Improved Discrete Spider Monkey Optimization
Using a Dynamic Penalty Function with Partial
Constraint Violation Acceptance for Vending
Machine Column Optimization Considering Sales
and a Replenishment Cycle

Riko Hasegawa
School of Interdisciplinary
Mathematical Sciences
Meiji University
Tokyo, Japan
ev221023@meiji.ac.jp

Naoto Ishibashi
Corporate R&D Headquarters
Fuji Electric Co., Ltd.
Tokyo, Japan
ishibashi-naoto@fujielectric.com

Abstract—This paper proposes an improved discrete spider
monkey optimization based method using a dynamic penalty
function with partial constraint violation acceptance for
vending machine column optimization considering sales and a
replenishment cycle. The conventional method has a challenge
that it only searches for feasible regions. To address the
challenge, the proposed method added a dynamic penalty
function in order to search for infeasible regions. Moreover,
partial constraint violation acceptance rate is introduced to
obtain high quality solutions. Effectiveness of the proposed
method is verified by comparing with the conventional method,
a method with only a static penalty function, a method with only
a dynamic penalty function with actual vending machine data.

Keywords—Improved discrete spider monkey optimization,
dynamic penalty function, partial constraint violation acceptance,
combinatorial optimization, vending machine column
optimization, Industrial applications

I. INTRODUCTION

In Japan, there are approximately 2.19 million beverage
vending machines (VMs), which have become an integral part
of daily life [1]. Inside a VM, multiple storage spaces called
columns are installed, and the capacity of each column is
predetermined. Since demand varies for each product,
allocating an insufficient number of columns to high-demand
products can lead to premature stockouts and, consequently,
lost sales opportunities. Therefore, the placement of products
in various columns of VMs is directly linked to sales
improvement. It can be formulated as a combinatorial
optimization problem that considers both total sales values
and a replenishment cycle. In VMs, regular replenishment is
required. By allocating the larger-capacity columns to high-
demand products, the replenishment cycle can be extended
and the number of deliveries reduced. However, since there
are various capacities of columns and various demands of
products, the problem cannot be solved easily. Reducing
delivery frequency offers three main advantages. First, it
decreases carbon dioxide (CO,) emissions associated with

Yoshikazu Fukuyama
School of Interdisciplinary
Mathematical Sciences
Meiji University
Tokyo, Japan
yfukuyam@meiji.ac.jp

Takuya Watanabe
Corporate R&D Headquarters
Fuji Electric Co., Ltd.
Tokyo, Japan
watanabe-takuya@fujielectric.com

Tatsuya lizaka
Corporate R&D Headquarters
Fuji Electric Co., Ltd.
Tokyo, Japan
iizaka-tatsuya@fujielectric.com

transportation. In 2022, the transportation sector accounted for
18.5% of Japan’s energy-related CO, emissions [2]. Thus,
reducing the number of deliveries is an effective measure
against greenhouse gas emissions [3]. Second, it helps control
transportation costs amid rising fuel prices. In recent years,
fuel costs have placed a growing burden on companies, and
reducing delivery frequency can mitigate this impact. Third, it
helps alleviate the burden on workers. Since 2024, Japan has
enforced legal regulations on overtime work [4], making
improvements in work efficiency increasingly important.
Taken together, reducing the number of deliveries is
significant from environmental, economic, and labor
perspectives.

Several approaches have been proposed for the VM column
optimization problem (VMCOP). Miyamoto et al. regarded
the problem as a combinatorial optimization problem and
attempted optimization using Tabu Search (TS) and Multiple
Start Local Search, confirming their effectiveness [5].
Takeuchi et al. formulated the problem with the objective of
maximizing long-term profit margins and applied the Life
Span Method, an extension of TS, to improve performance [6].
However, it has been pointed out that the solutions obtained
by these methods remain limited, and that there is still room
for further improvement [7-9]. Meanwhile, in the field of
evolutionary computation, the usage of multi-point search
algorithms with multi-population has been reported to
improve solution quality [8-11]. Conventional multi-point
search algorithms mainly employed static multi-populations
in which the number of multi-populations was fixed and the
number of search points in each population was fixed. The
authors applied this framework to the VMCOP and proposed
MP-IMA, a method based on static multi-populations,
confirming its effectiveness [8]. More recently, methods that
dynamically vary the number of search points and the
population structure have emerged. It has been demonstrated
that they can derive solutions superior to those obtained with
traditional approaches [12-17]. Dynamic multi-population

