
PatchCore-Q: Robust On-Device Anomaly Detection
via Quantized Feature Compensation

Hyunyup Kwak
Department of Semiconductor and Display Engineering,

Sungkyunkwan University
Suwon 16419, Republic of Korea
Samsung Institute of Technology

Samsung-ro 1, Yongin-si, Gyeonggi-do 17113, Republic of Korea
skku.lets.go@g.skku.edu

Jitae Shin†
Department of Electrical and Computer Engineering,

Sungkyunkwan University
Suwon 16419, Republic of Korea

jtshin@skku.edu

Abstract—Anomaly detection is increasingly executed directly
on edge devices, where compute and memory are constrained,
latency budgets are tight, and data residency is paramount.
Running train and inference on the device yields low-latency and
confidentiality benefits. PatchCore builds a memory bank of patch-
level features from defect-free images and uses distance-based kNN
scoring at test time, achieving anomaly detection performance.
However, its large FP32 (Floating-Point 32 bit) backbone and
feature storage limit deployment on resource-constrained edge
devices. As representative quantization methodologies, PTQ (post-
training quantization) and QAT (quantization-aware training)
provide practical routes to faster inference and smaller models,
but naively quantizing PatchCore with either scheme can severely
degrade performance by distorting the feature-space geometry
underlying its distance-based scoring. We introduce PatchCore-
Q, a family of quantized PatchCore variants to restore low-
bit model fidelity. PatchCore-QC (Quantization Compensation)
applies lightweight per-channel affine correction for efficiency,
while PatchCore-QA (Quantization Advanced Alignment) uses
geometry-aware alignment losses to match the quantized backbone
to an original backbone. On MVTec AD, our best variant
improves image-level AUROC from 79% (pure PTQ) to 92%,
while achieving 5× model compression and more than 2×
throughput compared to FP32, highlighting post-quantization
feature manipulation as a key ingredient for accurate and efficient
on-device anomaly detection.

Index Terms—Anomaly Detection, Quantization Compensation,
Knowledge Distillation, On-Device AI

I. INTRODUCTION

Visual inspection is a cornerstone of modern manufacturing,
underlying quality control and process efficiency and serving
as a primary use case for unsupervised anomaly detection [8]
in datasets such as MVTec AD [3]. Within this domain,
memory–bank anomaly detectors have set accuracy base-
lines [8], and PatchCore has emerged as a leading approach [1].
PatchCore constructs a memory bank of patch–level feature
embeddings from defect–free images and identifies anomalies at
test time by measuring Euclidean distances between new patch
embeddings and this bank in feature space [1]. Despite its strong
performance, PatchCore’s reliance on a large, FP32–precision
backbone and an FP32 memory bank creates a substantial
barrier to deployment on resource–constrained edge devices
where real-time processing and low power are essential.

Quantization offers a path to lighter backbones and has
been extensively studied as a model compression technique for
efficient inference [4]–[7]. Among quantization methods, PTQ
(Post-Training Quantization) is particularly practical [5]: it
converts FP32 weights and activations to low-bit integers (typi-
cally INT8), yielding sizable reductions in model size, memory
bandwidth, and inference latency. PTQ further requires only a
small, unlabeled calibration set—avoiding costly retraining and
the often-unavailable access to the original large-scale training
data. In contrast, QAT (Quantization-Aware Training) explicitly
simulates quantization effects during training or fine-tuning [4],
[6], [7], thereby improving robustness to quantization noise at
the cost of additional optimization.

However, this efficiency comes with a trade-off. While
accuracy losses in conventional classifiers are often manageable
under quantization, naively applying quantization to PatchCore
can be fatal: performance degrades so severely that the model
becomes unusable. We hypothesize that this is not a generic
accuracy drop but a specific phenomenon we term geometric
fragility. Unlike supervised classifiers that can learn robust
decision boundaries, PatchCore fundamentally depends on
preserving the fine-grained geometry of the feature space. Its k-
nearest-neighbor scoring discriminates subtle normal variations
from true anomalies based on relative distances. Quantization
introduces non-uniform scaling and shifting errors that disrupt
this delicate geometry, collapsing the manifold of normal
features and destabilizing distance-based scoring.

