Classification of Phonetic Syllables Using Stacked
Autoencoder and Characterization via Centroid

1% Francisco dos Santos Viana
Doctor’s Program in Computer Science
Federal University of Maranhdo
Sdo Luis, Brazil
francisco.santos @discente.ufma.br

4™ Alexandre Cesar Muniz de Oliveira
Department of Computer Engineering
Federal University of Maranhdo
Sdo Luis, Brazil
alexandre.cesar @ufma.br

Abstract—This work presents a new method for layer insertion
in stacked autoencoder neural networks. In this approach, a
branch of layers is inserted on the side of the last hidden
layer, and the output layer after the training of an existing
layer has stabilized. Later, the new branch is merged with the
previous layers. This insertion type is called collaborative, as
it introduces new knowledge to the network without reducing
the knowledge already acquired by the previous layers. This
approach enables a neural network to learn with reduced design
time. It overcomes the typical problem of defining the number of
layers and the number of neurons in each layer. This technique
was applied in phonetic syllable classification, where the Fast
Fourier Transform obtains the audio data. These audio data were
processed using a vertical bar plot to compress the audio data
by using centroids. This procedure provided data compression
without losing characteristics. Thus, collaborative insertions were
evaluated in terms of the degree of growth for a multi-class
classification problem.

Index Terms—Artificial Neural Networks, Deep Learning,
Stacked Autoencoder Networks, and Centroids.

I. INTRODUCTION

Pattern recognition is an interdisciplinary area that combines
machine learning and artificial intelligence to detect and
classify patterns in complex data [1], [2]. Speech recognition
is a specific branch focused on extracting, processing, and
categorizing information from speech signals [3], [4]. Despite
its global relevance, Portuguese still lacks extensive Automatic
speech recognition (ASR) research and resources [5], motivat-
ing efforts toward specialized methods for this language.

ASR systems operate through preprocessing, feature extrac-
tion, and classification [6]. Preprocessing reduces noise and
speaker variability, while feature extraction generates compact
representations that strongly affect classification performance
[7]. Common representations include LPC, PLP, GFCC, DWT,
FBANKSs, and MFCC [8], [9].

Artificial neural networks are widely adopted in ASR, but
their performance is highly dependent on architectural design

2" Carlos Eduardo Nascimento Cajado
Master’s Program in Computer Science
Federal University of Maranhdo
Sdo Luis, Brazil
carlos.cajado@discente.ufma.br

5% Carlos Soares
Faculty of Engineering of Porto
University of Porto, Portugal
Porto, Portugal
csoares @fe.up.pt

3" Samuel Magalhdes Pereira
Program in Computer Science
Federal University of Maranhdo
Sao Luis, Brazil
samuel.mp @discente.ufma.br

6™ Areolino de Almeida Neto
Department of Computer Engineering
Federal University of Maranhdo
Sdo Luis, Brazil
areolino.neto@ufma.br

choices, particularly network depth [10], [11]. Since no princi-
pled rule exists to define the optimal number of layers, archi-
tectures are often selected through trial and error. This work
addresses this limitation by proposing a collaborative layer-
insertion strategy that incrementally defines network depth,
adding parallel hidden-layer branches and retaining them only
when measurable learning improvements are achieved.

II. RELATED WORKS

Several studies address automated neural network design.
Bayesian optimization has been applied to tune learning rate,
depth, and activation functions, outperforming manual and grid
search [12]. Comparisons with genetic algorithms highlight
tradeoffs between exploration capability and computational
cost [13]. Particle swarm optimization has also been used to
design stacked autoencoders with competitive accuracy and
reduced complexity [14], while optimized recurrent models
show strong performance in speech recognition [15].

Constructive neural models originate from the CCNN
framework. FCCN incrementally adds neurons while training
only output weights, reducing training cost [16]. Other variants
analytically compute weights [17], dynamically insert neurons
[18], or integrate evolutionary strategies to obtain compact and
stable architectures [19].

