimization (SMO) developed by Bansal et al. [15] 
and DSMO by Akhand et al. [27], and was further improved 
by Koyama et al. for the VMCOP [20]. SMO is an algorithm 
inspired by the social behavior of spider monkeys, known as 
a fission-fusion social system. It divides the population into 
multiple subgroups, conducts local searches within each 
subgroup, and then shares information at the global level. 
DSMO extends SMO so that it can be applied to combinatorial 
optimization problems. Koyama et al. incorporated operators 
designed for the VMCOP into this framework, thereby 
achieving efficient search [20]. In particular, the update rules 
include the Swap Operator (SO), originally proposed in 
DSMO, and Swap Product (SP), introduced by Koyama et al. 
for this problem. A solution is represented as a sequence of 
product numbers assigned to each column in a VM. Among 
all solutions generated during initialization, the one with the 
highest objective function value is defined as the Global 
Leader (GL). The best solution within each subgroup is 
defined as the Local Leader (LL). The hyperparameters are as 
follows.  GHI8J  is the maximum number of iterations. GAK is 

the maximum number of groups. ALG  is the number of 
search points. �2_NN is the probability threshold for applying 
updates. GNN  is the maximum number of consecutive 
iterations in which the LL can maintain the same solution. 
Similarly, GON  is the maximum number of consecutive 
iterations in which the GL can maintain the same solution. The 
meanings of the operators “+” and “*” in (11)-(13) follows the 
original DSMO formulation [27]. The procedure of IDSMO 
for a the VM column optimization is presented below [20]. 

Step 1 Initiation: The number of iterations is set as P$�2 = 1, 
and the number of groups is set as AK = 1. The number 

of search points in the first group is set as ALGQ =ALG. All search points are generated randomly. The 
initial solutions are evaluated using the objective 

function ((1)–(5)), and the LL for each group and the 

GL are determined. The counters �##Q and �R#, which 

record the number of times the LL and GL maintain the 
same solutions, are initialized to 1. 

Step 2 Update search points: For each search point LGHS (the "-th search point in group P), the update is performed 
according to the following equations. 

LLHS = T(0,1) ∗ (ONU2NNH − LGHS) + T(0,1) ∗ (�LG − LGHS) (11) LGV8WHS = LGHS + LLHS (12) 
where LLHS  is the update value for the " -th search 
point in group P. T(0,1) is a uniform random number 
in the range [0, 1], ONU2NNH is either the GL or the LL 
of group P, �LG is a search point different from LGHS 
randomly chosen from all search points or from all 
other search points within group P. 
In (11), when the update is directed toward the GL, ONU2NNH  is set to the GL, and �LG  is chosen 
randomly from all search points except LGHS . When 
the update is directed toward the LL, ONU2NNH  is set to 
the LL, and �LG is chosen randomly from all search 
points in group P  except LGHS . The difference 
operation in (11) such as (ONU2NNH − LGHS) is 
transformed into a sequence of discrete operations. 
These operations are expressed by the SP and the SO. 
The SP adjusts shortages or surpluses in the number of 
product allocations to columns, while the SO 
exchanges products between different columns [20]. 
For the SO and the SP, the parameters �2XY  and �2X0 
determine whether the operation is applied. From the 
first term in (11), all SO and SP operations are obtained. 
Similarly, all SO and SP are also obtained from the 
second term. In total, four objective function values are 
calculated. These four evaluation results are compared 
with the objective function value obtained before the 
update, and the solution with the best value is selected. 
According to (12), the sequence of operations LLHS , 
which combines these results, is then applied to LGHS. 
This produces the updated solution LGV8WHS . If the 
candidate solution violates the constraints ((6)-(10)), 
the update is not applied. Further details can be found 
in [20].  

Step 3 Update of LL and GL: For each group, the best updated 
solution at Step 2 is compared with the current LL. If 
the best updated solution is better, the LL is updated. 
All LLs are then compared with the current GL. If the  
updated LL is better than the GL, the GL is replaced 
by the LL. 

Step 4 Replacement of  LL: If �##K > GNN, a decision is made 

based on the probability �2_NN . The search point is 
either reinitialized randomly or the LL is updated 
according to (13). 

LGV8WHS = T(0,1) ∗ (ON − LGV8WHS) + T(0,1) ∗ (LGV8WHS − NNH) (13) 
After the LL is replaced, �##K is reset to 1. 

