Improving Flick Input Accuracy via Personalized
Region Classification

Tomoya Kikuchi
Department of Information and
Communications Engineering
Kogakuin University
Tokyo, Japan
J022112@g.kogakuin.jp

Takeshi Kamiyama
School of Information and Data
Sciences, Nagasaki University
Nagasaki, Japan
kami@nagasaki-u.ac.jp

Abstract—Flick input is widely used for text entry on
smartphones, especially for Japanese characters; however,
current systems assume fixed keyboard region boundaries, which
may not fully reflect actual user behavior. In this paper, through
analysis of practical flick-input coordinate data, we show that
input errors occur mainly in the specified regions in the first
consonant-selection step, and that the optimal boundaries of
consonant regions depend on users. Based on these observations,
we propose an individualized character-inference method that
constructs personalized Support Vector Machine (SVM) models to
adaptively correct these boundaries. The method performs
consonant inference using two-class SVMs to distinguish
neighboring regions, followed by vowel inference using
personalized five-class SVM models. We evaluated the proposed
method using flick-input data from four subjects. Experimental
results demonstrate that the average incorrect-inference rate
decreased from 2.12% to 0.38%, i.e., reduced to about one-fifth (=
82% reduction). These findings indicate that incorporating
individual characteristics is effective for improving character
inference in flick-input.
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I. INTRODUCTION

Flick input is a commonly used text entry method on
smartphones, especially widely used for entering Japanese
characters. As with other input methods, the character the user
intends to enter sometimes differs from the character recognized
by the system, which can degrade the user experience.

In flick input, the region allocated to each character is
displayed in a systematic manner. We hypothesize that these
fixed boundaries are not necessarily optimal and, crucially, that
the optimal regions are user-dependent. We assume that, by
considering these individual differences, the user’s intended
input can be inferred more accurately.

In this paper, we first analyze practical flick-input coordinate
data to confirm that errors are primarily due to consonant-region
boundary issues. Based on this finding, we then propose an
individualized character-inference method utilizing
personalized Support Vector Machine (SVM) models to adjust
these boundaries. We demonstrate the effectiveness of our
proposed method through performance evaluation.
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The situations where the character the user intended to input
differs from the character recognized by the system are not
referred to as “incorrect input by the user” but we refer to them
as “incorrect inference by the system.”

II. RELATED WORK

A. Flick Input

Flick input is a widely used method for text input on
smartphones, particularly for Japanese characters. It efficiently
leverages the consonant-vowel structure of Japanese, allowing
all 50 characters to be entered using a limited number of keys
[1]. Users swipe within designated regions on the screen to
specify the character they intend to input. The operation consists
of two steps. the first step and the second step, as illustrated in
Fig. 1. The screen displays 12 regions, and the consonant of the
character to be entered is determined by the region where the
user begins the swipe-this is the first step. Consonants are
assigned in Japanese order (no-consonants, k, s, t, ...), arranged
from the top left, moving rightward and then downward. We
define these as Region 0 to Region 11, following this order.
Next, the vowel is determined by the direction of the swipe-this
is the second step. The vowels a, i, u, e, and o, correspond to no
swipe, left swipe, up swipe, right swipe, and down swipe,
respectively.

In the example in Fig. 1, the swipe starts from Region 1,
which corresponds to the consonant &, and moves upward, which
corresponds to the vowel u. Then the system recognizes the
input as “ku.”

B. Improving Input Accuracy

Shida et al. [2] noted that, in smartphone touch-based text
input, device size limitations and insufficient visual feedback
on finger movements can cause input errors. They also found
that errors usually occur near the intended key, and it is rare for
the system to detect a key more than two regions away. Based
on this, they proposed a probabilistic correction method using
a 3x3 mask, where the probability of the detected key being the
intended one is 50%, and each surrounding key is 6.25%.
Corrections are made using estimates from continuous flick
operations and contextual information, following a Bayesian
filter approach. However, their method does not personalize
spatial decision boundaries based on individual users' touch-
coordinate distributions. In contrast, our method learns per-user
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decision boundaries from past flick coordinates using SVM,
enabling user-specific inference.

Gboard [3] provides correction features that suggest
alternative words when user input may contain errors; these
suggestions are drawn from dictionaries. However, its flick
input mechanisms rely primarily on linguistic context (e.g.,
dictionary information) and do not directly adapt spatial region
boundaries using raw swipe coordinates. Our approach
complements such lexical correction by directly modeling
users' coordinate deviations and adjusting region-level
classification accordingly.