In speech recognition, Portuguese phonetic syllable classi-
fication using constructive stacked autoencoders was investi-
gated in [20]. Classical MLP-based methods remain effective
for small vocabularies [21], whereas recent models such as
SincNet [22] and modular expert networks [23] achieve higher
accuracy at the cost of increased computational complexity.
In contrast to these approaches, the present work proposes a
collaborative layer-insertion strategy that incrementally defines
network depth through parallel branches, reducing architec-
tural design effort without relying on extensive hyperparameter
optimization.

III. METHODOLOGY

The algorithms were implemented in Python using Google
Colab. The experiments employed the Male/Female for Forced
Phonetic Alignment dataset, which consists of clean studio
recordings from one male and one female Brazilian Portuguese
speaker and is originally highly unbalanced across phonetic
classes [24]. To mitigate classification bias, avoid dominance
of frequent classes, and allow a fair evaluation of the learn-
ing capacity of the proposed model, a balanced subset was
constructed by selecting 43 phonetic syllable classes with 30
samples each, resulting in 1,290 syllable instances. Audio pre-
processing and phonetic segmentation were performed using
Praat, UFPAlign, and Kaldi, producing syllable-level signals
used for feature extraction [25]-[27].

A. Collaborative layer insertion

The main novelty of this work is a collaborative layer-
insertion strategy that incrementally defines network depth
by adding parallel hidden-layer branches, which are retained
only when they provide measurable learning improvement,
avoiding exhaustive hyperparameter search. To mitigate error
degradation and vanishing gradients [28], [29], new layers
are inserted sequentially while preserving prior learning. As
illustrated in Fig. 1, the initial network (solid black lines)
is first trained and then frozen. A new branch is added
using three types of connections: random intra-branch weights
(blue dashed), inter-branch connections to previous layers (red
dashed), and zero-initialized weights (black dashed).

old layer

input layer

extra branch

new layer

Fig. 1: Collaborative process of inserting a new hidden layer

The network input is X = (x1,%9,...,%,), Where n is
the size of the input and output layers. The vector H; =
(h11, h12, ..., h1,;,) represents the hidden-layer activation of
branch 1 after applying f (Eq. 1), using weight matrix W}
and bias vector bi. Eq. 2 defines the output layer. W are
the weights from the hidden layer to the output layer, and b}

is the output bias. Branch 2 consists of a hidden layer and
an output layer. Its input comes from the last hidden layer of
Branch 1, and the output of Branch 1 is concatenated with
the hidden layer of Branch 2. To expand the search space and
reduce the overhead caused by adding new hidden layers, an
extra branch can be added. This branch connects the input
layer directly to the new hidden layer and is represented as
E = (e1,e3,...,€,). Thus, the output of the hidden layer
Ho of Branch 2 is defined by Eq. 3, where W3 is the weight
matrix between the hidden and output layers.

Hy = f(W!X +bp) (1)
O1 = f(Wy Hi + by) (2)
Hy = [f(WPH, + WEE +b3) O1]" 3)

The output layer of the new branch has connections with
the elements of its hidden layer (w3) and with the old branch
through the weight matrix Ij(n). Together, these components
form the weight matrix W3, defined in Eq. 4. The weights
w3 are initialized to zero, ensuring that the new neurons do
not affect the knowledge already learned by the network at
the beginning of training. The matrix I} (n) is diagonal, with
its main diagonal elements set to the value k. The network
output is provided by branch 2, defined by Eq. 5. Training
branch 2 aims to compensate for the output of branch 1. Since
the connections k have values equal to one and the activation
function of the output layer is linear, the neural network will
have only one output layer (branch 2 output layer), formed by
combining the outputs of the two branches.

E 0 00 0 0

W5 = [Ix(n) wy] = C e 4)
00 -~ k0O - 0

Oy = f(W5 Hy + b3) (5)

B. Feature Extraction Using Centroids

After preprocessing [20], the FFT (first 8 kHz) converts
audio to frequency rectangles. Adjacent frequencies form
blocks summarized by centroids C,,, = (X,,,Y,,) (Eq. 6,
7). Fig. 2 shows grouping: blue points are bar centers, red
points are centroids. Sixteen blocks of 50 frequencies yield
16 centroids per syllable, normalized to [0, 1] for input.