Step 5 Reconfiguration of groups: If �R# > GON, the number 
of groups is increased by one, i.e., AK = AK + 1. If AK = GAK , then AK  is reset to 1. If AK < GAK , all 



search points are divided into AK groups based on the 

method described in [20]. This division considers both 
the objective function values and the Hamming 
distance, which represents the similarity between 
solutions. After this operation,  the LLs of all groups 
and the GL are updated, and �R# is reset to 1. 

Step 6 Termination check: If P$�2 = GHI8J , proceed to Step 7. 
Otherwise, set P$�2 = P$�2 + 1 and return to Step 2.   

Step 7  Output of the solution: The final GL is output as the 
best solution, and the algorithm terminates. 

IV. APPLICATION OF A MODIFIED DISCRETE SPIDER MONKEY 

OPTIMIZATION USING A DYNAMIC PENALTY FUNCTION WITH 

PARTIAL CONSTRAINT VIOLATION ACCEPTANCE TO 

VENDING MACHINE COLUMN OPTIMIZATION 

A. Acceptance Schemes for Infeasible Solutions 

In general, when a penalty function is introduced to allow 
the search to explore ISs, all such solutions are accepted 
throughout the entire search process. However, in the 
proposed method, not all ISs are accepted during the search. 
Instead, acceptance schemes are proposed in which ISs are 
accepted only at a certain rate. Specifically, two schemes are 
proposed: the static acceptance scheme (Proposal 2), in which 
ISs are accepted at a fixed rate throughout the search, and the 
dynamic acceptance scheme (Proposal 3), in which the 
acceptance rate changes dynamically as the search progresses 
(See Fig. 1).   

1)  The static acceptance scheme (Proposal 2): In this 
scheme, during Step 2 in Section 3, even if a candidate 
solution is infeasible, it is evaluated by calculating the 
objective function when the condition in (14) is satisfied: 
  T\0, 1] < �PU#"$PU!JSI8 (14) 

where �PU#"$PU!JSI8 is the rate of accepting an infeasible 
solution, and T\0, 1] is a uniform random number in the range 
[0, 1]. 

With this mechanism, ISs can remain in the search space 
at a fixed rate from the beginning to the end of the search. This 
helps maintain solution diversity. Fig. 2 shows the algorithm 
of Step 2 in Section 3 under this scheme. 

2) The dynamic acceptance scheme (Proposal 3): In this 
scheme, the acceptance rate changes according to the progress 
of the search. The dynamic acceptance rate, _̂`VJSI8 , is 

defined by the following equation: 

_̂`VJSI8 =  �̂Sb − �̂Sb − �̂HVA�Sb8cSd × A8cSd (15) 

where �̂Sb  is the maximum acceptance rate at the 
beginning of the search, �̂HV is the minimum acceptance rate 
at the end of the search, A8cSd  is the current number of 
objective function evaluations, and A�Sb8cSd  is the maximum 
number of objective function evaluations. 

With this mechanism, more ISs are accepted in the early 
stages of the search to maintain solution diversity, while 
stricter constraint satisfaction is gradually enforced in the later 
stages. Fig. 3 shows the algorithm of Step 2 in Section 3 under 
this scheme. 

V. SIMULATIONS 

A. Simulation Conditions 

Simulations were conducted for the following five 

methods to verify the effectiveness of the proposed methods 

using the column capacities, demand data, and product price 

data from five actual vending machines: 

1) The compared method 1: The conventional IDSMO 

based method without a penalty term in the objective function 

[20]. 

 
(a) Static constraint violations (proposal 2) 

 

 
(b) Dynamic constraint violations (proposal 3) 

Fig. 1. Images of constraint violation acceptance by the proposed 

methods (the proposal 2 and 3). 

 
Fig. 2.  The proposed algorithm for static constraint violation 

acceptance. 



2) The compared method 2: The IDSMO based method 

with only a static penalty term in the objective function. 

3) The compared method 3: The IDSMO based method 

with only a dynamic penalty term in the objective function 

4) The proposed method 1: The proposed IDSMO 

based method with a dynamic penalty term and static 

acceptance of ISs during the update process (Proposal 1 + 

Proposal 2). 

5) The proposed method 2: The proposed IDSMO 

based method with a dynamic penalty term and dynamic 

acceptance of ISs during the update process (Proposal 1 + 

Proposal 3). 