To reconcile efficiency with geometric fidelity, we introduce
PatchCore-Q, a framework that manipulates quantized feature
streams to counteract geometry distortions. The framework
comprises two complementary strategies, each striking a distinct
balance between fidelity and overhead:

1) PatchCore-QC (Quantization Compensation): a high-
efficiency, per-channel affine correction that restores first-
order statistics with negligible overhead.

2) PatchCore-QA (Quantization Advanced Alignment): a
stronger, cross-channel alignment strategy that directly
optimizes the student [9], [10] (quantized) backbone to
match the FP32 teacher’s feature geometry using a light,
geometry-aware objective.

Motivated by the fact that QAT is a widely used alternative
to PTQ, we also study PatchCore under the QAT regime, where
quantization is simulated during fine-tuning and our geometry-
aware objectives are applied to the resulting low-precision
features. In this way, the proposed compensation framework is
shown to be compatible with both PTQ and QAT, yielding a
family of quantized PatchCore models that range from pure
PTQ deployments to QAT-trained variants.

Contributions. (i) We identify and analyze geometric fragility
as the primary way in which quantization breaks memory–bank
detectors such as PatchCore, clarifying why naive quantization
can make them unusable. (ii) We propose PatchCore-Q, a
unified quantization compensation framework with two new
strategies (QC and QA) that directly manipulate feature
representations to mitigate quantization-induced degradation,
and we relate them to existing quantization and compensation
techniques [2], [5]. (iii) Through extensive experiments on
MVTec AD [3], including PTQ, QAT, and compensation-
enhanced baselines, we show that the proposed methods retain
the efficiency of INT8 / INT4 inference while recovering—and
in some cases surpassing—FP32 accuracy.

II. PRELIMINARY

A. PatchCore Recap

PatchCore is built on a simple but powerful idea: normal
images can be represented by a set of patch-level features,
and anomalies can be detected by measuring how far a new
image’s patches lie from this “memory” of normal patterns.
Specifically, features are extracted from intermediate layers
of a pretrained encoder (e.g., Wide-ResNet50-2 at layer2 and
layer3), then upsampled and concatenated so that each spatial
location corresponds to a feature vector (or patch embedding).
A coreset selection algorithm is used to store a representative
subset of these embeddings as the memory bank M.

During testing, each patch embedding z, the feature-space
representation of a local image patch, is scored by its distance
to the closest memory item, and the image-level score is taken
as the maximum among its patch scores:

S(x) = max
z∈P(x)

(min
m∈M

∥z −m∥2). (1)

Here, x denotes the test image and P(x) the set of patch
embeddings extracted from x. Each embedding z ∈ P(x) is
scored by its distance to the closest memory item m ∈ M,
where M is the memory bank constructed from normal data.
The image-level score S(x) is then defined as the maximum
patch score, indicating the most anomalous patch within the
image. This definition highlights the critical role of geometry:
the relative distances between embeddings directly determine
whether an image is classified as normal or anomalous. Even
small shifts in feature space can change nearest-neighbor
assignments and thereby degrade AUROC.