methods are characterized by the ability to vary the number of
search points within each population, adjust the number of
populations, and reconfigure the group structure. Among
various approaches, only Discrete Spider Monkey
Optimization (DSMO) possesses all three of these features. It
is therefore expected to yield superior solutions. Based on this
perspective, Koyama et al. improved DSMO for the VM COP
and proposed IDSMO, verifying its effectiveness [18-20].
However, in IDSMO, all solutions that violated constraints
were excluded from the search space. Such infeasible
solutions (ISs) were neither evaluated nor selected. As a result,
the searchable region was restricted, and the flexibility of the
search process was reduced. It made broad exploration
difficult. Consequently, in the VMCOP addressed in the
previous studies, penalty functions have not been introduced.
Solutions that violated constraints were excluded from the
search space [5-9, 18-23]. In contrast, the penalty function
method originated from Courant’s work on the calculus of
variations in 1943 [24]. It has since been integrated with
evolutionary algorithms, for example through the introduction
of dynamic penalty functions for nonlinear constrained
optimization problems by Joines and Houck [25]. A notable
feature of this approach is that it allows the evaluation of
solutions that do not strictly satisfy the constraints but
nevertheless yield good objective function values. This
property has been regarded as effective for maintaining
diversity in the early stages of the search and for avoiding
premature convergence to local optima [25][26].

Based on the above background, this paper proposes the
following improvement to IDSMO aiming to expand the
search space while balancing solution quality and search
flexibility:

1) A dynamic penalty term is introduced into the
objective function based on the number of unassigned
products for the constraint that each product must be
assigned to at least one column (Proposal 1).

The conventional update rule, which excluded all ISs, is
revised. With this revision, all solutions can be evaluated and
selected according to their penalized objective function values.
However, introducing the penalty term alone often led to final
best solutions that did not satisfy the constraints. This caused
challenges with the stability of the search outcomes. Therefore,
we propose further improvements. Namely, in addition to the
penalty term, we incorporate a framework in which ISs are
conditionally accepted during the solution update process. In
this study, two strategies for controlling the degree of
constraint violation acceptance are adopted and compared:

2) A static acceptance scheme: 1Ss are accepted with a
fixed rate throughout the search process (Proposal 2).

3) A dynamic acceptance scheme: The acceptance rate
changes over time as the search progresses. In the early
stages, a high acceptance rate is applied to maintain
diversity, while, in the later stages, the rate is gradually
reduced to guide the search toward stricter constraint
satisfaction (Proposal 3).

Using actual VM data, we compared the Proposed Method
1 (Proposal 1 + Proposal 2) and the Proposed Method 2
(Proposal 1 + Proposal 3) with the conventional IDSMO
approach [20]. The results confirmed the effectiveness of the
both proposed methods. Furthermore, these results were
validated by the Friedman test and the Wilcoxon signed-rank
test with the Holm correction as a post hoc analysis.

II. A PROBLEM FORMULATION OF A VENDING MACHINE
COLUMN OPTIMIZATION PROBLEM

A. Decision Variables

This study utilizes decision variables s, (sip € 0,1) to
indicate whether product p is assigned to column k of VM m.
Specifically, s,’(';, =1 means that product p is placed in
column k of VM m, while s,’g;] = 0 indicates that it is not.