Dpo1 Ty X ay

X/,n == - —n
Zf:l af

_ Z?:l y7f X ar

Y =—"—"" (7N
Zf:l ar

(6)

10r * bar frequencie
9 * group frequencie
8 -
7 -
ger [
© H
= i P
27 | = N
fal
i ¥ 1o
H * : *
2 * :
! Pooiox

0 1 2 3 4 5 6 7 8 9
Frequencies

10

Fig. 2: Representation of a group of 10 frequency intervals.

C. Evaluation of Experiments

MSE was used for training; accuracy, precision, sensitivity,
and Fl-score validated performance. Growth strategies were
constant, increasing, decreasing, and random. Weight & vari-
ations: M1 — constant without extra branch; M2 — adjustable
without extra branch; M3 — constant with extra branch; M4 —
adjustable with extra branch.

Network depth was defined incrementally using the pro-
posed collaborative insertion strategy. Four hidden layers were
added sequentially, resulting in one input layer, five hidden
layers, and one output layer. The input consisted of centroid
coordinates (X,,,Y,,) (32 features), with 25 neurons in the
first hidden layer (empirically defined) and 43 outputs. Learn-
ing rates were 1 x 10~5 (input-hidden) and 5 x 10~° (hidden—
output). Hidden layers used tanh, the output layer was linear,
and performance was evaluated using 5-fold cross-validation.

IV. RESULTS

The following figures analyze the effect of different layer-
insertion strategies and collaboration mechanisms on training
error and generalization. Fig. 3 shows errors for constant-type
insertions; dashed black lines indicate the scenario without
new layers, allowing direct comparison. Table I presents train-
ing, validation, and test MSE, along with the training error of
each inserted layer. For the constant type, all methods achieved
similar final errors. Extra depth reduced MSE in all methods
(M1-M4), with the largest drops in the first three insertions,
while still outperforming the baseline. Methods M2 and M4
achieved the lowest errors, especially in deeper networks.

Figure 4 shows the results of incremental insertion. The
largest gains occur in the first added layers, with a clear error
drop between layers 1 and 3. Methods M2 and M4 reach the
lowest errors, especially in deeper configurations, indicating
that adjusting the weight k& improves learning. These results
confirm that progressive layer insertion enhances modeling and
that the branch-connection mechanism gives the new layers
greater learning flexibility.

In the descending insertion method, Fig. 5, methods M2 and
M4 achieve greater error reductions than M1 and M3. Table I
shows that M2 and M4 consistently outperform the others for
any depth, indicating greater robustness and generalizability.

In random insertion, each new layer has a dynamic number
of neurons. Fig. 6 shows that M1 and M3 do not consistently
reduce the training error, except in the third layer, while
M2 and M4, with the outer branch and adjustable k, reduce
the error. Table I shows that varying the number of neurons
offers limited gains, but M2 and M4 achieve smaller errors
(0.034 and 0.032) compared to M1 and M3 (0.066 and 0.058),
reflecting better adaptation.

Table II compares the best results of this work (collaborative
insertion) with the method proposed by [20]. The collaborative
insertion model outperformed the literature, demonstrating
consistent classification capabilities across all insertion types.
In terms of accuracy, the proposed approach exceeded 76%
with only two layers inserted, and the lowest value achieved
was 87% for methods M1 and M3 under random insertion.

