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Abstract—Federated Learning (FL) is an emerging paradigm
in machine learning that enables collaborative model training
without centralizing data, thereby addressing privacy and se-
curity concerns. Unlike traditional centralized approaches, FL
keeps data on local devices and only exchanges model updates,
making it highly relevant in the era of strict data governance
regulations. This survey provides a comprehensive overview
of FL, covering its foundational concepts, related works, and
major categories including horizontal, vertical, and transfer
learning. We highlight practical applications across healthcare,
finance, mobile devices, IoT, autonomous systems, and wire-
less communications. Furthermore, we examine the challenges
faced by FL, such as data heterogeneity, system scalability,
communication efficiency, and security vulnerabilities. We also
explore solutions proposed in recent literature, ranging from
differential privacy and secure aggregation to personalization and
hierarchical architectures. The survey discusses future research
directions that integrate FL with edge computing, blockchain,
and next-generation wireless networks. By synthesizing these
insights, we emphasize the transformative potential of FL in
shaping decentralized, privacy-preserving artificial intelligence.

Index Terms—Federated Learning, Distributed Machine
Learning, Privacy-Preserving AI, Edge Intelligence, Internet of
Things, Mobile Edge Computing, Wireless Communications,
Blockchain, Healthcare Applications, Financial Applications.

I. INTRODUCTION

In recent years, the rapid growth of data-driven applications
has highlighted the tension between the need for powerful ma-
chine learning (ML) models and the protection of user privacy.
Traditional centralized ML approaches require collecting and
aggregating raw data into a single server, which introduces
significant concerns regarding data ownership, confidentiality,
and regulatory compliance. Federated Learning has emerged
as a compelling solution to these challenges by enabling
decentralized model training across multiple clients while
ensuring that data remains local to each participant [1] .
Instead of transferring raw data, FL relies on exchanging
model parameters or gradients, which are then aggregated into
a global model at a central server or coordinator.

The concept of Federated Learning was first introduced by
Google in the context of mobile devices [2] . Smartphones and
other edge devices continuously generate valuable data from
user interactions, but uploading sensitive information such as
typed text, health records, or voice samples to the cloud raises
privacy risks. FL addresses this issue by training local models

directly on-device, and only transmitting updates that reflect
learned knowledge. This approach provides not only privacy
benefits but also reduces communication overhead, since up-
dates are typically smaller than raw datasets. Moreover, FL
aligns with emerging regulatory frameworks such as the Eu-
ropean Union’s General Data Protection Regulation (GDPR)
and the U.S. Health Insurance Portability and Accountability
Act (HIPAA), which impose strict constraints on data sharing
and storage [3].

Another driver of FL adoption is the increasing importance
of edge computing. With the proliferation of Internet of Things
(IoT) devices, autonomous vehicles, wearable sensors, and
smart city infrastructure, vast amounts of data are being
generated at the network edge [4]. Transmitting this data to
cloud servers not only introduces latency but also consumes
significant bandwidth and energy. FL offers a scalable alter-
native by leveraging distributed computational resources at
the edge. This paradigm shift aligns with the broader vision
of distributed artificial intelligence, where learning happens
closer to where data is produced.

Beyond privacy and efficiency, FL also democratizes access
to AI development. Organizations or individuals with limited
data resources can collaborate in training powerful models
without relinquishing control over their datasets. This enables
multi-institutional collaborations, such as hospitals jointly de-
veloping medical diagnosis models, or financial institutions
building fraud detection systems, while keeping proprietary
or sensitive data secure [5]. By combining knowledge from
diverse sources, FL also has the potential to improve model
generalization and reduce bias.

Despite its advantages, FL is not without limitations.
Challenges such as system heterogeneity, statistical non-
independence of local datasets, and potential vulnerabilities
to adversarial attacks make the design of robust FL systems
complex [6], [7]. These challenges have sparked significant
research interest from communities spanning machine learn-
ing, cryptography, networking, and distributed systems. Con-
sequently, FL is now recognized as a multidisciplinary field
with broad applications ranging from healthcare and finance
to wireless communications and smart environments.

