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Abstract—With the advent of the Industry 4.0, the proliferation
of IoT devices and artificial intelligence (AI) has accelerated the
adoption of smart technologies in industrial safety, including
accident detection and proactive risk management. However,
conventional camera-based collision management systems suffer
from blind-spot issues and high computational demands, which
limit their practicality and result in high latency, making real-
time operation difficult. In addition, sensor-based systems are
constrained by limited positioning accuracy, often leading to
reduced reliability and the generation of unnecessary alerts. To
address these limitations, we propose the Intelligent Industrial
Safety System (IISS), a ultra-wideband (UWB) and AI based
feedback framework designed for proactive collision prevention.
The IISS is consist of three subsystems: an indoor localization
subsystem utilizing UWB anchors and tags for accurate posi-
tioning, a collision prediction subsystem employing an AI-based
trajectory prediction, and a user feedback subsystem that delivers
multimodal alerts through wearable devices. In this study, we
designed and presented a proof-of-concept implementation of
a IISS capable of predicting collision arising in blind-spot
scenarios. In addition, tests were conducted in a worksite based
on the proposed system. The results indicated that the system
can predict potential collision scenarios and provide workers
with intuitive feedback through vibration, auditory alerts, and
context-aware text messages.

Index Terms—Collision Prevention, Safety, Real-time Location
System, Ultra-wideband

I. INTRODUCTION

The rapid development of IoT devices has improved con-
venience across various domains, including industrial safety.
Particularly in worksites, IoT devices are increasingly applied
for real-time monitoring, accident detection, and proactive ac-
cident prevention. With the integration of Industrial IoT (IIoT),
various sensors and wearable devices have been deployed.
They enable worker localization, environmental monitoring
(e.g., gas concentration and temperature), and supervision of
heavy equipment. Such functions are directly related to en-
hancing safety, demonstrating the potential of IIoT to provide

∗Corresponding author: Taein Yong (taeinyong@doublt.com)

continuous and real-time situational awareness. Despite these
advantages, most existing approaches remain reactive, focus-
ing on detection rather than proactive prediction. In particular,
among different types of accidents, collisions between workers
and heavy equipment are reported as one of the most frequent
and severe causes of injuries [1], [2], highlighting the urgent
need for proactive collision prevention systems.

Currently, AI-based collision management systems com-
monly rely on cameras [3]–[6] and positioning sensors [7]–
[9]. However, camera-based approaches suffer from critical
limitations. Blind spots prevent reliable collision detection in
certain areas [10], [11]. In addition, the use of images or
videos as model inputs significantly increases the computa-
tional complexity of AI models [12]. This complexity reduces
the real-time responsiveness that is essential for ensuring
worksite safety, while also requiring high-performance server
infrastructure for system operation. Moreover, sensor-based
approaches such as Wi-Fi [13], Bluetooth beacons [14] and
RFID [15] face inherent limitations due to restricted posi-
tioning accuracy, making it difficult to fully capture workers’
intentions or movement patterns. As a result, these approaches
struggle to provide precise predictions of potential collision
scenarios. Furthermore, existing UWB Real-Time Location
System (RTLS) collision prediction systems [16], [17] do
not take into account the movement direction of objects and
instead generate alarms solely based on predefined distance
thresholds. However, such an approach may trigger unneces-
sary alerts regardless of the actual collision probability, which
can undermine both efficiency and reliability in industrial work
environments. This limitation highlights the urgent need for a
more reliable and proactive collision prevention system.

To address these limitations, we propose a multi-modal,
prediction-aware collision prevention framework for industrial
environments, termed the Intelligent Industrial Safety Sys-
tem (IISS). Unlike existing reactive [17]–[19] or distance-
threshold-based [20], [21] approaches, the proposed frame-



Fig. 1: Concept of Intelligent Industrial Safety System

work proactively estimates collision risk by integrating UWB-
based positioning, learning-based trajectory prediction, and
adaptive multi-modal feedback delivery. As illustrated in
Fig. 1, the IISS is composed of three subsystems. The indoor
location subsystem employs a localization engine to estimate
the positions of workers and mobile equipment. The collision
prediction subsystem utilizes an AI-based trajectory prediction
model to forecast potential collisions based on predicted mo-
tion trends. Upon identifying collision risks, the user feedback
subsystem delivers timely alerts through wearable devices in
the form of text, auditory, and haptic notifications. To validate
the effectiveness and practicality of the proposed framework,
we implemented a proof-of-concept system and conducted
evaluations in an actual worksite environment

The rest of the paper is organized as follows: Section II
presents the architecture and subsystems of the proposed IISS,
Section III covers the experimental setup and the proof-of-
concept implementation, followed by a discussion of different
aspects of the system. Lastly, Section IV provides the conclu-
sion and discusses future work.