TABLE I: Mean squared error (MSE) obtained for each layer-insertion strategy.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Type | Method Train Val. Test Train Val. Test Train Val. Test Train Val. Test Train Val. Test
2 Ml 0.317 0.315 0.320 | 0.078 0.077 0.079 | 0.034 0.034 0.035 | 0.028 0.029 0.026 | 0.026 0.026 0.027
g M2 0.312 0312 0.307 | 0.056 0.056 0.055 | 0.033 0.032 0.031 | 0.028 0.028 0.027 | 0.027 0.026 0.026
g M3 0.203 0.201 0.203 | 0.067 0.066 0.067 | 0.034 0.034 0.034 | 0.028 0.028 0.028 | 0.027 0.027 0.027
© M4 0.170 0.168 0.171 | 0.048 0.047 0.049 | 0.031 0.030 0.031 | 0.027 0.027 0.027 | 0.026 0.026 0.026
2 Ml 0.267 0266 0.266 | 0.078 0.077 0.077 | 0.036 0.036 0.036 | 0.034 0.034 0.034 | 0.034 0.034 0.034
'z M2 0.286 0.284 0.289 | 0.051 0.051 0.052 | 0.029 0.029 0.029 | 0.028 0.028 0.028 | 0.028 0.028 0.028
g M3 0.295 0296 0.294 | 0.101 0.101 0.100 | 0.034 0.034 0.033 | 0.033 0.033 0.032 | 0.032 0.032 0.032
k= M4 0246 0.246 0245 | 0.045 0.045 0.044 | 0.027 0.028 0.027 | 0.027 0.027 0.027 | 0.027 0.027 0.027
= Ml 0.324 0.321 0325 | 0.132 0.130 0.132 | 0.065 0.064 0.065 | 0.042 0.042 0.042 | 0.037 0.037 0.037
g M2 0.270 0.272 0.266 | 0.064 0.065 0.062 | 0.038 0.039 0.037 | 0.032 0.033 0.031 | 0.030 0.030 0.029
g M3 0.352 0350 0346 | 0.135 0.134 0.131 | 0.064 0.063 0.061 | 0.046 0.045 0.043 | 0.038 0.038 0.037
A M4 0.322 0319 0.321 | 0.054 0.053 0.054 | 0.033 0.033 0.033 | 0.030 0.029 0.029 | 0.029 0.028 0.028
e Ml 0.250 0.248 0.249 | 0.180 0.178 0.179 | 0.101 0.103 0.103 | 0.085 0.084 0.084 | 0.066 0.065 0.065
g M2 0.270 0271 0269 | 0.090 0.091 0.090 | 0.042 0.043 0.042 | 0.038 0.038 0.038 | 0.034 0.034 0.034
5 M3 0.296 0.300 0.298 | 0.205 0.208 0.207 | 0.099 0.101 0.101 | 0.085 0.087 0.087 | 0.058 0.059 0.059
~ M4 0.309 0308 0.310 | 0.082 0.082 0.083 | 0.041 0.041 0.041 | 0.037 0.037 0.037 | 0.032 0.032 0.032

TABLE II: Performance comparison with related works.

(c) Method M3

1.2 1.2
—— Train —— Train
1.0 1 validation 1.0 1 Vvalidation
---- No insertion ---- No insertion
0.8 1 0.8 1
g 0.6 1 g 0.6 1
0.4 : 0.4 1
. .
0.2 S 024 !
0.0 ! T — T T 0.0 I I — —_— :
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Epoch Epoch
(a) Method M1 (b) Method M2
1.2 1.2
—— Train —— Train
1.0 1 validation 1.0 4 Validation
---- No insertion ---- No insertion
0.8 1 0.8 1
é 0.6 é 0.6
\\ \
0.4 > 0.4 4
.
0.2 = 0.2 1 S
0.0 T T T T T T 0.0 T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Epoch Epoch
(c) Method M3 (d) Method M4
Fig. 3: Mean squared error (MSE) across successive constant layer insertions.
1.0 1.0
—— Train —— Train
0.8 Validation 0.8 4 Validation
---- No insertion \ ---- No insertion
064 % 0.6 \
4 \ 4
= \, =
0.4 4 0.4 S
\‘__
0.2 0.2 e
" ‘ 00— : = ‘ ‘
] 2500] 500 1000 1500 2000 2500
Epoch
(a) Method M1 (b) Method M2
10 1.0
—— Train —— Train
0.8 4 Validation 0.8 4 Validation
---- No insertion ---- No insertion
0.6 0.6
w w
(%] (%]
= =
0.4+ 0.4+
0.2 Mt 0.2 N,
0.0 11— . : ! 0.0 1 — . - === : :
o 500 2000 2500 o 500 1000 1500 2000 2500

(d) Method M4

Fig. 4: Mean squared error (MSE) across successive increasing layer insertion.