In summary, FL represents a paradigm shift in how models
are trained and deployed. It reconciles the competing demands
of data privacy, efficiency, and scalability, while also enabling



collaborative intelligence across distributed environments. As
data generation continues to accelerate, and concerns about
security and fairness intensify, FL is poised to become a
cornerstone of next-generation machine learning systems.

II. RELATED WORK

A. Definition of Federated Learning

Federated Learning (FL) is a decentralized machine learning
paradigm that enables multiple clients or organizations to
collaboratively train a shared global model without exchanging
raw data [2], [3], [8], [9], [10]. In contrast to conventional
centralized learning, where data must be collected and stored
in a central server, FL ensures that data remains local to
each participant while only transmitting model parameters or
gradient updates. These updates are then aggregated, typically
by a central server, to produce an improved global model.
This approach provides significant advantages in terms of
data privacy, communication efficiency, and compliance with
regulatory frameworks such as GDPR and HIPAA . Formally,
FL can be defined as an optimization problem over distributed
datasets. Consider K clients, each with a local dataset Dk of
size nk. The objective of FL is to minimize a global loss
function:

min
w

F (w) =

K∑
k=1

nk

n
Fk(w),

where Fk(w) denotes the local loss function of client k,
n =

∑K
k=1 nk is the total number of samples across all

clients, and w represents the global model parameters. The
most widely used algorithm, Federated Averaging (FedAvg),
computes local updates on each client and averages them at
the server to update the global model [2].

B. The Development of Federated Learning

The concept of Federated Learning was first popularized by
Google in 2016, when researchers proposed a decentralized
framework for training machine learning models directly on
mobile devices [1]. This early effort emerged from the need
to improve on-device services, such as predictive keyboards
and voice assistants, without transferring sensitive user data
to cloud servers. The subsequent introduction of the Fed-
erated Averaging (FedAvg) algorithm in 2017 [2] marked
a turning point, establishing a simple yet powerful method
for aggregating local model updates into a global model.
FedAvg became the baseline for most subsequent FL research,
laying the foundation for both theoretical analysis and practical
deployment.

Following these initial contributions, the field rapidly ex-
panded. Early research primarily addressed communication
bottlenecks, proposing techniques such as update compres-
sion, quantization, and sparsification to reduce bandwidth
usage [11]. In parallel, privacy-preserving mechanisms, in-
cluding differential privacy [12] and secure aggregation proto-
cols [13], were introduced to strengthen confidentiality guar-
antees. These advances positioned FL as a promising solution

for applications in healthcare, finance, and IoT systems, where
data sensitivity is a major concern.

From 2018 onward, the research community began to
investigate the unique challenges of FL in heterogeneous
environments. Studies revealed that non-IID (non-independent
and identically distributed) data across clients could degrade
convergence and model accuracy [6]. This motivated the
development of personalized FL frameworks [14] and robust
aggregation strategies to mitigate the effects of heterogeneity.
At the same time, researchers distinguished between cross-
device FL, involving millions of unreliable clients such as
smartphones, and cross-silo FL, involving fewer but more
reliable institutions [7]. This categorization clarified the scope
of FL and guided algorithmic design.

In recent years, FL has evolved into a multidisciplinary
research field, integrating ideas from cryptography, distributed
systems, wireless communications, and edge computing. Ap-
plications have expanded to autonomous vehicles, smart cities,
and next-generation 6G networks [15]. Meanwhile, large-
scale open-source frameworks such as TensorFlow Federated,
PySyft, and FATE have accelerated experimentation and in-
dustrial adoption [16]. Current research directions emphasize
robustness against adversarial attacks, fairness across clients,
energy-efficient training, and integration with blockchain for
decentralized trust [17].

