
RCA U-Net with Dynamic Loss Weighting for
Automated Crack Segmentation in Structural Health

Monitoring
*Note: Sub-titles are not captured for https://ieeexplore.ieee.org and should not be used

Andrew Prasetyo
Departement Of Electrical Engineering

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

7022231006@student.its.ac.id

I Ketut Eddy Purnama
Departement Of Electrical Engineering

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

ketut@its.ac.id

Eko Mulyanto Yuniarno
Departement Of Electrical Engineering

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

ekomulyanto@ee.its.ac.id

Priyo Suprobo
Departement Of Civil Engineering

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

priyo@its.ac.id

Arief Kurniawan
Departement Of Computer Engineering

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

arifku@ee.its.ac.id

Abstract—Crack detection in concrete structures is critical for
Structural Health Monitoring (SHM), yet traditional manual
inspection is time-consuming and error-prone. Deep learning
approaches, particularly U-Net, have shown promise but struggle
with fine crack patterns, class imbalance, and varying environ-
mental conditions. This paper presents a RCA U-NET (Residual-
CBAM-ASPP-U-Net) with dynamic loss weighting that addresses
these challenges through three key innovations: (1) integration
of residual blocks with SE attention and CBAM modules for en-
hanced feature discrimination, (2) ASPP bottleneck with multiple
dilation rates for multi-scale feature extraction, and (3) adaptive
loss mechanism balancing binary cross-entropy and Dice loss to
handle severe class imbalance. Rigorous 5-fold cross-validation on
the DeepCrack dataset yields 71.47% IoU, 81.91% F1-score, and
99.37% ROC-AUC, outperforming CrackSeU, CrackSeg, and
Trans-UNet baselines. Ablation experiments demonstrate that
attention mechanisms provide the most significant contribution,
while dynamic loss weighting improves stability and reduces false
predictions. The narrow confidence intervals across folds validate
robust generalization, establishing the proposed framework as an
effective solution for automated SHM applications in concrete
infrastructure.

Index Terms—Crack segmentation, Structural Health Moni-
toring, U-Net,Deep Learning, Concrete Infrastructure.

I. INTRODUCTION

Image segmentation is a very important process in computer
vision and structural health monitoring systems in extracting
meaningful information from images by partitioning them into
different regions. This technique is particularly important in
structural health monitoring applications in obtaining accurate
features for subsequent analysis and decision-making [1], [2].
The complexity of crack images necessitates the development
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of advanced segmentation techniques that can effectively han-
dle noise, variability and occlusion in real-world scenarios.
[3], [4].

In the context of structural health monitoring, crack detec-
tion is of paramount importance. Cracks in structures such as
bridges, buildings, and dams can lead to catastrophic failures
if not detected and addressed in a timely manner. Traditional
methods of crack detection often rely on manual inspection,
which can be time-consuming, subjective, and prone to human
error. Consequently, there is a growing interest in automated
techniques that leverage image processing and machine learn-
ing to enhance the accuracy and efficiency of crack detection
[5], [6].

The U-Net architecture has emerged as a leading framework
for semantic segmentation, particularly in medical imaging
[1]. Its encoder-decoder structure allows for the capture of
contextual information while preserving spatial details, mak-
ing it highly effective for tasks requiring precise boundary
delineation. The architecture consists of a contracting path that
captures context and a symmetric expanding path that enables
precise localization. This unique design facilitates the learning
of both low-level and high-level features, which is crucial for
accurately segmenting complex structures such as cracks [7].

Despite its success, U-Net alone may struggle with complex
patterns and high variability in certain applications, such as
crack detection in materials [1], [2]. The presence of noise,
varying lighting conditions, and the intricate nature of crack
patterns can significantly hinder the performance of traditional
U-Net models. Moreover, the model’s reliance on pixel-wise
classification can lead to challenges in distinguishing between
cracks and similar textures or noise in the background [11].



We address small-crack segmentation in concrete imagery,
where hairline fissures exhibit weak contrast and occupy only
a minute fraction of pixels relative to background texture.
We cast the task as pixel-wise binary segmentation using
paired RGB images and binary masks. Images are intensity-
normalized, masks are resampled with an edge-preserving pol-
icy and binarized with a fixed threshold. To guarantee one-to-
one correspondence under heterogeneous naming conventions,
we normalize filenames by stripping common mask suffixes
prior to matching, ensuring robust image–mask pairing without
discarding valid hairline structures.