Metric Collabnet | Collaborative insertion
accuracy 0.76 0.98
sensitivity 0.76 0.89
precision 0.82 0.93
fl-score 0.77 0.91

V. CONCLUSION

The insertion types and methods show that a collaborative
branching strategy for adding hidden layers to stacked autoen-
coders improves performance, overfitting control, and reduces
hyperparameter tuning effort, while enhancing scalability and

1.2 1.2
—— Train —— Train
Lo1—% validation 104 Validation
\ ---- No insertion ---- No insertion
0.8 \ 0.8
\
& 0.6 & 0.6
\\ \
0.4 NG 0.4 4 <
0.2 1 S 0.2 1 M
-""-“__-“_- - i "--.- ____________
0.0 L — T T ‘ : : 0.0 L — T — : : :
] 500 1000 1500 2000 2500] 500 1000 1500 2000 2500
Epoch Epoch
(a) Method M1 (b) Method M2
12 12
\ —— Train —— Train
1.0 4 \ Validation 10+ Validation
\ ---- No insertion | ---- No insertion
0.8 1 ~ 0.8 1N
@ 0.6 < 3 0.6 N
N, \\
0.4 L 0.4 4 .
- ~.
0.2 S 0.2 -
‘--.___‘____‘_'_-“ - e
- T ——
0.0 T T T T T T 0.0 T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Epoch Epoch
(c) Method M3 (d) Method M4
Fig. 5: Mean squared error (MSE) across successive decreasing layer insertion.
1.0 10
—— Train —— Train
0.8 Validation 0.8 4 Validation
---- No insertion ---- No insertion
0.6 1\ 0.6+
w \, w
g \\ g \
0.4 7 NG 0.4 1
0.2 0.2
0.0 T T T T T T 0.0 T T
0 500 1000 1500 2000 2500 0 2500
Epoch
(a) Method M1 (b) Method M2
1.0 1.0
—— Train —— Train
0.8 Validation 084 4 Validation
A\ ---- No insertion ---- No insertion
\
0.6 A 0.6
w w
[[
= =
0.4 1 0.4 1
0.2 1 0.2 1
0.0 T T T T T T 0.0 T T
] 500 1000 1500 2000 2500] 2500
Epoch

(c) Method M3

(d) Method M4

Fig. 6: Mean squared error (MSE) across successive random layer insertion.

design efficiency.

The centroid-based representation efficiently compresses
phonetic-syllable data, reducing dimensionality and compu-
tational cost while preserving relevant spectral information
for learning. Although the experiments used a controlled
dataset with two speakers, the results validate the approach

as a proof of concept for adaptive depth construction in
stacked autoencoders. Future work includes evaluation on
larger datasets, comparison with modern speech recognition
architectures, and investigation of dynamic activation-function
switching after layer insertion to further enhance adaptability

and performance.

ACKNOWLEDGMENT

This work was supported by the Coordination for the
Improvement of Higher Education Personnel (CAPES) - Fi-
nancing Code 001. We also thank FAPEMA and CNPq (call
no. 26/2021) for funding this research.

[1]

[2]

[3]

[4]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

REFERENCES

Z. Amiri, A. Heidari, N. J. Navimipour, M. Unal, and A. Mousavi,
“Adventures in data analysis: A systematic review of deep learning
techniques for pattern recognition in cyber-physical-social systems,”
Multimedia Tools and Applications, vol. 83, no. 8, pp. 22909-22973,
2024. [Online]. Available: https://doi.org/10.1007/s11042-023-16382-x
A. F Alnuaimi and T. H. Albaldawi, “An overview of machine
learning classification techniques,” in BIO Web of Conferences,
vol. 97. EDP Sciences, 2024, p. 00133. [Online]. Available:
https://doi.org/10.1051/bioconf/20249700133

T. Weise, K. C. Demir, P. A. Pérez-Toro, T. Arias-Vergara, A. Maier,
E. Noth, M. Schuster, B. Heismann, and S. H. Yang, “Towards
end-to-end speech articulation and spoken language analysis using deep
learning,” Human-Centric Intelligent Systems, pp. 1-20, 2025. [Online].
Available: https://doi.org/10.1007/s44230-025-00094-6