Overall, the development of FL reflects a trajectory from
a practical solution for mobile devices to a broader paradigm
for decentralized artificial intelligence. It has transformed from
a niche topic into one of the most dynamic research areas in
machine learning, shaping the future of privacy-preserving and
distributed intelligence.

Privacy preservation is another major research direction. Al-
though FL avoids centralizing raw data, studies demonstrated
that model gradients could still leak sensitive information. To
counter this, researchers integrated differential privacy [12]
and secure aggregation protocols [13], ensuring stronger guar-
antees against inference attacks. Alongside these efforts, cryp-
tographic methods like homomorphic encryption and secure
multiparty computation further reinforced the robustness of FL
systems. These privacy-preserving enhancements have been
particularly critical in sensitive domains such as healthcare
and finance, where compliance with regulations like GDPR
and HIPAA is essential [3].

Another active line of work investigates the impact of
statistical heterogeneity, where data across clients is non-
IID and highly imbalanced. This issue has been shown to
significantly degrade the convergence and generalization of
federated models [6]. To address this, researchers have ex-
plored optimization strategies, robust aggregation rules, and
personalized federated learning approaches that allow models
to adapt to local client distributions [14]. Recent studies also
differentiate between cross-device FL, involving millions of
unreliable participants, and cross-silo FL, where fewer but
more stable organizations collaborate [7]. This categorization
has shaped much of the algorithmic development in the field.

In addition, numerous open-source frameworks have been



developed to support both research and deployment. Examples
include TensorFlow Federated, PySyft, and FATE, each pro-
viding tools for secure aggregation, simulation environments,
and deployment pipelines for real-world use cases [16]. These
platforms have accelerated experimentation and facilitated
collaboration between academia and industry.

Overall, related works on FL demonstrate the field’s rapid
evolution and multidisciplinary nature. From distributed opti-
mization and cryptographic techniques to systems design and
regulatory compliance, FL research has expanded into a wide
ecosystem. This breadth not only underscores the versatility
of FL but also highlights the need for continued exploration
of its theoretical foundations, practical implementations, and
long-term societal implications.

III. CATEGORIES OF FEDERATED LEARNING

Federated Learning can be categorized in several ways
depending on how data is distributed across participants, how
collaboration is organized, and how aggregation is performed.
One of the most common taxonomies divides FL into horizon-
tal, vertical, and transfer learning settings [18]. In Horizontal
Federated Learning (HFL), participants share the same feature
space but hold different sets of samples. For example, hospitals
in different regions may each possess patient medical records
with identical attributes (e.g., age, blood pressure, and diagno-
sis labels), but for different individuals. By pooling knowledge
from these distributed datasets, HFL improves generalization
while ensuring patient privacy [5].

In contrast, Vertical Federated Learning (VFL) arises when
organizations have data about the same set of entities but with
disjoint feature spaces. For instance, a bank may store financial
transaction data about customers, while an e-commerce plat-
form records their purchasing history. Combining these hetero-
geneous features through secure protocols enables richer pre-
dictive modeling while respecting organizational boundaries.
VFL often requires entity alignment techniques to identify
overlapping users across datasets, which introduces additional
complexity.

A third category, Federated Transfer Learning (FTL), ap-
plies when both the sample space and the feature space
overlap only partially [32]. This is common in scenarios where
institutions operate in different domains but still benefit from
transferring learned representations. FTL leverages transfer
learning techniques to bridge gaps between domains, enabling
knowledge sharing even when direct data compatibility is lim-
ited. Such flexibility is critical for real-world collaborations,
where data heterogeneity is the norm.

Another perspective on categorization distinguishes between
cross-device and cross-silo federated learning [7]. Cross-
device FL involves a massive number of unreliable par-
ticipants, such as smartphones or IoT devices, contributing
intermittently with limited computational and communication
capacity. In contrast, cross-silo FL typically includes fewer
but more reliable organizations, such as hospitals, banks,
or universities, which provide stable infrastructure and more
consistent participation. These two paradigms raise different

research challenges: scalability and resource constraints in
cross-device settings, versus coordination and trust in cross-
silo settings.