B. The Proposed Objective Function

The objective function in [20] aims to maximize both the
replenishment cycle of products in VMs and the total sales
values. In this study, the objective function is further extended
by introducing a dynamic penalty term (Proposal 1), which
enables the evaluation of ISs.

max(a X min(zé’,l,,z,’l’;,) + (1 —a) X Rev — Penalty) ¢))

Ci"si
=) 5 wern @
KEK? cra
dy= > L2 penm ©
kek* P

Rev = Z z z (Csity x Em™) (4)

m peP™P[" keKI K}
N 2
. P

t
Penalty =1, * (T) * Z o (5)

P
where zj, is the time until the p-th cold product in the m-
th VM sells out, zp), is the time until the p-th hot product
in the m-th VM sells out, Rev is a total sales value, a is a
weighting coefficient representing the relative importance
of replenishment cycle, K[is the set of columns allocated
to cold products in the m-th VM, D,, is the demand for
product p, Ci* is the capacity of the k-th column in the m-
th VM, P™ is the set of cold products allocated to the m-
th VM, K;" is the set of columns allocated to hot products
in the m-th VM, P;™* is the set of hot products allocated to
the m-th VM, F;" is the unit price of product p in the m-
th VM, 1y is the penalty coefficient, t is the current
number of objective function evaluations, T is the
maximum number of objective function evaluations, e is
the coefficient controlling the growth rate of the penalty
term, ay, is the indicator that takes the value 1 if product p
is unassigned in all VMs, and 0 otherwise, and N,, is the
number of products.

Equation (2) calculates the sales duration of cold product
p in the m-th VM. It divides the total assigned column
capacity by the demand for that product. Equation (3) gives
the sales duration for hot product p in the same way. Equation
(4) computes the total sales value. It sums the product of the
assigned quantity and the unit price for all products in a VM.
Equation (5) represents a dynamic penalty function for the
constraint that each product must be assigned to at least one
column (Proposal 1). The magnitude of the penalty changes
dynamically according to the number of unassigned products
and the progress of objective function evaluations. This design
allows a certain degree of freedom for ISs in the early stages
of the search, while gradually guiding the search toward
constraint satisfaction as the search progresses. In other words,
solutions with many unassigned products or ISs in the later

stages of the search receive larger penalties. Namely, solutions
with larger penalties are less likely to be evaluated as
favorable in terms of objective function value.

C. Constraints

st = 1(k € K", K™ ©)
PEP P!
Z s> 1(p € B))
kek™
Z s> 1(p € P) @)
ke
S = 0(p € P, k € KJ) ©)

Skp = 0(p € Py, k € KI™) (10)
Equation (6) defines the allocation constraint that every
column in VM m must be assigned exactly one product.
Equation (7) and (8) state that each cold product and each hot
product, respectively, must be allocated to at least one column
in VM m. Equation (9) prevents cold products from being
assigned to columns designated for hot products. Similarly,
Equation (10) prohibits hot products from being assigned to
columns designated for cold products.

III. OVERVIEW OF DISCRETE SPIDER MONKEY OPTIMIZATION
WITH DYNAMIC MULTI-POPULATIONS

The IDSMO utilized in this study is based on Spider
Monkey Optimization (SMO) developed by Bansal et al. [15]
and DSMO by Akhand et al. [27], and was further improved
by Koyama et al. for the VMCOP [20]. SMO is an algorithm
inspired by the social behavior of spider monkeys, known as
a fission-fusion social system. It divides the population into
multiple subgroups, conducts local searches within each
subgroup, and then shares information at the global level.
DSMO extends SMO so that it can be applied to combinatorial
optimization problems. Koyama et al. incorporated operators
designed for the VMCOP into this framework, thereby
achieving efficient search [20]. In particular, the update rules
include the Swap Operator (SO), originally proposed in
DSMO, and Swap Product (SP), introduced by Koyama et al.
for this problem. A solution is represented as a sequence of
product numbers assigned to each column in a VM. Among
all solutions generated during initialization, the one with the
highest objective function value is defined as the Global
Leader (GL). The best solution within each subgroup is
defined as the Local Leader (LL). The hyperparameters are as
follows. Mj,, is the maximum number of iterations. MN,, is
the maximum number of groups. NSM is the number of
search points. pr_LL is the probability threshold for applying
updates. MLL is the maximum number of consecutive
iterations in which the LL can maintain the same solution.
Similarly, MGL is the maximum number of consecutive
iterations in which the GL can maintain the same solution. The
meanings of the operators “+” and “*” in (11)-(13) follows the
original DSMO formulation [27]. The procedure of IDSMO
for a the VM column optimization is presented below [20].