Sivek et al. [4] studied touchscreen keyboards for
smartphones and analyzed practical touch coordinates. They
found that most users rarely touch the physical center of a key
on the screen. Based on their findings, they presented a
personalized Gaussian spatial model that adapts key-center

offsets to individual users, demonstrating modest gains in
typing metrics on Gboard. Their focus, however, remains at the
level of probabilistic spatial scoring of QWERTY taps rather
than supervised region-level reclassification for flick gestures.
Unlike that work, our method uses supervised SVM classifiers
to directly decide between neighboring consonant regions for
flick input, specifically targeting the two-step (consonant then
vowel) flick process and its boundary-related errors.

ITII. ANALYZING PRACTICAL USER FLICK INPUT
COORDINATES

In this section, we present the practical flick input
coordinates of users and discuss both general tendencies across
users and individual characteristics.

We asked four subjects to input 40 characters using flick
input. Hereafter, we refer to them as Subjects 1—4. The character
set consisted of Japanese hiragana characters and symbols.
Characters were input using our flick input application that we
developed for this study. As shown in Fig. 1, this application
displays twelve regions corresponding to consonants, similar to
Gboard. In our experimental device Pixel 3a, the screen
resolution is 2220 x 1080 pixels, and each region measures
187.25 pixels in height and 214 pixels in width. The threshold
for distinguishing between swipe and tap input is set at 44 pixels.
These parameters are identical to those used in Gboard on the
Pixel 3a.

Subject 1 placed the smartphone on a desk and input
characters with their index finger. Subject 2 held the smartphone
in their hand and input with their right thumb. Subject 3 held the
smartphone with both hands and input with their right thumb.
Subject 4 held the smartphone with both hands and input with
both thumbs.

The data labeled with "Original Method" in Fig. 2 show the
ratios of inaccurate inference of input characters by the flick
input system of each consonant in the first step. Note that the
error rates in the second step were 0 for all vowels. Those in Fig.
3 depict the error rates of each user. “S. 1” to “S. 4” stand for
“Subject I” to “Subject 4.”

Figs. 4 to 7 show the touch coordinates on the screen when
each subject entered the characters in the a row. For a row input,
users must not perform a long swipe (i.e., the starting and ending
touch coordinates should be close). Thus most flick trajectories
appear nearly as single points. Each line, which looks like a dot,
represents one input sample.

First, we examine general trends across users. From the
figures, it can be observed that errors occur in the first step
(consonant inference). Furthermore, the probability of incorrect
inference depends on the regions. Specifically, the error rate is
higher in region 10 for w and region 11 for symbols,
approximately 10%.

Second, we discuss individual user trends. Subject 2 tended
to have more incorrect inferences near the boundary between the
top regions (regions 0, 1, and 2) and second top regions (regions
3, 4, and 5), especially between regions 2 and 5. These results
suggest that while some error locations are common across
users, others differ. Therefore, learning input coordinates and



@ e ..
ool U X d
o 0¥ "o
%i. N 5
[ ]y =
el ‘o0
y e [ ° o
®
Y ® b
‘ot e o

Fig. 4. Input coordinates for a column (Subject 1)

Fig. 5. Input coordinates for @ column (Subject 2)

adjusting boundary taking individual differences into account
are expected to be effective.

IV.  PROPOSED METHOD

In this section, we propose to adjust the boundaries between
regions based on each user's input coordinates collected in the
past. Our method consists of two stages. two-class inference for
consonant regions in the first step and five-class inference for
vowels in the second step. We use SVM to determine the
boundaries that distinguish regions. We define the coordinate of
the start of the swipe as (x0, y0) and that of the end of the swipe
as (x1, yl). For the first step, this method creates a model for
two class classification for all pairs of neighboring regions. The
explanatory variable is (x0, y0). The response variable is the
region that the user intends to input. For the second step, the
method creates a model for five-class classification. Model is
constructed for each region because we assume that the
difficulty of swiping depends on regions. The explanatory
variable is (x0, y0, x1-x0, y1-y0). The response variable is the
vowel that the user intends to input.