Finally, FL systems can also be classified by their synchro-
nization strategy. In synchronous FL, the server waits for all
selected clients to upload updates before aggregation, which
ensures consistency but suffers from straggler effects. Asyn-
chronous FL relaxes this requirement, allowing faster updates
at the cost of potential staleness in model parameters [33].
Hybrid approaches that combine centralized aggregation with
peer-to-peer learning have also been proposed, providing re-
silience against failures and improving scalability.

Overall, the various categories of FL reflect the adaptability
of the paradigm to diverse data distributions, organizational
contexts, and system requirements. Understanding these dis-
tinctions is critical for designing algorithms and frameworks
that align with the specific characteristics of an application
domain.

IV. APPLICATIONS

Federated Learning has demonstrated significant potential
across diverse domains where privacy, data sovereignty, and
distributed collaboration are essential. One of the earliest and
most widely deployed applications of FL is in the domain
of mobile devices. Google has applied FL to train on-device
models for next-word prediction in Gboard, enabling improve-
ments in keyboard suggestions without collecting sensitive
user data [2]. Similarly, FL has been leveraged in speech
recognition, personalization of virtual assistants, and recom-
mender systems, where training on-device interactions helps
tailor services to individual preferences without centralized
data aggregation.

A. Healthcare

Healthcare is one of the most promising domains for Fed-
erated Learning, as it involves highly sensitive patient data
that cannot be freely shared across institutions due to privacy
regulations such as HIPAA and GDPR. FL enables multiple
hospitals, research centers, and pharmaceutical companies to
collaboratively train models for tasks such as disease diagno-
sis, medical image segmentation, and patient risk prediction
while keeping patient records local. For example, Sheller et
al. [5] demonstrated that multi-institutional FL could achieve
competitive performance in brain tumor segmentation without
centralizing medical images. Similarly, Li et al. [34] applied
FL for privacy-preserving radiology image analysis, showing
that models trained across diverse institutions are more robust
and generalizable. Beyond imaging, FL has been applied in
electronic health records for predicting patient outcomes, in
genomics for collaborative gene-disease association studies,
and in drug discovery for accelerating pharmaceutical re-
search. By enabling cross-institutional collaborations, FL not
only safeguards privacy but also enhances model accuracy by
leveraging diverse datasets. This paradigm has the potential
to overcome data silos in healthcare and facilitate large-scale,
privacy-preserving precision medicine.



TABLE I
SUMMARY OF KEY PAPERS IN FEDERATED LEARNING

Ref Year Key Idea
[1] 2016 The concept of Federated Learning (FL) was first introduced, accompanied by a communication-efficient method for

distributed optimization.
[2] 2017 Researchers proposed the Federated Averaging (FedAvg) algorithm, which enabled the first large-scale deployment of FL

on mobile devices, most notably Google Gboard.
[14] 2017 The MOCHA framework was introduced to extend FL into multi-task settings, allowing clients to address related yet

distinct tasks.
[6] 2018 A study investigated the impact of non-IID data on FL convergence, demonstrating that FedAvg performs poorly under

such heterogeneity.
[18] 2018 A study defined the fundamental concepts of FL and outlined applications in finance, healthcare, and IoT, while also

providing a roadmap for future adoption.
[19] 2019 A system-level architecture for large-scale FL was developed, introducing secure aggregation protocols and fault-tolerant

mechanisms.
[20] 2019 A survey presented a detailed account of the main challenges and open research opportunities in the field of FL.
[21] 2021 The PySyft framework was released as an open-source library supporting privacy-preserving FL through tools such as

encrypted computation and differential privacy.
[22] 2021 Research on communication-efficient FL in wireless networks examined approaches such as over-the-air computation and