II. SYSTEM ARCHITECTURE OF IISS

In this section, we describe the architecture and design of
the Intelligent Industrial Safety System (IISS), a feedback
system developed for proactive collision prevention. As il-
lustrated in Fig. 1, the overall system structure comprises
three subsystems: (1) The indoor location subsystem, (2) the
collision prediction subsystem, and (3) the user feedback
subsystem. The detailed data pipeline is depicted in Fig. 2.
The pipeline begins with the location stream generated from
the UWB RTLS, which is transmitted to Kafka for event-
driven data handling. The stream is subsequently processed by
Flink, which incorporates deep learning models for trajectory
prediction. The processed results are then delivered to the user
feedback subsystem, enabling real-time monitoring and alert-
ing. The following subsections provide detailed descriptions
of each subsystem.

A. Indoor location subsystem

Various indoor localization technologies such as Wi-Fi [22],
[23], Bluetooth beacons [24], and UWB [25], [26] have been
explored in industrial environments. However, Wi-Fi, Blue-
tooth beacons, and RFID systems often suffer from limited
accuracy. Therefore, our system adopts UWB, which offers

superior positioning accuracy and robustness in industrial
environments. The indoor location subsystem employs UWB
anchors and tags to provide accurate real-time positioning of
workers and mobile equipment. Distances between a mobile
tag and fixed anchors are estimated using Two-Way Ranging
(TWR). This method refines the basic Time-of-Flight (ToF)
measurement by eliminating clock synchronization errors be-
tween devices. Accordingly, the distance d is calculated as
shown in Eq. (1).

d =
c · (Tround − Treply)

2
, (1)

where c is the speed of light, Tround is the measured round-
trip time between the tag and anchor, and Treply is the known
response delay at the anchor.
With the distances di to at least three anchors at known
positions (xi, yi), the tag’s position (x, y) can be estimated
using trilateration, defined by Eq. (2).

(x− xi)
2 + (y − yi)

2 = d2i , i = 1, 2, 3, ... (2)

where, (x, y) denotes the estimated position of the tag, (xi, yi)
are the known coordinates of the anchors, and di is the distance
between the tag and anchor i, calculated by Eq. (1).

Once the positions are estimated, these data must be reliably
streamed for subsequent processing. To achieve this, the UWB
location data are transmitted in real time to Kafka, which
serves as the streaming middleware. Kafka buffers the incom-
ing streams and reliably delivers them to the following mod-
ules, where trajectory prediction and collision risk assessment
are performed. This ensures that the estimated positions can be
seamlessly integrated into the subsequent collision prediction
process, forming a coherent pipeline from localization to risk
analysis.

B. Collision prediction subsystem

The collision prediction subsystem is designed to forecast
future trajectories and identify potential collision risks in real
time. As illustrated in Fig. 2, UWB RTLS data are processed

Fig. 2: Data Pipeline of IISS



through a Kafka–Flink streaming pipeline. The location data
are first published to Kafka. Flink then performs three se-
quential operations: noise reduction, trajectory prediction, and
collision risk assessment. In the first stage, a Kalman filter
is applied to remove noise and enhance positional accuracy.
Next, an LSTM model [27] predicts the future trajectories of
workers and mobile equipment. Finally, Flink computes the
minimum distance between predicted trajectories and gener-
ates a collision prediction alert event, which is transmitted to
the user feedback subsystem through Kafka for multimodal
notification delivery.

C. User feedback subsystem

The user feedback subsystem provides both real-time moni-
toring and multimodal alerting functionalities. Real-time mon-
itoring is enabled through a safety management dashboard,
which visualizes high-risk areas using heatmaps based on the
frequency of predicted collisions. In addition, the dashboard
continuously tracks the trajectories of workers and mobile
equipment. This allows site managers to intuitively identify
hazardous zones and implement proactive countermeasures.

Alerting is delivered directly to workers via wearable de-
vices. Depending on the severity of the detected risk, alerts
are provided in the form of text messages, haptic feedback,
or auditory alarms. Moreover, our system’s text notifications
explicitly provide the direction and relative position of ap-
proaching mobile equipment.

This additional contextual information enables workers to
more accurately perceive the risk and take precise, timely
evasive actions. By combining multimodal alerts with context-
aware feedback, the subsystem significantly enhances the
effectiveness of collision prevention. This design also ensures
immediacy and clarity in risk communication.

III. EXPERIMENTS

In this section, we implement a proof-of-concept of the
proposed IISS to verify its stability and effectiveness in a
worksite. Fig. 3 illustrates the experimental scenario designed
for collision prevention. The experimental setting includes
racks, an office, and containers, with UWB anchors deployed
to support reliable position estimation. In this environment,
workers equipped with wearable devices and mobile equip-
ment fitted with UWB tags moved along predefined routes that
often intersect, thereby simulating collision-prone situations
such as blind spots.