B. Quantization Methodology

Post-Training Quantization (PTQ). The backbone encoder
is frozen and quantized for efficient on-device inference using a

standard uniform affine quantizer [5]. Formally, let yℓ = fℓ(x)
denote the activation of the encoder at layer ℓ. A uniform
quantizer Q(·) maps real-valued numbers into a fixed set of
integer levels. For a scalar u, we use

q = clip
(⌊

u
s

⌉
+ z, qmin, qmax

)
, ũ = s (q − z), (2)

where s is the scale, z is the zero-point, q is the integer code,
and ũ is the dequantized approximation of u. In practice, this
operator is applied element-wise to yℓ, yielding quantized
features ỹℓ = Qℓ(yℓ; sℓ, zℓ) for each layer. PTQ, the primary
quantization method in our study, estimates the quantization
parameters (sℓ, zℓ) from a small calibration set without any
gradient updates [5]. This makes PTQ highly practical, but the
resulting quantization error can introduce structured scaling
and shifting of intermediate features, which in turn distorts the
relative distances between patch embeddings and motivates an
explicit compensation mechanism.

Quantization-Aware Training (QAT). To further improve
robustness against quantization noise, we also consider a QAT
variant [4], [6], [7]. Instead of quantizing a pretrained network
only once after training, QAT inserts the same quantizer Q(·)
into the forward path during fine-tuning so that the model
parameters can adapt to the quantized representation. Let
fqat(x; θ) denote the network where selected weights and
activations are replaced by their quantized counterparts, e.g.,

ỹℓ = Qℓ

(
fℓ(ỹℓ−1; θℓ)

)
, (3)

and the overall objective is

θ⋆ = argmin
θ

Ex

[
Ltask(fqat(x; θ))

]
, (4)

where Ltask is the task loss (in our case, derived from normal
samples for anomaly detection). During backpropagation, gradi-
ents through Q(·) are through Q(·) are typically approximated
using straight-through estimators, allowing the network to learn
parameters θ that are explicitly optimized for low-bit inference.
In our framework, QAT serves as a strong quantized training
scheme, and our geometry-aware compensation objectives are
applied on top of PTQ- or QAT-trained backbones to further
stabilize their low-bit feature geometry.

C. Affine Compensation

This work aims to directly compensate quantization error
through lightweight affine mappings applied on top of quantized
networks. Notably, the Quantization-aware Weight Transfor-
mation (QwT) framework [2] proposes to approximate the
discrepancy between quantized and full-precision representa-
tions using a closed-form, layer-wise affine correction. The
central idea is that quantization error, while structured, can
often be captured by a low-complexity affine transformation
applied post quantization:

ŷ ≈ Wỹ + b, (5)

where ỹ is the quantized feature, and (W, b) are lightweight
compensation parameters derived without end-to-end retraining.
This philosophy emphasizes preserving feature fidelity through

Fig. 1: Overall architecture of PatchCore-Q. Compensation modules are refine the locally-aware patch features extracted from the quantized encoder to match
them against the coreset. Memory bank construction and nearest-neighbor scoring follow the standard PatchCore pipeline.

simple, analytic corrections rather than re-optimizing the
full network. Our PatchCore-QA variant inherits this spirit
by extending such linear compensation to geometry-sensitive
anomaly detection, where the relative arrangement of embed-
dings in feature space is critical.

III. PROPOSED METHOD

In this section, we describe PatchCore-Q, a quantization
compensation framework designed to preserve the feature
space geometry that underlies PatchCore’s kNN-based anomaly
scoring. Our design follows a teacher–student paradigm: an
FP32 PatchCore model serves as the teacher, while a quantized
PatchCore model acts as the student. PatchCore-Q introduces
two complementary strategies, PatchCore-QC and PatchCore-
QA, which operate on top of the quantized backbone to restore
the distance structure required for reliable anomaly detection.

A. Overall Framework

We first train a standard FP32 PatchCore model and construct
the memory bank using defect-free training images. This model
defines the target feature geometry and the reference distance
distribution. Next, we obtain a quantized backbone using either
PTQ or QAT. PatchCore-Q compensates for this degradation by
explicitly aligning the quantized features with the FP32 features.
During the compensation stage, normal training images are
fed to both the teacher and the quantized student. PatchCore-
QC estimates per-channel affine parameters that approximate
the teacher’s activations from the student’s activations, while
PatchCore-QA further refines the student backbone itself
through geometry-aware objectives. At inference time, only the
compensated quantized backbone and the FP32 memory bank
are used: test images are processed by the quantized backbone,

optionally transformed by stored compensation parameters,
converted into patch embeddings, and finally scored via kNN
distance to the memory bank. Thus, the compensation is learned
once on normal data and then reused for all test samples without
additional overhead.