Step 1 Initiation: The number of iterations is set as iter = 1,
and the number of groups is set as N; = 1. The number
of search points in the first group is set as NSM; =
NSM. All search points are generated randomly. The
initial solutions are evaluated using the objective
function ((1)-(5)), and the LL for each group and the
GL are determined. The counters sll; and sgl, which

record the number of times the LL and GL maintain the
same solutions, are initialized to 1.

Step 2 Update search points: For each search point SM;, (the
a-th search point in group i), the update is performed
according to the following equations.

SSiq = U(0,1) * (GLorLL; — SMyg) +

U(0,1) (RSM — SM;,) (11)

SMyewia = SMig + SSia (12)
where SS;, is the update value for the a-th search
point in group i. U(0,1) is a uniform random number
in the range [0, 1], GLorLL; is either the GL or the LL
of group i, RSM is a search point different from SM;,
randomly chosen from all search points or from all
other search points within group i.

In (11), when the update is directed toward the GL,
GLorLL; is set to the GL, and RSM is chosen
randomly from all search points except SM;,. When
the update is directed toward the LL, GLorLL; is set to
the LL, and RSM is chosen randomly from all search
points in group i except SM;, . The difference
operation in (11) such as (GLorLL; —SM;,) is
transformed into a sequence of discrete operations.
These operations are expressed by the SP and the SO.
The SP adjusts shortages or surpluses in the number of
product allocations to columns, while the SO
exchanges products between different columns [20].
For the SO and the SP, the parameters prs, and prsp
determine whether the operation is applied. From the
first term in (11), all SO and SP operations are obtained.
Similarly, all SO and SP are also obtained from the
second term. In total, four objective function values are
calculated. These four evaluation results are compared
with the objective function value obtained before the
update, and the solution with the best value is selected.
According to (12), the sequence of operations SS;,,
which combines these results, is then applied to SMy,.
This produces the updated solution SM,,.,,i, . If the
candidate solution violates the constraints ((6)-(10)),
the update is not applied. Further details can be found
in [20].

Step 3 Update of LL and GL: For each group, the best updated
solution at Step 2 is compared with the current LL. If
the best updated solution is better, the LL is updated.
All LLs are then compared with the current GL. If the
updated LL is better than the GL, the GL is replaced
by the LL.

Step 4 Replacement of LL: If sil; > MLL, a decision is made
based on the probability pr_LL. The search point is
either reinitialized randomly or the LL is updated
according to (13).

SMyewia = U(0,1) * (GL — SMnewia) +U(0,1) *

(SMnewia - LLL’) (13)

After the LL is replaced, sl is reset to 1.

Step 5 Reconfiguration of groups: If sgl > MGL, the number
of groups is increased by one, i.e., Ny = Ny + 1. If
Ny = MN,, then N is reset to 1. If Ny < MNg, all

search points are divided into N, groups based on the
method described in [20]. This division considers both
the objective function values and the Hamming
distance, which represents the similarity between
solutions. After this operation, the LLs of all groups
and the GL are updated, and sgl is reset to 1.

Step 6 Termination check: If iter = M;,,., proceed to Step 7.
Otherwise, set iter = iter + 1 and return to Step 2.

Step 7 Output of the solution: The final GL is output as the
best solution, and the algorithm terminates.

IV. APPLICATION OF A MODIFIED DISCRETE SPIDER MONKEY
OPTIMIZATION USING A DYNAMIC PENALTY FUNCTION WITH
PARTIAL CONSTRAINT VIOLATION ACCEPTANCE TO
VENDING MACHINE COLUMN OPTIMIZATION

A. Acceptance Schemes for Infeasible Solutions

In general, when a penalty function is introduced to allow
the search to explore ISs, all such solutions are accepted
throughout the entire search process. However, in the
proposed method, not all ISs are accepted during the search.
Instead, acceptance schemes are proposed in which ISs are
accepted only at a certain rate. Specifically, two schemes are
proposed: the static acceptance scheme (Proposal 2), in which
ISs are accepted at a fixed rate throughout the search, and the
dynamic acceptance scheme (Proposal 3), in which the
acceptance rate changes dynamically as the search progresses
(See Fig. 1).