Our network is a residual U-Net augmented with chan-
nel–spatial attention and multi-scale context (Residual-
CBAM–ASPP U-Net). Encoder–decoder stages employ resid-
ual blocks with squeeze-and-excitation to adaptively reweight
channels toward discriminative, line-like responses [8], a
CBAM module further integrates channel and spatial attention
to focus on faint, elongated patterns typical of hairline cracks
[9]. At the bottleneck, an atrous spatial pyramid pooling head
aggregates context across multiple receptive-field scales while
preserving localization, helping to disambiguate thin cracks
from background texture [10].

Beyond architecture, we introduce a dynamic composite
loss that balances optimization stability and overlap sensitiv-
ity for thin boundaries. The objective interpolates between
binary cross-entropy and a smooth Dice surrogate via an
online-updated mixing weight: improvements on the moni-
tored loss reduce the emphasis on cross-entropy to privilege
Dice near boundaries, whereas plateaus increase it to restore
stability under class imbalance. The training and evaluation
protocol follows standard practice: cross-validation with best-
checkpoint selection, a disjoint holdout test, optional data-
driven threshold selection to set the operating point, and
reporting of pixel-level segmentation metrics with uncertainty
estimates. All artifacts (histories, checkpoints, summaries, and
qualitative visualizations) are serialized to support rigorous
reproducibility.

In this work, our contributions are as follows:
• Architecture tailored to hairline cracks: A residual

U-Net enhanced with squeeze-and-excitation for channel
reweighting [8], CBAM for joint channel–spatial attention
[9], and an ASPP bottleneck for multi-scale context
[?], explicitly targeting sub-pixel morphology and weak
contrast.

• Dynamic composite loss: An online weighting be-
tween binary cross-entropy and a smooth Dice surro-
gate that adapts to optimization dynamics, curbing over-
suppression of faint true positives while maintaining
stability under severe class imbalance.

• Robust pairing and preprocessing: A normalized, case-
insensitive stem-matching procedure that strips common
mask suffixes to enforce image–mask bijection, combined
with edge-safe resampling and consistent normalization
to preserve thin boundaries.

Section 1 introduces the problem context, motivation, and
a summary of our contributions. Section 2 reviews related

work on crack segmentation, attention mechanisms, and multi-
scale context for thin structures. Section 3 details the proposed
Residual CBAM–ASPP U-Net and the dynamic composite
loss. Section 4 describes experimental setup and dataset. Sec-
tion 5 provides quantitative and qualitative results, including
cross-validation and holdout analysis. Section 6 concludes the
paper.

II. RELATED WORK

There are currently many traditional methods in crack seg-
mentation such as thresholding and edge detection as well as
advanced deep learning approaches [3], [2], [7]. Thresholding
techniques have been widely used to segment cracks based
on pixel intensity, but they often fail to deal with noise and
varying lighting conditions [11], [12]. On the other hand, deep
learning methods have shown superior performance in various
segmentation tasks due to their ability to learn hierarchical
features from data [1], [2].

One of the frequently used architectures in crack segm-
mentation is the U-Net Architecture which has been suc-
cessfully applied to various crack detections [1], [4]. Skip
connections facilitate the preservation of spatial information
to accurately delineate cracks. However, the U-Net model still
faces challenges when dealing with complex crack patterns,
thus requiring the incorporation of additional techniques to
improve its performance [1], [2]. The U-Net architecture is
also capable of classifying each pixel based on its inclusion
in the crack dimension [13].