In the inference phase, the method infers the character that a
user intends to input from a set of coordinates (x0, y0, x1-x0,
y1-y0). For the first step, the method chooses the two nearest
regions from the start point (x0, y0) as the candidates. Namely,
the first region is the region that contains (x0, y0). The other is
the nearest region other than the first candidate. The method then
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Fig. 6. Input coordinates for a column (Subject 3)
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Fig. 7. Input coordinates for a column (Subject 4)

performs two-class classification between the two candidates
with SVM and determines the consonant. For the second step,
the method performs five-class classification with SVM based
on (x0, y0, x1—x0, yl1—y0) and determines the vowel.

V. EVALUATION

In this section, we evaluate the performance of the proposed
method. For the performance evaluation, we use the input data
from the four participants described in Section 3. Subject I’s
dataset contains 42 sets of inputs. 34 sets and 8 sets were used
for training and testing, respectively. Subject 2's dataset contains
551 sets; 501 and 50 were used for training and testing,
respectively. In the Subject 3's dataset, 32 and 8 sets are used,
and in the Subject 4's dataset, 200 and 50 sets are used for
training and testing, respectively. We note that the data size
differs substantially among subjects, which may influence the
per-subject performance. In the experiments, we target only
inputting hiragana and do not consider kanji conversion.

The data labeled with “Proposed Method” in Fig. 2 and 3
depict the ratios of incorrect inference by regions and by users,
respectively. The ratios of incorrect inference in all user and all
regions with the original and proposed methods are 3.09% and
0.87%, respectively. These results show that the proposed
method reduces the ratio of incorrect inference largely. The
results in Fig. 2 demonstrate that the proposed method increases
the accuracy especially in regions with high incorrect ratios such
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Fig 8. Adjusted boundary (Subject 1)

Fig9. Adjusted boundary (Subject 2)

asregions 10 and 11. For reference, the incorrect inference ratios
of each region for each subject are presented in the Appendix.

Figs. 8 - 11 show the adjusted boundary of the proposed
method. For example, it can be observed that the boundary
between the region 8 and 11 is moved up in all the subjects and
this causes increase in the accuracy.

VI. DISCUSSION

Our results indicate that the input characteristics depends on
the individual user, but it may depend also on the device and on
the how the device is held. For example, if the screen size
becomes larger, swiping leftward or upward from Region 0, the
Top-left region, using the right thumb will become more
difficult and the input coordinates will be unstable. Therefore,
we expect that the model should be constructed for each device
and each holding way. Evaluating different devices and holding
styles, and building models specific to each leave as future work.

In the cases of Subjects 2 and 4, where the amount of training
data was large, a lower error rate was achieved. In contrast, in
the case of Subject 3, where the amount of training data was
smaller, the error rate was slightly higher. Therefore, we expect
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Fig 10. Adjusted boundary (Subject 3)

Fig 11. Adjusted boundary (Subject 4)

that collecting additional data for Subject 3 would also lead to a
lower error rate.

In this work, subjects were asked to input random character
sequences, resulting in relatively low input speed. If users were
asked to enter sentences they already know, the input speed
would be higher, the deviation of swipe positions would increase.
Consequently, the error rate would likely increase. In such cases,
the effectiveness of the proposed method would also be expected
to increase. Additionally, considering the dependencies on
preceding character and on succeeding character for inference
could further reduce the error rate.

VII. CONCLUSION

In this paper, we focused on incorrect inference of input
character in smartphone flick input and analyzed practical swipe
coordinate data from users. The analysis revealed that incorrect
inference occurred mainly in the first step (consonant selection).
Specifically, in the cases of our experiments, all incorrect
inference occurred in this first step. Furthermore, we found that
the regional boundaries defined by the system did not
completely match with the effective boundaries reflected in
users’ touch coordinates. To address this issue, we proposed a
method that uses an SVM to infer the character intended by the
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user based on touch coordinates. The proposed method builds a
prediction model for each user, thereby taking user-specific
input characteristics into consideration. We evaluated the
estimation accuracy of the proposed method using practical flick
input coordinates from users. As a result, the average error rate
from 3.09% to 0.87%. These results demonstrate the
effectiveness of personalized boundary estimation. Our method
requires only past flick coordinates and no language model or
dictionary, making it lightweight and easy to deploy.

For future work, we plan to evaluate the method using
different devices, conduct experiments with more users,
investigate the construction of a generalized model applicable to
multiple users, and evaluate performance using non-random
character sequences.
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APPENDIX

Fig. 12 shows the error of each consonant of each user.