L. Ganu and B. Arun, “Deep learning and multiwavelet approach for
nyishi phoneme recognition: acoustic analysis and model development,”
International Journal of Information Technology, pp. 1-18, 2025.
[Online]. Available: https://doi.org/10.1007/s41870-025-02461-9

T. Aguiar de Lima and M. Da Costa-Abreu, “A survey on automatic
speech recognition systems for portuguese language and its variations,”
Computer Speech & Language, vol. 62, p. 101055, 2020. [Online].
Available: https://doi.org/10.1016/j.cs1.2019.101055

D. Al-Fraihat, Y. Sharrab, F. Alzyoud, A. Qahmash, M. Tarawneh, and
A. Maaita, “Speech recognition utilizing deep learning: A systematic
review of the latest developments,” Human-centric computing and
information sciences, vol. 14, 2024. [Online]. Available: https:
//doi.org/10.22967/HCIS.2024.14.015

Y. Li, Y. Wang, L. M. Hoi, D. Yang, and S.-K. Im, “A review on
speech recognition approaches and challenges for portuguese: exploring
the feasibility of fine-tuning large-scale end-to-end models,” EURASIP
Journal on Audio, Speech, and Music Processing, vol. 2025, no. 1, p. 3,
2025. [Online]. Available: https://doi.org/10.1186/s13636-024-00388-w
A. Meftah, Y. A. Alotaibi, and S.-A. Selouani, “A comparative study of
different speech features for arabic phonemes classification,” in 2016
European Modelling Symposium (EMS), 2016, pp. 47-52. [Online].
Available: https://doi.org/10.1109/EMS.2016.018

M. Malik, M. K. Malik, K. Mehmood, and 1. Makhdoom,
“Automatic speech recognition: a survey,” Multimedia Tools and
Applications, vol. 80, pp. 9411-9457, 2021. [Online]. Available:
https://doi.org/10.1007/s11042-020-10073-7

H. T. Unal and F. Basciftci, “Evolutionary design of neural network
architectures: a review of three decades of research,” Artificial
Intelligence Review, vol. 55, no. 3, pp. 1723-1802, 2022. [Online].
Available: https://doi.org/10.1007/s10462-021-10049-5

M. M. Hammad, “Artificial neural network and deep learning:
Fundamentals and theory,” arXiv preprint arXiv:2408.16002, 2024.
[Online]. Available: https://doi.org/10.1007/978-3-031-29642-0

R. Silva and J. Camata, “Hyperparameter optimization of physics-guided
neural networks in a convective-diffusive problem,” in Companion
Proceedings of the 25th Symposium on High Performance Computing
Systems. Porto Alegre, RS, Brasil: SBC, 2024, pp. 137-144. [Online].
Available: https://sol.sbc.org.br/index.php/sscad_estendido/article/view/
30979

H. Alibrahim and S. A. Ludwig, “Hyperparameter optimization:
Comparing genetic algorithm against grid search and bayesian
optimization,” in 2021 IEEE Congress on Evolutionary Computation
(CEC), 2021, pp. 1551-1559. [Online]. Available: https://doi.org/10.
1109/CEC45853.2021.9504761

Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “An experimental study
on hyper-parameter optimization for stacked auto-encoders,” in 2018
IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1-8.
[Online]. Available: https://doi.org/10.1109/CEC.2018.8477921

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Morteza, A. A. Yahyaeian, M. Mirzaeibonehkhater, S. Sadeghi,
A. Mohaimeni, and S. Taheri, “Deep learning hyperparameter
optimization: Application to electricity and heat demand prediction for
buildings,” Energy and Buildings, vol. 289, p. 113036, 2023. [Online].
Available: https://doi.org/10.1016/j.enbuild.2023.113036

X. Wu, P. Rozycki, J. Kolbusz, and B. M. Wilamowski, “Constructive
cascade learning algorithm for fully connected networks,” in Artificial
Intelligence and Soft Computing: 18th International Conference, ICAISC
2019, Zakopane, Poland, June 16-20, 2019, Proceedings, Part 1 18.
Springer, 2019, pp. 236-247.