One important approach in crack detection is the pixel-based
refinement method for crack detection on road surfaces. This
study emphasizes the importance of quantitative and quali-
tative evaluation of the segmentation results. The evaluation
is necessary to perform a robust classification of crack types
based on the segmentation output [14]. In the field of pave-
ment crack detection deep learning fusion models are better
when combining the strengths of various convolutional neural
network (CNN) architectures, including the U-Net model and
Single Shot MultiBox Detector (SSD) [15]. The method aims
to achieve accurate crack classification with the calculation of
geometric parameters and overcome the challenges posed by
different crack appearances and environmental conditions.By
utilizing its high-resolution features, the two-stream boundary-
aware crack segmentation network effectively addresses the
challenges posed by the varying appearance of cracks and
complicated backgrounds in concrete images. [16]A vision
transform-based approach for automatic crack detection can
handle high-resolution images and complicated backgrounds.
[17]

Moreover, the integration of attention mechanisms has be-
come a focal point in recent research. For example, the use of
attention mechanisms to improve segmentation performance
while significantly reducing model parameters [18]. In addi-
tion, there are generalized attention-based models that are able
to improve segmentation performance across different scenar-
ios by abstracting away the sub-problems underlying crack
detection [19]. The approach of using attention mechanisms



has highlighted the growing need for adaptive and context-
aware segmentation strategies.

Ongoing research also emphasizes the need for robust mod-
els that can perform well under various conditions and back-
grounds. For example, the development of a fast road crack
detection method with adaptability of semantic segmentation
techniques in different cracks [20]. This adaptability is further
echoed in the work that proposes a feature pyramid network
for crack segmentation by improving the model’s ability to
detect cracks across different scales and complexities. [21]

III. METHODS

Fig. 1. Overview of the proposed Residual-CBAM-ASPP U-Net architecture
for concrete crack segmentation.

A. Proposed Architecture

The proposed crack segmentation model employs a
Residual-CBAM-ASPP U-Net architecture that integrates
residual learning, attention mechanisms, and multi-scale fea-
ture extraction, as illustrated in Fig. 1. The encoder path-
way consists of four hierarchical blocks with progressively
increasing channel dimensions (64, 128, 256, and 512 fil-
ters), where each block comprises two residual blocks with
integrated Squeeze-and-Excitation (SE) attention, followed by
a Convolutional Block Attention Module (CBAM) and max-
pooling for downsampling. Each residual block contains two
3×3 convolutional layers with batch normalization and ReLU
activation, accompanied by a skip connection that adds the
input directly to the output, facilitating gradient flow during
backpropagation. The SE blocks within each residual block
enhance channel-wise feature recalibration through global
average pooling and fully connected layers. CBAM further
refines the feature maps by sequentially applying channel and
spatial attention mechanisms, enabling the network to focus on
crack-relevant regions while suppressing background noise.

The bottleneck employs an Atrous Spatial Pyramid Pooling
(ASPP) module with 1024 filters and dilation rates of [6,

12, 18] to capture multi-scale contextual information without
losing spatial resolution. The decoder pathway mirrors the
encoder through four upsampling blocks that progressively
reconstruct spatial details. Each decoder block consists of a
transposed convolution for upsampling, concatenation with
corresponding encoder features via skip connections to pre-
serve fine-grained details, and a residual block for feature
refinement. The final layer applies a 1×1 convolution with
sigmoid activation to generate binary segmentation masks at
the original input resolution (256×256×1). This architecture
effectively combines local feature extraction through residual
blocks, adaptive feature weighting via attention mechanisms,
and multi-scale context aggregation through ASPP to achieve
robust crack detection performance.

B. Dynamic Loss Function

To effectively handle the severe class imbalance and sub-
pixel continuity of fine cracks, a dynamic composite loss
function is proposed to adaptively balance pixel-wise accuracy
and spatial overlap. The formulation is defined as

L(α) = αBCE(y, ŷ) + (1− α) log
(
cosh(1−Dice(y, ŷ))

)
,

(1)
where y denotes the ground-truth crack mask and ŷ the pre-
dicted probability map. The BCE term represents binary cross-
entropy loss, emphasizing pixel-level classification, while the
Dice term measures the overlap between prediction and ground
truth, computed as

Dice(y, ŷ) =
2
∑

(yŷ) + ε∑
y +

∑
ŷ + ε

, ε = 10−5. (2)

The adaptive weighting factor α ∈ [0.10, 0.90] dynamically
shifts between the two loss components: decreasing α en-
hances the influence of Dice to improve boundary localization
on thin cracks, whereas increasing α emphasizes BCE to
maintain optimization stability under class imbalance. This
formulation ensures robust convergence and better preservation
of weak crack regions that are often overlooked by fixed or
single-loss approaches.