B. PatchCore-QC: Per-Channel Affine Compensation

PatchCore-QC aims to correct quantization error with
minimal cost by learning lightweight affine transformations on
top of the quantized backbone. Let y(q)ℓ ∈ RCℓ×Hℓ×Wℓ denote
the activation tensor at layer ℓ of the quantized student, and y

(t)
ℓ

the corresponding activation of the FP32 teacher. PatchCore-QC
introduces a small affine “compensation head” parameterized
by (Wℓ, bℓ) and applies

ŷℓ = fℓ
(
y
(q)
ℓ ;Wℓ, bℓ

)
, (6)

where fℓ is implemented as a 1 × 1 convolution (or linear
layer) followed by bias addition. Conceptually, one can interpret
∆yℓ = ŷℓ−y

(q)
ℓ as a compensation delta feature, but in practice

we do not store ∆yℓ explicitly; only the affine parameters
(Wℓ, bℓ) are learned and reused at inference.

During the QC stage, we freeze both the FP32 teacher
and the quantized backbone and estimate (Wℓ, bℓ) on normal
images so that ŷℓ regresses toward y

(t)
ℓ (using the closed-form

QwT-style estimator described in Section II-C). Intuitively,
the compensation head learns how the quantized activations
must be shifted and mixed across channels to mimic the
teacher’s features. At inference time, the teacher network is
discarded and only the quantized backbone plus the stored
(Wℓ, bℓ) are used: for each test image, the quantized activation
y
(q)
ℓ is passed through fℓ(·;Wℓ, bℓ) to obtain ŷℓ, and all

subsequent PatchCore operations (patch extraction, coreset,

kNN scoring) operate on these compensated features. As a
result, QC incurs minimal runtime overhead while providing a
coarse but effective correction of quantization-induced shifts
and distortions.

C. PatchCore-QA: Geometry-Aware Alignment

While PatchCore-QC provides a lightweight, layer-wise cor-
rection, its per-channel affine model is limited in how precisely
it can reconstruct the FP32 feature geometry. PatchCore-QA
therefore adds a geometry-aware fine-tuning stage that learns
delta features on normal images so that compensated quantized
embeddings better match the FP32 ones.

Let z denote FP32 patch embeddings and z̃ the corresponding
embeddings obtained from the quantized backbone. A QwT-
style compensation head takes the input image and produces
aligned deltas ∆z, and the final embeddings used by PatchCore-
QA are

ẑ = z̃ +∆z. (7)

QA minimizes a multi-term loss on (ẑ, z). The feature align-
ment term combines a robust regression loss with a directional
penalty:

Lfeat =
∥∥ẑ − z

∥∥
smooth-L1

+ 1
2

(
1− cos(ẑ, z)

)
, (8)

where ∥ · ∥smooth-L1 is a Huber-style smooth L1 loss and
cos(ẑ, z) is the cosine similarity between compensated and
FP32 embeddings. This term encourages QA to match both
the magnitude and direction of FP32 patch features.

To preserve the anomaly-sensitive distance structure, we
introduce a distance-distribution matching term with respect
to a memory-bank coreset C:

ds(i) = min
c∈C

(
1− cos(ẑi, c)

)
, (9)

dt(i) = min
c∈C

(
1− cos(zi, c)

)
, (10)

Ldist =
1

N

N∑
i=1

(
ds(i)− dt(i)

)2
. (11)

Here ds(i) and dt(i) are the nearest-neighbor cosine distances
from compensated and FP32 embeddings to the coreset.
Minimizing Ldist aligns the local distance distributions that
drive PatchCore’s kNN-based anomaly scores.