Z. Wang, W. A. Khan, H.-L. Ma, and X. W. and, “Cascade neural
network algorithm with analytical connection weights determination for
modelling operations and energy applications,” International Journal of
Production Research, vol. 58, no. 23, pp. 7094-7111, 2020. [Online].
Available: https://doi.org/10.1080/00207543.2020.1764656

S. A. E.-M. Mohamed, M. H. Mohamed, and M. F. Farghally,
“A new cascade-correlation growing deep learning neural network
algorithm,” Algorithms, vol. 14, no. 5, p. 158, 2021. [Online]. Available:
https://doi.org/10.3390/a14050158

J. Deng, Q. Li, and W. Wei, “Improved cascade correlation
neural network model based on group intelligence optimization
algorithm,” Axioms, vol. 12, no. 2, 2023. [Online]. Available:

https://doi.org/10.3390/axioms 12020164

B. V. L. PEREIRA, “Phoneme recognition with frequency compression
via centroid and stacked autoencoder networks.” Master’s thesis,
Universidade Federal do Maranhdao, Sdo Luis - MA, 2014. [Online].
Available: https://tedebc.ufma.br/jspui/handle/tede/5486

J. F. Valiati, “Voice recognition for driving commands through
neural networks,” Master’s thesis, Universidade Federal do Rio
Grande do Sul, Porto Alegre, 2000. [Online]. Available: http:

//hdl.handle.net/10183/2947

K. Radha, M. Bansal, and R. B. Pachori, “Automatic speaker and
age identification of children from raw speech using sincnet over erb
scale,” Speech Communication, vol. 159, p. 103069, 2024. [Online].
Available: https://doi.org/10.1016/j.specom.2024.103069

N. Nedjah, A. D. Bonilla, and L. de Macedo Mourelle, “Automatic
speech recognition of portuguese phonemes using neural networks
ensemble,” Expert Systems with Applications, vol. 229, p. 120378,
2023. [Online]. Available: https://doi.org/10.1016/j.eswa.2023.120378
C. Batista and N. Neto, “Forced phonetic alignment in brazilian
portuguese using time-delay neural networks,” in International
Conference on Computational Processing of the Portuguese Language.
Springer, 2022, pp. 323-332. [Online]. Available: https://doi.org/10.
1007/978-3-030-98305-5_30

C. Batista, A. L. Dias, and N. Neto, “Free resources for forced phonetic
alignment in brazilian portuguese based on kaldi toolkit,” EURASIP
Journal on Advances in Signal Processing, vol. 2022, no. 1, p. 11,
2022. [Online]. Available: https://doi.org/10.1186/s13634-022-00844-9
G. Souza and N. Neto, “An automatic phonetic aligner for
brazilian portuguese with a praat interface,” in Computational
Processing of the Portuguese Language: 12th International Conference,
PROPOR 2016, Tomar, Portugal, July 13-15, 2016, Proceedings
12. Springer, 2016, pp. 374-384. [Online]. Available: https:
//doi.org/10.1007/978-3-319-41552-9_38

A. L. Dias, C. Batista, D. Santana, and N. Neto, “Towards a free, forced
phonetic aligner for brazilian portuguese using kaldi tools,” in Brazilian
Conference on Intelligent Systems. Springer, 2020, pp. 621-635.
[Online]. Available: https://doi.org/10.1007/978-3-030-61377-8_44

O. A. Montesinos Loépez, A. Montesinos Lépez, and J. Crossa,
Fundamentals of Artificial Neural Networks and Deep Learning.
Cham: Springer International Publishing, 2022, pp. 379-425. [Online].
Available: https://doi.org/10.1007/978-3-030-89010-0_10

J. P. S. Rosa, D. J. D. Guerra, N. C. G. Horta, R. M. F. Martins, and
N. C. C. Lourengo, Overview of Artificial Neural Networks. Cham:
Springer International Publishing, 2020, pp. 21—44. [Online]. Available:
https://doi.org/10.1007/978-3-030-35743-6_3

