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Abstract—Flick input is widely used for text entry on 

smartphones, especially for Japanese characters; however, 

current systems assume fixed keyboard region boundaries, which 

may not fully reflect actual user behavior. In this paper, through 

analysis of practical flick-input coordinate data, we show that 

input errors occur mainly in the specified regions in the first 

consonant-selection step, and that the optimal boundaries of 

consonant regions depend on users. Based on these observations, 

we propose an individualized character-inference method that 

constructs personalized Support Vector Machine (SVM) models to 

adaptively correct these boundaries. The method performs 

consonant inference using two-class SVMs to distinguish 

neighboring regions, followed by vowel inference using 

personalized five-class SVM models. We evaluated the proposed 

method using flick-input data from four subjects. Experimental 

results demonstrate that the average incorrect-inference rate 

decreased from 2.12% to 0.38%, i.e., reduced to about one-fifth (≈
82% reduction). These findings indicate that incorporating 

individual characteristics is effective for improving character 

inference in flick-input.  

Keywords—Flick Input, SVM, Support Vector Machine, 

Android, Smartphones, Touch screens, User models 

I. INTRODUCTION 

Flick input is a commonly used text entry method on 
smartphones, especially widely used for entering Japanese 
characters. As with other input methods, the character the user 
intends to enter sometimes differs from the character recognized 
by the system, which can degrade the user experience. 

In flick input, the region allocated to each character is 
displayed in a systematic manner. We hypothesize that these 
fixed boundaries are not necessarily optimal and, crucially, that 
the optimal regions are user-dependent. We assume that, by 
considering these individual differences, the user’s intended 
input can be inferred more accurately. 

In this paper, we first analyze practical flick-input coordinate 
data to confirm that errors are primarily due to consonant-region 
boundary issues. Based on this finding, we then propose an 
individualized character-inference method utilizing 
personalized Support Vector Machine (SVM) models to adjust 
these boundaries. We demonstrate the effectiveness of our 
proposed method through performance evaluation. 

The situations where the character the user intended to input 
differs from the character recognized by the system are not 
referred to as “incorrect input by the user” but we refer to them 
as “incorrect inference by the system.” 

II. RELATED WORK 

A. Flick Input 

Flick input is a widely used method for text input on 
smartphones, particularly for Japanese characters. It efficiently 
leverages the consonant-vowel structure of Japanese, allowing 
all 50 characters to be entered using a limited number of keys 
[1]. Users swipe within designated regions on the screen to 
specify the character they intend to input. The operation consists 
of two steps. the first step and the second step, as illustrated in 
Fig. 1. The screen displays 12 regions, and the consonant of the 
character to be entered is determined by the region where the 
user begins the swipe-this is the first step. Consonants are 
assigned in Japanese order (no-consonants, k, s, t, …), arranged 
from the top left, moving rightward and then downward. We 
define these as Region 0 to Region 11, following this order. 
Next, the vowel is determined by the direction of the swipe-this 
is the second step. The vowels a, i, u, e, and o, correspond to no 
swipe, left swipe, up swipe, right swipe, and down swipe, 
respectively. 

In the example in Fig. 1, the swipe starts from Region 1, 
which corresponds to the consonant k, and moves upward, which 
corresponds to the vowel u. Then the system recognizes the 
input as “ku.” 

B. Improving Input Accuracy 

Shida et al. [2] noted that, in smartphone touch-based text 
input, device size limitations and insufficient visual feedback 
on finger movements can cause input errors. They also found 
that errors usually occur near the intended key, and it is rare for 
the system to detect a key more than two regions away. Based 
on this, they proposed a probabilistic correction method using 
a 3×3 mask, where the probability of the detected key being the 
intended one is 50%, and each surrounding key is 6.25%. 
Corrections are made using estimates from continuous flick 
operations and contextual information, following a Bayesian 
filter approach. However, their method does not personalize 
spatial decision boundaries based on individual users' touch-
coordinate distributions. In contrast, our method learns per-user 
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decision boundaries from past flick coordinates using SVM, 
enabling user-specific inference.  

Gboard [3] provides correction features that suggest 
alternative words when user input may contain errors; these 
suggestions are drawn from dictionaries. However, its flick 
input mechanisms rely primarily on linguistic context (e.g., 
dictionary information) and do not directly adapt spatial region 
boundaries using raw swipe coordinates. Our approach 
complements such lexical correction by directly modeling 
users' coordinate deviations and adjusting region-level 
classification accordingly.  

Sivek et al. [4] studied touchscreen keyboards for 
smartphones and analyzed practical touch coordinates. They 
found that most users rarely touch the physical center of a key 
on the screen. Based on their findings, they presented a 
personalized Gaussian spatial model that adapts key-center 

offsets to individual users, demonstrating modest gains in 
typing metrics on Gboard. Their focus, however, remains at the 
level of probabilistic spatial scoring of QWERTY taps rather 
than supervised region-level reclassification for flick gestures. 
Unlike that work, our method uses supervised SVM classifiers 
to directly decide between neighboring consonant regions for 
flick input, specifically targeting the two-step (consonant then 
vowel) flick process and its boundary-related errors. 