optimized resource allocation.
[23] 2022 A survey reviewed FL applications across healthcare, IoT, and finance, while identifying key open challenges.
[24] 2022 A study analyzed the role of FL in emerging 6G wireless networks, emphasizing its applications in edge intelligence and

ultra-reliable low-latency communications.
[25] 2023 A comprehensive review was published on heterogeneous FL, addressing challenges related to non-IID data distributions,

device diversity, and model mismatch.
[26] 2024 A survey on decentralized FL examined peer-to-peer coordination, security risks, and blockchain-based privacy mechanisms.
[27] 2024 A systematic study proposed a taxonomy of FL pipelines, covering methods, optimization strategies, and applications.
[28] 2024 A survey addressed FL system design and functional models, focusing on aggregation techniques, client selection, and

incentive mechanisms.
[29] 2024 Starlit, a privacy-preserving FL framework, was proposed to enhance fraud detection in financial systems.
[30] 2025 A survey on privacy-preserving FL was published, reviewing techniques such as differential privacy, homomorphic

encryption, and secure aggregation.
[31] 2025 Research on FL for IoT networks highlighted challenges in communication efficiency, energy consumption, and device

heterogeneity.

B. Financial Sector

In the financial sector [35], institutions such as banks and
insurance companies apply FL to train fraud detection models,
anti-money laundering systems, and credit scoring algorithms.
These applications require collaboration among multiple or-
ganizations that cannot share raw data due to competitive
and legal constraints. FL provides a secure mechanism for
collective intelligence, allowing institutions to build more
reliable models while preserving confidentiality.

C. Iot and Smart Cities

IoT and smart cities represent another domain where FL
is highly relevant [36]. Smart sensors and devices deployed
across cities generate massive amounts of data related to
traffic, pollution, and energy consumption. FL enables dis-
tributed training of predictive models for traffic congestion
management, smart grid optimization, and anomaly detection
in real time [37]. Similarly, autonomous vehicles can collab-
oratively improve driving policies, navigation strategies, and
object detection systems without exchanging raw sensor data,
thus reducing latency and protecting user privacy [38].

D. Wireless Communications

Wireless communications has recently become a critical
application domain for Federated Learning, especially with
the rise of 5G and the development of 6G networks. Modern
wireless systems generate massive volumes of distributed data
from base stations, access points, mobile devices, and IoT
sensors, which makes centralized training impractical due to
bandwidth, latency, and privacy concerns [39], [40] . FL offers
a scalable alternative by enabling distributed model training
directly at the edge of the network, where data is generated,
thereby reducing communication overhead and enhancing data
privacy [15].

One major application of FL in wireless communications is
spectrum allocation. By training models collaboratively across
base stations, FL enables dynamic and efficient spectrum
sharing while minimizing interference. In addition, interfer-
ence management can be enhanced through federated training
of predictive models that anticipate network congestion and
adjust parameters accordingly. Another promising area is
resource allocation, where FL can optimize power control,
channel selection, and scheduling policies based on real-
time distributed data. These solutions improve both spectrum
efficiency and user experience.

In mobility management, FL is being explored for handover



prediction and trajectory forecasting. By allowing base stations
to share only model updates, FL enables seamless connectivity
while protecting user location privacy. Similarly, in device-
to-device (D2D) communication, FL supports collaborative
learning of adaptive transmission strategies, making networks
more resilient to changing environments. At the same time, FL
can be applied to wireless security, where intrusion detection
systems are trained collaboratively across distributed nodes
without centralizing sensitive traffic data.

The integration of FL with Mobile Edge Computing (MEC)
further strengthens its role in wireless systems by empowering
edge servers to participate in model training, thus reducing
latency and enabling near real-time decision-making. More-
over, FL has potential in federated analytics for wireless
systems, where global insights such as usage patterns and
performance metrics are derived without raw data exchange.
With the growing importance of decentralized, intelligent, and
adaptive communication infrastructures, FL is expected to be
a cornerstone of 6G networks, enabling autonomous, privacy-
preserving, and resource-efficient wireless communications.