1) The static acceptance scheme (Proposal 2): In this
scheme, during Step 2 in Section 3, even if a candidate
solution is infeasible, it is evaluated by calculating the
objective function when the condition in (14) is satisfied:

U[0, 1] < violation, 4, (14)

where violation, 4, is the rate of accepting an infeasible
solution, and U0, 1] is a uniform random number in the range
[0, 17.

n
=)

X
315
3
s
= 10
=
2
E 5
2
)
0 20000 40000 60000 80000 100000
The number of objective function
evaluations
(a) Static constraint violations (proposal 2)
20
X
o 15
S
«
= 10
=
2
E 5
-
0
0 20000 40000 60000 80000 100000
The number of objective function
evaluations

(b) Dynamic constraint violations (proposal 3)

Fig. 1. Images of constraint violation acceptance by the proposed
methods (the proposal 2 and 3).

Algorithm 1: Step 2: The solution update process
using the Proposal 2

Input: Search point SM;a, Viclation tolerance rate
violation_rate
Output: Updated solution SM;a
1 for n + 0 to 3 do

2 check + 0,

3 if n mod 2 =0 then
// Apply the Swap Product (SP)

4 foreach rarget column do

5 Replace products in SA;a according to the
L SP operation;

6 else
// Apply the Swap Operator (S50)

7 foreach pair of rarger columns do
Exchange products in SM;a according to
the SO operation;

// Check whether the constraint is
satisfied or not
9 foreach product p do

10 if product p is not assigned to at least one
column then
1 |_ check « check + 1:
// Bpply the static acceptance
scheme
12 it check =0 or UD,1] < wiolation_rate then
13 Calculate the objective function value
L according to Egs. (1(5);
14 else
15 I_ Set the objective function value to 0;

16 Select the best solution and update SAM;a:
Fig. 2.

The proposed algorithm for static constraint violation
acceptance.

With this mechanism, ISs can remain in the search space
at a fixed rate from the beginning to the end of the search. This
helps maintain solution diversity. Fig. 2 shows the algorithm
of Step 2 in Section 3 under this scheme.

2) The dynamic acceptance scheme (Proposal 3): In this
scheme, the acceptance rate changes according to the progress
of the search. The dynamic acceptance rate, Vgynrqte iS
defined by the following equation:

Vmax - Vmin

denrate Vmax - X N eval

Nmaxeval (15)

where V., is the maximum acceptance rate at the
beginning of the search, V,,,;;, is the minimum acceptance rate
at the end of the search, N4 is the current number of
objective function evaluations, and Ny, qyepq: 1S the maximum
number of objective function evaluations.

With this mechanism, more ISs are accepted in the early
stages of the search to maintain solution diversity, while
stricter constraint satisfaction is gradually enforced in the later
stages. Fig. 3 shows the algorithm of Step 2 in Section 3 under
this scheme.

V. SIMULATIONS

A. Simulation Conditions

Simulations were conducted for the following five
methods to verify the effectiveness of the proposed methods
using the column capacities, demand data, and product price
data from five actual vending machines:

1) The compared method 1: The conventional IDSMO
based method without a penalty term in the objective function
[20].

Algorithm 2: Step 2: The solution update process
using the Proposal 3
Input: Search point SAf;a, Maximum constraint
violation tolerance rate viay. Minimum
constraint violation tolerance rate vp,;,. Current

number of objective function evaluations Ny a1.
Maximum number of objective function
evaluations N4F, Violation tolerance rate v,
Output: Updated solution SM;a
1 for n+« 0 to 3 do

dyn
rate

2 check + 0
3 if n mod 2 =0 then
// BRpply the Swap Product (SP)
4 foreach rarger column do
Replace products in SM;a according to the
L SP operation;
6 else
// Bpply the Swap Operator (S50)
7 foreach pair of targer columns do
8 Exchange products in SM;a according to
L the SO operation;

// Check whether the constraint is
satisfied or not

] foreach product p do

0 if product p is not assigned to at least one

column then

|_ check « cheek +1;

// Rpply the dynamic acceptance
- N ', 1 - 1 N
1z Urate ¥ Umax X 1
se dyn 3
13 if Vrate < Umin then
s
| L o e v
5 | if check =0 or U[0,1] < »%7 then
16 Calculate the objective function value
according to Egs. (1)}-(5);
7 else
18 |_ Set the objective function value to 0;

19 Select the best solution and update SAf;a:

Fig. 3. The proposed algorithm for dynamic constraint violation
acceptance.