IV. IMPLEMENTATION

A. Experimental Setup

This experimental research was conducted using a computer
with Ryzen 5 5600X processor specifications, 32 GB DDR4
3200 MHz RAM, B560M motherboard, RTX 3050 8GB Vga
and 512 GB SSD.

This research uses binary images and masks. In the process
of simplifying and ensuring the uniformity of the image and
mask, they were resized to 256×256 pixels. In addition, the
image is normalized by dividing by 255, and the mask is
converted to binary with the aim to limit the pixel value to
0 or 1.This research uses Adam’s optimizer and is performed
over multiple epochs, with the model performance evaluated
on the test set [12].



B. Dataset

The datasets used in this study are images of road surface
structures, walls, and concrete. The datasets in this study
are illustrated in Fig. 2. The DeepCrack dataset comprises
537 RGB images designed for the identification of structural
cracks. These survey images capture a broad range of real-
world environments, including highways, buildings, and var-
ious concrete surfaces. Each image, with a resolution of 544
× 384 pixels, has been manually annotated to indicate both
the location and geometry of visible cracks, providing reliable
ground-truth labels for supervised learning approaches. The
dataset is systematically divided into three subsets: 376 images
for training, 107 for validation, and 54 for testing, enabling
consistent evaluation and model generalization.

C. Evaluation Metrics

The performance of the crack segmentation model is eval-
uated using standard pixel-level metrics: Intersection over
Union (IoU), Precision, Recall, F1-score, Accuracy, and ROC–
AUC. These metrics jointly measure the model’s capability to
localize and detect cracks under severe class imbalance.

The IoU quantifies spatial overlap between predicted and
ground-truth crack regions:

IoU =
Area of Overlap
Area of Union

. (3)

Precision measures the proportion of correctly predicted
crack pixels, where TP and FP denote true positives and
false positives:

Precision =
TP

TP + FP
. (4)

Recall measures the fraction of actual crack pixels success-
fully identified, where FN denotes false negatives:

Recall =
TP

TP + FN
. (5)

The F1-score provides a harmonic mean between Precision
and Recall:

F1 = 2× Precision × Recall
Precision + Recall

. (6)

Accuracy represents the overall classification correctness,
where TN denotes true negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

The ROC–AUC integrates the True Positive Rate and False
Positive Rate across varying thresholds, providing a threshold-
independent assessment of model discrimination capability.

V. RESULTS AND DISCUSSION

A. Ablation Experiment Performance

Table I presents the ablation study results, revealing the
incremental contribution of each architectural component. The
baseline U-Net established a foundation with 80.99% F1-score
and 70.49% IoU. Interestingly, adding residual blocks alone
(U-Net Residual) decreased performance to 78.71% F1-score,

Fig. 2. Comparative analysis of crack segmentation methods on concrete
surface. White pixels represent detected crack regions.

with a notably high FNR of 22.36%, suggesting that residual
connections without attention mechanisms may introduce fea-
ture redundancy. However, incorporating SE attention (U-Net
Residual SE) dramatically improved performance to 83.80%
F1-score and reduced FNR to 15.59%, demonstrating that
channel attention effectively guides the network to focus on
crack-relevant features.

The comparison between SE and CBAM attention reveals
that SE (83.80% F1) slightly outperforms CBAM (82.14% F1),
indicating that channel attention is more critical than spatial at-
tention for crack segmentation. Adding ASPP provides multi-
scale context but shows marginal metric decrease (81.16% F1)
due to increased model complexity. The proposed full model
with dynamic loss weighting achieves the best F1-score of
83.76% with superior stability (lowest std: 12.96%) and the
best trade-off between FNR (13.90%) and FPR (0.44%). The
dynamic loss mechanism adaptively emphasizes boundary pix-
els during training, resulting in more consistent segmentation
across diverse crack patterns and challenging scenarios.