A. Experiments Setup

The experiments were conducted in the environment il-
lustrated in Fig. 4. The mobile equipment was configured
to operate at a speed of 2.0,m/s, while the worker moved
at a walking speed of 1.5,m/s. We installed four UWB
anchors at a height of 4.5 m within an area of 9,m × 14,m
to ensure accurate and stable position estimation. To reflect
realistic worksite conditions, eight frequently used routes were
selected, and approximately ten minutes of trajectory data were
collected under this setup. The collected trajectory data were

Fig. 3: Experimental scenario for collision prevention (bird’s-
eye view)

Fig. 4: Experimental setup for IISS operation, showing the
UWB anchor, UWB tag, office, and mobile equipment (fork-
lift). The driver’s line of sight is occluded by the office,
creating a blind-spot scenario.

then used to train the LSTM model [27], which serves as the
trajectory prediction module in the proposed IISS.

B. Results

The proof-of-concept results of the IISS in the configured
scenario are presented in Fig. 5. Fig. 5(a) illustrates a scene in
which the forklift and worker move forward. In this situation,
the driver’s line of sight is blocked by the office structure,
preventing direct recognition of the worker. Likewise, the
worker is unable to visually detect the approaching forklift.
Fig. 5(b) shows the wearable device receiving the collision
prediction alert. The display indicates the predicted collision
direction (Right) and distance (4.5 m). In addition, both haptic
feedback and auditory alarms are simultaneously activated.
Fig. 5(c) depicts the predicted trajectories of the forklift and
the worker under potential collision conditions.



Fig. 5: Experimental results of the proposed IISS. (a) Scene
showing the forklift and worker moving forward. (b) Wearable
device displaying a warning message triggered by collision
prediction. (c) Trajectories of the forklift (orange) and worker
(blue) (dashed lines indicate predicted trajectories, solid lines
represent the previously traveled paths)

Real-time responsiveness is essential for collision prediction
alerts to be effective in practice. To evaluate this aspect, the
entire process was divided into three subprocesses: position
estimation, stream processing pipeline, and user feedback acti-
vation. The processing time for each subprocess is summarized
in Fig. 6, with position estimation requiring approximately
20 ms, stream processing pipeline about 31.5 ms, and user
feedback activation around 27.4 ms. For a comprehensive
understanding of the system, the end-to-end process completes
in approximately 56.4 ms. This latency allows the system to
generate up to 17 alerts per second when necessary.

Fig. 7 illustrates a heatmap generated by the real-time
monitoring dashboard of the proposed IISS. The heatmap
shows areas with a high frequency of predicted collision
events, where red regions indicate higher risk levels compared
to green and blue regions. These results confirm that collision-
prone zones can be visually identified within the worksite.
Furthermore, frequent collision locations can serve as objective
indicators for preventive measures and the designation of
hazardous areas. Leveraging such information allows site man-
agers to intuitively recognize high-risk regions and implement
proactive safety measures, thereby enhancing the overall level
of worksite safety management.

C. Discussion

The proof-of-concept experimental results demonstrate the
potential of the proposed IISS in addressing key limitations
of conventional collision prevention systems. The system
completes the entire process within approximately 56.4 ms,
enabling the generation of up to 17 alerts per second and

Fig. 6: Processing time for each process

Fig. 7: Predicted collision heatmap generated by the real-time
monitoring dashboard.

thereby ensuring that workers can respond in a timely manner
to potential collision risks. Moreover, the trajectory-based ap-
proach effectively reduces false alarms and missed detections
compared to simple distance-threshold methods, improving
both reliability and usability while mitigating worker fatigue
caused by unnecessary warnings. In addition, the use of
UWB-based localization allows the system to overcome blind-
spot issues and, combined with directional notifications and
multimodal alerts, significantly enhances situational awareness
and worker safety in industrial environments.

Despite these results, several limitations remain. The ex-
periments were conducted within a confined 9m× 14m area.
Therefore, further investigation is needed to account for the
complexity of large-scale worksites. In addition, further valida-
tion is required under multipath interference and complex in-
door environments to ensure robustness. Moreover, the current



evaluation focused on simplified movement patterns. To better
reflect real-world conditions, additional data collection and
model training are necessary to capture the diverse behaviors
of workers in actual industrial environments.

IV. CONCLUSION

This study proposed the IISS to prevent collisions between
workers and mobile equipment in industrial environments.
The proposed system integrates UWB-based localization with
an AI-driven trajectory prediction model to proactively as-
sess potential collision risks and deliver timely feedback to
workers. Specifically, it provides directional and distance-
based text notifications, supplemented with haptic and audi-
tory alerts, enabling intuitive and immediate responses. The
proof-of-concept implementation demonstrated that the end-
to-end process can be completed within 56.4 ms, allowing
the system to generate up to 17 alerts per second when
necessary. Furthermore, site managers can utilize the real-time
monitoring dashboard, which generates heatmaps of predicted
collision-prone areas, as a valuable tool for preventive safety
management.

For future work, we plan to extend the system beyond
position data by incorporating dynamically changing environ-
mental factors to provide more context-aware feedback. In
addition, we will expand the experimental scope by deploying
a larger number of UWB anchors in large-scale industrial sites
to further validate the scalability and robustness of the system.
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