2) The compared method 2: The IDSMO based method
with only a static penalty term in the objective function.

3) The compared method 3: The IDSMO based method
with only a dynamic penalty term in the objective function

4) The proposed method 1: The proposed IDSMO
based method with a dynamic penalty term and static
acceptance of ISs during the update process (Proposal 1 +
Proposal 2).

5) The proposed method 2: The proposed IDSMO
based method with a dynamic penalty term and dynamic
acceptance of ISs during the update process (Proposal 1 +
Proposal 3).

The static penalty term utilized in the compared method 2

is defined as follows:
2

Penalty = ry * Z op (16)

p

The simulation parameters are as follows:

1) Common parameters of all methods: The number of
objective function evaluations: 380000, the number of trials:
30, MNg: 5, MLL: 1, MGL: 5, NSM: 20, C: 8, pr_LL: 0.5,
pr_S0:0.5, pr_SP: 0.5, a: 0.5

2) A common parameter excluding the compared
method 1: ry: 20000

3) A common parameter of the compared method 3,
the proposed method 1, and the proposed method 2: e: 1.5

4) A parameter of the proposed method 1:
violation,,ge: 0.2

5) Parameters of the proposed method 2: Vy;,: 0.0,
Vinax: 0.1

A simulation environment on a PC (Intel®Core™i9-
14900K), Linux Ubuntu Desktop 22.04 LTS using gcc (ver.

11. 4. 0) is utilized.

B. Simulation Results

Table 1 shows average, the minimum, the maximum, and
standard deviation of the objective function values obtained
over 30 trials by the compared method 1-3, and the proposed
method 1 and 2. The bold numbers in the table show the best
value in each evaluation metric. From Table 1, the proposed
method 1 and 2 achieve higher-quality results than the
compared methods in terms of average, the minimum, and the
maximum objective function values. Furthermore, the
proposed method 2 outperforms the proposed method 1 in
terms of average, the minimum, and the maximum objective
function values.

As observed in Table 1, since the proposed method 2 is
superior to the proposed method 1, the statistical test is
applied to the methods except the proposed method 1.
Therefore, the table reports the p-value of the Friedman test
for comparisons among the four methods excluding the
proposed method 1. For selection of the statistical test,
normality is assessed using the Anderson-Darling test and the
D’ Agostino and Pearson test. As a result, normality cannot be
assumed. Since the initial values of the four methods are
identical, the data are paired. Therefore, the Friedman test, a
nonparametric test, was applied. Since the p-value of the
Friedman test is below 0.05 significant level, it is verified that
significant differences exist among the four methods. Table 2
shows corrected p-values obtained using the Wilcoxon
signed-rank test with Holm correction as a post hoc test. The
results confirmed that the proposed method 2 differed

TABLE L COMPARISON OF AVERAGE, THE MINIMUM, THE
MAXIMUM VALUES, STANDARD DEVIATIONS OF OBJECTIVE FUNCTION
VALUES AMONG THE COMPARED METHOD 1-3, THE PROPOSED METHODI1,
AND THE PROPOSED METHOD2, AND A P-VALUE OF THE FRIEDMAN TEST.