The static penalty term utilized in the compared method 2 

is defined as follows: 

 �!"#$% = 23 ∗ 9& :�� =
>

(16) 

The simulation parameters are as follows: 

1) Common parameters of all methods: The number of 
objective function evaluations: 380000, the number of trials: 
30, GAK : 5, GNN: 1, GON: 5, ALG: 20, ' : 8, �2_NN: 0.5, �2_Le: 0.5, �2_L : 0.5, �: 0.5 

2) A common parameter excluding the compared 
method 1: 23: 20000 

3)    A common parameter of the compared method 3, 
the proposed method 1, and the proposed method 2: �: 1.5 

4) A parameter of the proposed method 1: violationjklm: 0.2 
5)  Parameters of the proposed method 2: Vopq : 0.0, Vokr: 0.1 
A simulation environment on a PC (Intel®Core™i9-

14900K), Linux Ubuntu Desktop 22.04 LTS using gcc (ver. 
11. 4. 0) is utilized. 

B. Simulation Results 

Table 1 shows average, the minimum, the maximum, and 

standard deviation of the objective function values obtained 

over 30 trials by the compared method 1-3, and the proposed 

method 1 and 2. The bold numbers in the table show the best 

value in each evaluation metric. From Table 1, the proposed 

method 1 and 2 achieve higher-quality results than the 

compared methods in terms of average, the minimum, and the 

maximum objective function values. Furthermore, the 

proposed method 2 outperforms the proposed method 1 in 

terms of average, the minimum, and the maximum objective 

function values.  

As observed in Table 1, since the proposed method 2 is 

superior to the proposed method 1, the statistical test is 

applied to the methods except the proposed method 1. 

Therefore, the table reports the p-value of the Friedman test 

for comparisons among the four methods excluding the 

proposed method 1. For selection of the statistical test, 

normality is assessed using the Anderson-Darling test and the 

D’Agostino and Pearson test. As a result, normality cannot be 

assumed. Since the initial values of the four methods are 

identical, the data are paired. Therefore, the Friedman test, a 

nonparametric test, was applied. Since the p-value of the 

Friedman test is below 0.05 significant level, it is verified that 

significant differences exist among the four methods. Table 2 

shows corrected p-values obtained using the Wilcoxon 

signed-rank test with Holm correction as a post hoc test. The 

results confirmed that the proposed method 2 differed 

TABLE II.  CORRECTED P-VALUES BY THE WILCOXON TEST WITH 

HOLM CORRECTION AS A POST HOC TEST. 

 The 

compared 

method 1 
[20] 

The 

compared 

method 1 

The 

compared 

method 2 

The proposed 

method 2 

The compared 

method 1 [20] 
 S S S 

The compared 
method 2  

2.15E-10  NS S 

The compared 

method 3 
3.30E-15 0.3403  S 

The proposed 
Method 2 

2.20E-16 2.68E-06 4.22E-07  

 

TABLE I.  COMPARISON OF AVERAGE, THE MINIMUM, THE 

MAXIMUM VALUES, STANDARD DEVIATIONS OF OBJECTIVE FUNCTION 

VALUES AMONG THE COMPARED METHOD 1-3, THE PROPOSED METHOD1, 
AND THE PROPOSED METHOD2, AND A P-VALUE OF THE FRIEDMAN TEST. 

 The 
compared 

method 1 

[20] 

The 
compared 

method 2 

The 
compared 

method 3 

The 
proposed 

method 1 

The 
proposed 

method 2 

Ave 0.62431 0.651479 0.654436 0.66975 0.67070 
Max 0.63914 0.678944 0.682278 0.68550 0.68694 
Min 0.61594 0.626167 0.628889 0.65571 0.65904 
Std 0.00548 0.013887 0.0131 0.00660 0.00741 

p-value 6.46E-15  6.46E-15 

 

 
Fig. 3.  The proposed algorithm for dynamic constraint violation 

acceptance. 

 



significantly from all the compared methods. These findings 

demonstrate the effectiveness of the proposed methods for the 

VMCOP.  

VI. CONCLUSIONS 

This paper proposes improved discrete spider monkey 

optimization using a dynamic penalty function with partial 

constraint violation acceptance for a vending machine 

column optimization problem considering sales and a 

replenishment cycle. The proposed methods are verified to 

obtain higher-quality solutions compared with the compared 

methods. In addition, with respect to the acceptance schemes 

for Infeasible solutions, the results are demonstrated that 

applying the dynamic acceptance scheme yields better 

solutions than the static acceptance scheme. 

As future works, we will conduct comparative evaluations 

against recent state-of-the-art approaches in constrained 

combinatorial optimization and evolutionary computation to 

more clearly position the contribution of this study. In 

addition, new evolutionary computation techniques will be 

investigated to improve solution quality.  
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