B. Visual Comparison Results

The visual comparison of crack segmentation results is
presented in Fig. 2, which illustrates the performance of
four different methods: CrackSeu, CrackSeg, Trans-U-Net,
and the proposed method. Visually, all methods successfully
detect the main diagonal crack pattern in the concrete surface.
However, notable differences are observed in the thickness
and continuity of the segmented cracks. The proposed method
produces segmentation results that most closely match the
ground truth mask, with finer crack details and more consistent
representation compared to other methods. CrackSeu tends to
produce thinner segmentation with some discontinuities, while
CrackSeg shows slightly fragmented results in certain regions.

Quantitatively, the proposed method achieves the best over-
all performance with an F1-Score of 0.90, IOU of 0.82,



TABLE I
RESULT OF ABLATIONS EXPERIMENT.

Model IoU (%) Precision (%) Recall (%) F1 (%) FNR (%) FPR (%)
Full Model (Dynamic Loss) 73.84 ± 16.24 83.10 ± 16.35 86.10 ± 10.50 83.76 ± 12.96 13.90 ± 10.50 0.44 ± 0.47
U-Net Residual SE 73.73 ± 15.77 85.02 ± 14.80 84.41 ± 11.27 83.80 ± 11.96 15.59 ± 11.27 0.43 ± 0.53
U-Net Residual CBAM 71.66 ± 17.31 82.78 ± 17.58 84.03 ± 11.16 82.14 ± 13.56 15.97 ± 11.16 0.52 ± 0.75
U-Net Residual CBAM ASPP 70.95 ± 19.34 79.83 ± 19.90 85.32 ± 14.85 81.16 ± 16.54 14.68 ± 14.85 0.64 ± 1.02
Baseline U-Net 70.49 ± 19.06 83.52 ± 17.13 82.08 ± 15.96 80.99 ± 15.35 17.92 ± 15.96 0.51 ± 0.77
U-Net Residual 67.44 ± 19.28 85.25 ± 16.27 77.64 ± 18.31 78.71 ± 16.16 22.36 ± 18.31 0.44 ± 0.91

TABLE II
TOP 5 HYPERPARAMETER CONFIGURATIONS FROM 15 GRID SEARCH COMBINATIONS BASED ON TEST SET PERFORMANCE (ALL VALUES IN %)

Rank Trial Val Dice Test IoU Test Precision Test Recall Test F1 LR Batch Size Optimizer
1 9 85.59 73.14±17.8 82.01±18.4 86.67±10.2 83.01±14.4 5e-04 4 adam
2 3 84.82 73.08±17.4 81.92±18.6 86.83±8.5 83.05±14.0 1e-03 4 adam
3 11 84.87 72.21±17.6 80.75±17.9 87.12±10.5 82.45±14.1 5e-04 4 adam
4 7 83.93 71.85±16.4 81.19±17.3 85.88±9.5 82.40±12.8 5e-03 2 rmsprop
5 1 83.66 71.48±17.3 78.91±18.2 88.55±10.0 82.00±13.7 5e-03 2 rmsprop

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS USING 5-FOLD CROSS-VALIDATION

Method IOU Precision Recall F1-Score ROC-AUC

Crack-Seu
Mean 70.03 85.67 79.18 80.92 99.58
STD 2.51 3.18 4.48 1.98 0.06
CI 66.55 - 73.51 81.26 - 90.08 72.96 - 85.40 78.17 - 83.67 99.50 - 99.66

CrackSeg
Mean 64.11 78.60 78.43 75.92 99.05
STD 8.77 12.80 5.17 7.37 0.63
CI 51.94 - 76.28 60.84 - 96.37 71.25 - 85.60 65.68 - 86.15 98.17 - 99.92

Trans-Unet
Mean 66.43 81.95 79.03 78.08 99.43
STD 4.24 8.47 9.04 3.11 0.12
CI 60.54 - 72.32 70.19 - 93.70 66.48 - 91.58 73.75 - 82.40 99.25 - 99.60

Proposed Method
Mean 71.47 81.79 83.96 81.91 99.37
STD 2.84 2.40 2.46 2.40 0.19
CI 67.52 - 75.41 78.46 - 85.13 80.55 - 87.38 78.58 - 85.25 99.11 - 99.63

Note: All results are obtained using 5-fold cross-validation. Mean values, standard deviations (STD), and 95% confidence
intervals (CI) are reported across all folds.