The The The The The
compared| compared | compared | proposed | proposed
method 1| method2 | method3 | method 1 | method 2
[20]
Ave |0.62431 | 0.651479 | 0.654436 | 0.66975 | 0.67070
Max | 0.63914 | 0.678944 | 0.682278 | 0.68550 | 0.68694
Min |0.61594 | 0.626167 | 0.628889 | 0.65571 | 0.65904
Std | 0.00548 | 0.013887 0.0131 0.00660 | 0.00741
p-value 6. 46E-15 6. 46E-15
TABLE II. CORRECTED P-VALUES BY THE WILCOXON TEST WITH
HOLM CORRECTION AS A POST HOC TEST.
The The The The proposed
compared | compared | compared method 2
method 1 | method 1 method 2
[20]
The compared S S S
method 1 [20]
The compared | 2. 15E-10 NS S
method 2
The compared | 3.30E-15 | 0. 3403 S
method 3
The proposed | 2.20E-16 | 2. 68E-06 | 4.22E-07
Method 2

significantly from all the compared methods. These findings
demonstrate the effectiveness of the proposed methods for the
VMCOP.

VI. CONCLUSIONS

This paper proposes improved discrete spider monkey
optimization using a dynamic penalty function with partial
constraint violation acceptance for a vending machine
column optimization problem considering sales and a
replenishment cycle. The proposed methods are verified to
obtain higher-quality solutions compared with the compared
methods. In addition, with respect to the acceptance schemes
for Infeasible solutions, the results are demonstrated that
applying the dynamic acceptance scheme yields better
solutions than the static acceptance scheme.

As future works, we will conduct comparative evaluations
against recent state-of-the-art approaches in constrained
combinatorial optimization and evolutionary computation to
more clearly position the contribution of this study. In
addition, new evolutionary computation techniques will be
investigated to improve solution quality.

REFERENCES
[1] Japan Vending System Machinery Manufacturers Association,
Vending machine data, 2024. [Online]. Available:
https://www.jvma.or.jp/information/information_3.html, (in
Japanese)

[2] Climate Action Tracker, Japan: Policies and action, 2024. [Online].
Available: https://climateactiontracker.org/countries/japan/policies-
action/

[3] The Coca-Cola Company, “Sustainability,” 2025. [Online]. Available:
https://www.coca-colacompany.com/about-us/sustainability

[4] R.Hosokawa, “Issues for Regulating Working Hours in the Post-Work
Style Reform”, Japan Labor Issues, Vol.9, No.51, pp.1-6, 2025.
[Online]. Available:
https://www.jil.go.jp/english/jli/documents/2025/051-01.pdf

[51 Y. Miyamoto, et al., “Algorithms for the Item Assortment Problem:
An Application to Vending Machine Products,” Japan J. of Industrial
and Applied Mathematics, vol. 20, pp. 87-100, Feb. 2003 (in
Japanese).

[6] T. Takeuchi, et al., “A Vending Machine Column Allocation
Optimization Problem with Demand Following a Poisson Process,”
The journal of the Department of Economics of Gakushuin Univ., vol.
49, no. 1, pp. 47-52, Apr. 2012 (in Japanese).

[77 R. Masahira, Y. Fukuyama, et al., “Vending Machine Column
Optimization by Tabu Search,” Proc. of IEEJ Annual Conf., no. 3-032,
Mar. 2022 (in Japanese).

[8] R. Masahira, Y. Fukuyama, et al., “Vending Machine Column
Optimization by an Improved Monkey Algorithm with Multiple
Populations,” Proc. of Annual Conf. of Industry Applications Society
of IEEJ, no. 5-19, Aug. 2022 (in Japanese).

[97 R. Masahira, Y. Fukuyama, et al., “Vending Machine Column
Optimization by Multi-population evolutionary computation —
Analysis of effective search by a statical multi-population strategy —,”
Proc. of IEEJ Annual Conf., no. 3-035, Mar. 2023 (in Japanese).

[10] J. P. Cohoon, et al,, “Punctuated Equilibria: A Parallel Genetic
Algorithm,” Proc. of the 2nd Int. Conf. on Genetic Algorithms, pp.
148-154, Oct. 1987.

[11] D. Azuma, Y. Fukuyama, et al., “Distribution State Estimation Using
Multiple Stages considering Asynchronous Measurement Data by

[12]

[13]

[14]

[15]

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Dependable Parallel Multi-Population Global-best Brain Storm
Optimization with Differential Evolution strategies,” Proc. of IEEJ
Trans. PE, vol. 141, no. 6, pp. 426-439, June 2021 (in Japanese).