III. ANALYZING PRACTICAL USER FLICK INPUT 

COORDINATES 

In this section, we present the practical flick input 
coordinates of users and discuss both general tendencies across 
users and individual characteristics.  

We asked four subjects to input 40 characters using flick 
input. Hereafter, we refer to them as Subjects 1–4. The character 
set consisted of Japanese hiragana characters and symbols. 
Characters were input using our flick input application that we 
developed for this study. As shown in Fig. 1, this application 
displays twelve regions corresponding to consonants, similar to 
Gboard. In our experimental device Pixel 3a, the screen 
resolution is 2220 × 1080 pixels, and each region measures 
187.25 pixels in height and 214 pixels in width. The threshold 
for distinguishing between swipe and tap input is set at 44 pixels. 
These parameters are identical to those used in Gboard on the 
Pixel 3a.  

Subject 1 placed the smartphone on a desk and input 
characters with their index finger. Subject 2 held the smartphone 
in their hand and input with their right thumb. Subject 3 held the 
smartphone with both hands and input with their right thumb. 
Subject 4 held the smartphone with both hands and input with 
both thumbs. 

The data labeled with "Original Method" in Fig. 2 show the 
ratios of inaccurate inference of input characters by the flick 
input system of each consonant in the first step. Note that the 
error rates in the second step were 0 for all vowels. Those in Fig. 
3 depict the error rates of each user. “S. 1” to “S. 4” stand for 
“Subject 1” to “Subject 4.” 

Figs. 4 to 7 show the touch coordinates on the screen when 
each subject entered the characters in the a row. For a row input, 
users must not perform a long swipe (i.e., the starting and ending 
touch coordinates should be close). Thus most flick trajectories 
appear nearly as single points. Each line, which looks like a dot, 
represents one input sample. 

First, we examine general trends across users. From the 
figures, it can be observed that errors occur in the first step 
(consonant inference). Furthermore, the probability of incorrect 
inference depends on the regions. Specifically, the error rate is 
higher in region 10 for w and region 11 for symbols, 
approximately 10%.  

Second, we discuss individual user trends. Subject 2 tended 
to have more incorrect inferences near the boundary between the 
top regions (regions 0, 1, and 2) and second top regions (regions 
3, 4, and 5), especially between regions 2 and 5. These results 
suggest that while some error locations are common across 
users, others differ. Therefore, learning input coordinates and 

 
Fig. 1. Flick input 

 
Fig. 2. Error date (regions) 

 
Fig. 3. Error date (users) 
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adjusting boundary taking individual differences into account 
are expected to be effective. 

IV. PROPOSED METHOD 

In this section, we propose to adjust the boundaries between 
regions based on each user's input coordinates collected in the 
past. Our method consists of two stages. two-class inference for 
consonant regions in the first step and five-class inference for 
vowels in the second step. We use SVM to determine the 
boundaries that distinguish regions. We define the coordinate of 
the start of the swipe as (x0, y0) and that of the end of the swipe 
as (x1, y1). For the first step, this method creates a model for 
two class classification for all pairs of neighboring regions. The 
explanatory variable is (x0, y0). The response variable is the 
region that the user intends to input. For the second step, the 
method creates a model for five-class classification. Model is 
constructed for each region because we assume that the 
difficulty of swiping depends on regions. The explanatory 
variable is (x0, y0, x1-x0, y1-y0). The response variable is the 
vowel that the user intends to input.  

In the inference phase, the method infers the character that a 
user intends to input from a set of coordinates (x0, y0, x1-x0, 
y1-y0). For the first step, the method chooses the two nearest 
regions from the start point (x0, y0) as the candidates. Namely, 
the first region is the region that contains (x0, y0). The other is 
the nearest region other than the first candidate. The method then 

performs two-class classification between the two candidates 
with SVM and determines the consonant. For the second step, 
the method performs five-class classification with SVM based 
on (x0, y0, x1−x0, y1−y0) and determines the vowel. 

V. EVALUATION  

In this section, we evaluate the performance of the proposed 
method. For the performance evaluation, we use the input data 
from the four participants described in Section 3. Subject 1’s 
dataset contains 42 sets of inputs. 34 sets and 8 sets were used 
for training and testing, respectively. Subject 2's dataset contains 
551 sets; 501 and 50 were used for training and testing, 
respectively. In the Subject 3's dataset, 32 and 8 sets are used, 
and in the Subject 4's dataset, 200 and 50 sets are used for 
training and testing, respectively. We note that the data size 
differs substantially among subjects, which may influence the 
per-subject performance. In the experiments, we target only 
inputting hiragana and do not consider kanji conversion.  