V. CHALLENGES AND FUTURE WORKS

While Federated Learning has made substantial progress,
it still faces numerous challenges that hinder its widespread
adoption. A fundamental issue is statistical heterogeneity. Data
across clients is often non-IID, imbalanced, or skewed due to
local preferences, environments, or user behaviors. This het-
erogeneity can significantly degrade model convergence and
generalization [6]. Addressing non-IID data remains an open
research problem, with solutions ranging from personalized FL
approaches [14] to robust aggregation rules and meta-learning
techniques.

Another challenge is system heterogeneity. Clients vary
widely in computational power, memory, and network con-
nectivity, especially in cross-device FL. Some devices may
act as stragglers, slowing down global training, while others
may drop out entirely. Designing adaptive algorithms that
account for device heterogeneity and intermittent participation
remains critical [7]. Similarly, communication efficiency is a
bottleneck: transmitting large model updates from thousands
or millions of devices to a central server is resource-intensive.
Compression techniques, quantization, and gradient sparsifica-
tion have been proposed to mitigate this issue [11].

Privacy and security also remain pressing concerns. Al-
though FL does not share raw data, gradients can still leak
sensitive information. Attacks such as membership inference,
gradient inversion, and model reconstruction threaten user
confidentiality. Defenses based on differential privacy [12] and
secure aggregation [13] have been proposed, but these often
come at the cost of reduced accuracy or increased computa-
tional burden. Moreover, FL is vulnerable to poisoning and
backdoor attacks, where adversarial clients inject malicious
updates to manipulate the global model [17]. Building robust
and trustworthy aggregation mechanisms is therefore essential.

In summary, the challenges of FL span technical, security,
and societal dimensions. Addressing these issues will require

interdisciplinary collaboration across machine learning, dis-
tributed systems, cryptography, and policy-making. The solu-
tions developed in these directions will ultimately determine
the scalability, robustness, and ethical deployment of FL in the
coming years.

VI. CONCLUSION

Federated Learning has emerged as a transformative
paradigm that fundamentally redefines how machine learning
models are trained and deployed. By decoupling data collec-
tion from model development, Federated Learning addresses
growing concerns regarding privacy, security, and regulatory
compliance, while simultaneously unlocking opportunities for
collaborative intelligence across distributed environments. This
paradigm shift is particularly timely, as organizations and
individuals increasingly recognize the importance of protecting
data sovereignty in the era of big data. The survey has outlined
the key categories of Federated Learning, including horizontal,
vertical, and transfer learning, as well as cross-device and
cross-silo settings. Each category introduces unique challenges
and opportunities, reflecting the flexibility of Federated Learn-
ing in adapting to diverse application domains. From mobile
services and healthcare to finance, IoT, and next-generation
communication systems, Federated Learning has demonstrated
its utility across a wide spectrum of industries, offering both
theoretical elegance and practical impact.

Looking forward, several promising research directions are
emerging. Personalized Federated Learning offers the potential
to tailor models to individual client needs while retaining the
benefits of collaboration. Hybrid and hierarchical Federated
Learning frameworks may enhance scalability and robustness,
especially in environments with unreliable participants. The
convergence of Federated Learning with enabling technologies
such as edge computing, blockchain, and 6G networks points
toward a future where distributed intelligence becomes an
integral component of digital infrastructure.

In conclusion, Federated Learning stands at the intersection
of technical innovation and ethical responsibility. It represents
not just an alternative to centralized learning, but a broader
rethinking of how knowledge can be co-created in a privacy-
preserving, secure, and decentralized manner. By continuing to
address its challenges and harness its opportunities, Federated
Learning has the potential to serve as a cornerstone for the
next generation of artificial intelligence systems, fostering a
more trustworthy, inclusive, and sustainable AI ecosystem.
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