X. Zhang, et al., “Dynamic multi-group self-adaptive differential
evolution algorithm for reactive power optimization,” Int. J. of
Electrical Power & Energy Systems, vol. 32, Issue. 5, pp. 351-357,
June 2010.

S. Z. Zhao, et al., “Dynamic Multi-Swarm Particle Swarm Optimizer
with Subregional Harmony Search,” Proc. of IEEE Congress on
Evolutionary Computation, July 2010.

M. F. Han, et al., “Dynamic group-based differential evolution using
a self-adaptive strategy for global optimization problems,” Applied
Intelligence, vol. 39, pp. 41-56, Nov. 2013.

J. C. Bansal, M. Clerc, et al., “Spider Monkey Optimization Algorithm
for Numerical Optimization,” Memetic Computing, vol.6, pp.31-47,
Jan. 2014.

G. Duarte, A. Lemonge, and L. Goliatt, “’A dynamic migration policy
to the Island Model,” Proc. of IEEE CEC 2017, June 2017.

M. M. Fouad, et al, “Dynamic Group-Based Cooperative
Optimization Algorithm,” IEEE Access, vol. 8, pp. 148378-148403,
Aug. 2020.

S. Koyama, Y. Fukuyama, et al., “A New Grouping Method for
Improved Discrete Spider Monkey Optimization Using Dynamic
Multi-population for Vending Machine Column Optimization,” Proc.
of IEEJ Electronics, Information and Systems Society Conference,
GS11-1, Sep. 2023 (in Japanese).

S. Koyama, Y. Fukuyama, et al., “Improved Discrete Spider Monkey
Optimization for Vending Machine Column Optimization
Considering Sales and a Replenishment Cycle,” Proc. of IEEE 2024
Conference on Al, Science, Engineering and Technology (AIXSET),
pp. 212-213, Sep. 2024.

S. Koyama, Y. Fukuyama, et al., “Improved Discrete Spider Monkey
Optimization Using Dynamic Multi-population for a Vending
Machine Column Optimization Problem,” Proc. of IEEJ Trans. on
Electronics, Information and Systems, vol. 144, no. 12, pp.1217-1229,
Dec. 2024 (in Japanese).

Y. Hara, Y. Fukuyama, et al., “Vending Machine Column Optimization
by an Improved Discrete Spider Monkey Optimization Using
Dynamic Multi-population,” Proc. of IEEJ Technical Meeting on
Systems/Smart Facility, ST-22-026, SMF-22-033, Nov. 2022 (in
Japanese).

Y. Hara, Y. Fuluyama, et al., “Application of Multi-population
Evolutionary Computation for Vending Machine Column
Optimization — Parameter Sensitivity Analysis of Improved Discrete
Spider Monkey Optimization Using Dynamic Multi-populations —,”
Proc. of IEEJ Annual Conf., no. 3-036, Mar. 2023 (in Japanese).

H. Grzybowska, et al., “A simulation-optimisation genetic algorithm
approach to product allocation in vending machine systems,” Expert
Systems with Applications, vol. 145, May 2020.

R. Courant, “Variational Methods for the Solution of Problems of
Equilibrium and Vibrations,” Bull. Amer. Math. Soc., vol. 49, no. 1,
pp. 1-23, Jan. 1943.

J. A. Joines, and C. R. Houck, “On the Use of Non-Stationary Penalty
Functions to Solve Nonlinear Constrained Optimization Problems
with GA’s,” Proc. IEEE Int. Conf. Evolutionary Computation, pp.
579-584, Jun. 1994.

C. A. Coello Coello, “Theoretical and Numerical Constraint-Handling
Techniques Used with Evolutionary Algorithms: A Survey of the State
of the Art,” Comput. Methods Appl. Mech. Engrg., vol. 191, no. 11—
12, pp. 1245-1287, Jan. 2002.

M. A. H. Akhand, et al., “Discrete Spider Monkey Optimization for
Travelling Salesman Problem,” Applied Soft Computing, vol. 86, pp.
1-13, Jan. 2020