The data labeled with “Proposed Method” in Fig. 2 and 3 
depict the ratios of incorrect inference by regions and by users, 
respectively. The ratios of incorrect inference in all user and all 
regions with the original and proposed methods are 3.09% and 
0.87%, respectively. These results show that the proposed 
method reduces the ratio of incorrect inference largely. The 
results in Fig. 2 demonstrate that the proposed method increases 
the accuracy especially in regions with high incorrect ratios such 

 
Fig. 4. Input coordinates for a column (Subject 1) 

 
Fig. 5. Input coordinates for a column (Subject 2) 

 
Fig. 6. Input coordinates for a column (Subject 3) 

 
Fig. 7. Input coordinates for a column (Subject 4) 



as regions 10 and 11. For reference, the incorrect inference ratios 
of each region for each subject are presented in the Appendix. 

 

Figs. 8 - 11 show the adjusted boundary of the proposed 
method. For example, it can be observed that the boundary 
between the region 8 and 11 is moved up in all the subjects and 
this causes increase in the accuracy.  

VI. DISCUSSION 

Our results indicate that the input characteristics depends on 
the individual user, but it may depend also on the device and on 
the how the device is held. For example, if the screen size 
becomes larger, swiping leftward or upward from Region 0, the 
Top-left region, using the right thumb will become more 
difficult and the input coordinates will be unstable. Therefore, 
we expect that the model should be constructed for each device 
and each holding way. Evaluating different devices and holding 
styles, and building models specific to each leave as future work. 

In the cases of Subjects 2 and 4, where the amount of training 
data was large, a lower error rate was achieved. In contrast, in 
the case of Subject 3, where the amount of training data was 
smaller, the error rate was slightly higher. Therefore, we expect 

that collecting additional data for Subject 3 would also lead to a 
lower error rate.  

In this work, subjects were asked to input random character 
sequences, resulting in relatively low input speed. If users were 
asked to enter sentences they already know, the input speed 
would be higher, the deviation of swipe positions would increase. 
Consequently, the error rate would likely increase. In such cases, 
the effectiveness of the proposed method would also be expected 
to increase. Additionally, considering the dependencies on 
preceding character and on succeeding character for inference 
could further reduce the error rate.  

VII. CONCLUSION 

In this paper, we focused on incorrect inference of input 
character in smartphone flick input and analyzed practical swipe 
coordinate data from users. The analysis revealed that incorrect 
inference occurred mainly in the first step (consonant selection). 
Specifically, in the cases of our experiments, all incorrect 
inference occurred in this first step. Furthermore, we found that 
the regional boundaries defined by the system did not 
completely match with the effective boundaries reflected in 
users’ touch coordinates. To address this issue, we proposed a 
method that uses an SVM to infer the character intended by the 

 

Fig 8. Adjusted boundary (Subject 1) 

 

Fig 9. Adjusted boundary (Subject 2) 

 

Fig 10. Adjusted boundary (Subject 3) 

 

Fig 11. Adjusted boundary (Subject 4) 



user based on touch coordinates. The proposed method builds a 
prediction model for each user, thereby taking user-specific 
input characteristics into consideration. We evaluated the 
estimation accuracy of the proposed method using practical flick 
input coordinates from users. As a result, the average error rate 
from 3.09% to 0.87%. These results demonstrate the 
effectiveness of personalized boundary estimation. Our method 
requires only past flick coordinates and no language model or 
dictionary, making it lightweight and easy to deploy.  

For future work, we plan to evaluate the method using 
different devices, conduct experiments with more users, 
investigate the construction of a generalized model applicable to 
multiple users, and evaluate performance using non-random 
character sequences.  

ACKNOWLEDGMENT 

This work was supported by JSPS KAKENHI Grant 

Numbers 25K15100． 

REFERENCES 

[1] Kai Akamine, Ryotaro Tsuchida, Tsuneo Kato, and Akihiro Tamura. 
PonDeFlick: A Japanese Text Entry on Smartwatch Commonalizing Flick 
Operation with Smartphone Interface. In Proceedings of the CHI 
Conference on Human Factors in Computing Systems (CHI '24), May 11-
16, 2024, Honolulu, HI, USA. ACM. DOI: 10.1145/3613904.3642569 

[2] Yusuke Shida, Aki Kobayashi, " Input Character Correction Considering 
Mis-Touch Probability in Flick Input ", The 76th National Convention of 
IPSJ, No. 2014, Vol. 1, pp. 51 - 52, 2014. (in Japanese, translated) 

[3] Google LLC, “, Gboard - the Google Keyboard,” 2025, 
https://play.google.com/store/apps/details?hl=en_US&id=com.google.an
droid.inputmethod.latin&utm_source=chatgpt.com <Accessed 
2025/10/31> 

[4] Gary Sivek, Michael Riley, “Spatial Model Personalization in Gboard,” 
Proc. ACM Hum.-Comput. Interact. 6, MHCI, Article 202, 17 pages, 
2022. Doi: 10.1145/3546737 

APPENDIX 

Fig. 12 shows the error of each consonant of each user.  

 

 

 

 

 

 

Fig 12. Error date (regions, users) 
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