Precision of 0.89, and Recall of 0.91. The high recall value
demonstrates the method’s capability to detect more actual
crack regions, while maintaining good precision indicates min-
imal false positives. Although CrackSeu achieves the highest
precision (0.96), its lower recall (0.83) results in a lower
overall F1-Score of 0.89. Trans-U-Net demonstrates balanced
performance with an F1-Score of 0.87, but still falls behind the
proposed method. These results validate the effectiveness of
the proposed approach for concrete crack segmentation tasks,
particularly in achieving superior balance between precision
and recall metrics.

C. Hyperparameter Optimization Insights

Table II shows Trial 9 as the optimal configuration with
85.59% validation Dice and 73.14±17.8% Test IoU, using
Adam optimizer with learning rate 5e-04 and batch size 4.

The top three trials all employ Adam with batch size 4 and
learning rates between 5e-04 and 1e-03, consistently achieving
Test IoU above 72%. This pattern indicates that Adam with
moderate batch sizes provides superior convergence for crack
segmentation tasks.

RMSprop appears in the bottom two configurations (Trials
7 and 1) with smaller batch sizes (2) and higher learning rates
(5e-03), generally underperforming Adam by approximately
1-2 percentage points in Test IoU. The precision-recall trade-
off is evident across configurations, with Trial 1 achiev-
ing the highest recall (88.55±10.0%) but lower precision
(78.91±18.2%), while Trial 9 demonstrates better balance.
Learning rate 5e-04 emerges as the most effective, appearing in
two of the top three configurations and consistently delivering
robust performance with lower variance.



D. Comparative Performance and Cross-Validation Analysis

Table III presents a comparative analysis of four segmen-
tation architectures evaluated under a 5-fold cross-validation
protocol. The proposed method exhibits the most consistent
and superior performance across all key metrics, confirming
its robustness and generalization ability in crack segmentation
tasks. Specifically, it achieves the highest mean IoU of 71.47%
and F1-Score of 81.91%, with narrow confidence intervals (CI
= 67.52–75.41 for IoU), indicating reduced variability and
stable performance across validation folds. This consistency
underscores the model’s capacity to maintain segmentation
accuracy despite variations in the data distribution.

In comparison, the Crack-SeU model records relatively high
precision (85.67%) but lower recall (79.18%), suggesting that
it tends to identify crack pixels accurately while occasionally
missing fine or discontinuous crack regions. The CrackSeg
model exhibits the lowest average IoU (64.11%) and the
largest standard deviation (STD = 8.77), reflecting high sensi-
tivity to data heterogeneity and limited robustness. Meanwhile,
Trans-UNet, which integrates convolutional and transformer-
based encoding, shows balanced yet moderate results (IoU =
66.43%, F1 = 78.08%), but its relatively large variation in
recall (STD = 9.04) indicates potential overfitting to local
textures or feature distributions.

Overall, the proposed approach demonstrates a well-
balanced trade-off between precision (81.79%) and recall
(83.96%), as reflected in its high F1-Score and ROC-AUC
(99.37%). This indicates that the model effectively discrimi-
nates between crack and non-crack regions while maintaining
structural continuity in segmentation outputs. The quantitative
evidence thus substantiates that the proposed deep learning
framework achieves both accuracy and reliability, making it
a viable candidate for deployment in real-world Structural
Health Monitoring (SHM) systems focused on automated
crack detection.

VI. CONCLUSION

This study introduces a RCA U-Net architecture with dy-
namic loss weighting for automated crack segmentation in
concrete structures. The proposed model achieves an average
IoU of 71.47%, F1-score of 81.91%, and ROC-AUC of
99.37% through 5-fold cross-validation, with narrow confi-
dence intervals indicating robust generalization. The integra-
tion of SE attention, CBAM modules, and ASPP bottleneck
enables effective multi-scale feature extraction and precise
localization of discontinuous crack patterns. Comparative anal-
ysis demonstrates consistent superiority over baseline methods
with reduced performance variance. These results establish the
proposed framework as a reliable solution for automated Struc-
tural Health Monitoring applications in concrete infrastructure
assessment.
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