In addition, we apply an ℓ2 regularizer to the compensation
parameters W ,

Lreg = ∥W∥2F , (12)

and define the overall objective as

L = αLfeat + β Ldist + λLreg, (13)

with α, β, and λ controlling the trade-off among feature
alignment, distance matching, and regularization.

At inference time, the FP32 model is discarded. The
quantized backbone produces z̃, the compensation head outputs
∆z for each test sample, and the element-wise sum ẑ = z̃+∆z
is fed into the existing PatchCore pipeline (patch extraction,
coreset, kNN scoring). Conceptually, PatchCore-QC performs
a coarse, per-channel shift using affine parameters, while

PatchCore-QA supplies finer, geometry-aware deltas in feature
space, making the two mechanisms complementary.

IV. EXPERIMENT

A. Datasets and Evaluation Metrics

We evaluate PatchCore-Q on the MVTec AD dataset [3], a
standard industrial visual anomaly benchmark consisting of 15
object and texture categories with normal-only training images
and mixed normal/defective test images. Following common
practice, we report three performance metrics: image-level
AUROC for classifying each image as normal or anomalous,
pixel-level AUROC for anomaly localization, and AUPRO (area
under the per-region overlap curve) to summarize region-wise
segmentation quality. In addition, we report two efficiency
metrics, model size and per-image latency, to quantify the
impact of quantization on compactness and inference speed.

B. Environmental Setup

TABLE I: Experimental setup (hardware, training schedule,
and calibration details).

Category Value

GPU A5000
CUDA Version 12.2
PyTorch Version 2.3.1
Batch size 32
PTQ Calibration Iterations 500
QAT Epochs 10
QAT learning rate 2e-5
PTQ Calibration Iterations 500
QwT γ (initial) 0.9
QwT β (initial) 0.001
Alignment Epochs 80
Alignment learning rate 2e-5

All experiments are conducted on a single NVIDIA RTX
A5000 GPU with a standard PyTorch/CUDA stack, using the
training schedules and hyper-parameters summarized in Table I.
This configuration is used for the FP32 baseline, pure PTQ/QAT
models, and all PatchCore-Q variants.

C. Implementation Details

We adopt Wide-ResNet-50-2 pretrained on ImageNet as
the backbone and extract feature maps from the second and
third residual stages. An FP32 PatchCore baseline is first
constructed by converting these features into locally aware
patch embeddings, applying coreset subsampling, and building
a memory bank on normal training images; this FP32 memory
bank is reused for all quantized variants.

For the quantized models, we consider both PTQ and QAT
backbones. For the QAT baseline, our goal is to isolate the
incremental effect of the proposed compensation module on top
of representative quantization pipelines(PTQ and QAT), rather
than to maximize the absolute QAT performance by extensive
hyperparameter tuning. Therefore, we adopt a single commonly-
used QAT recipe with a fixed training budget. Although more
aggressive tuning (e.g., longer training or per-category learning

rates) may further improve QAT, such optimization is beyond
the scope of our contribution.

PatchCore-QC estimates lightweight affine compensation
parameters on normal images using the QwT-style procedure
described in Section II, while PatchCore-QA trains a geometry-
aware compensation head with the loss defined in Section III to
produce aligned delta features. At test time, each method (FP32,
pure PTQ/QAT, QC, or QA) produces patch embeddings that
are scored against the FP32 memory bank via kNN distance,
and anomaly metrics are computed from the resulting scores.

D. Quantitative Results

Table II summarizes the results for the FP32 baseline, pure
PTQ/QAT models, and our quantization-compensated variants.

Several observations can be drawn:
• Accuracy restoration. In the most aggressive INT4 set-

ting, pure quantization degrades performance substantially:
image AUROC drops to about 78–80% and AUPRO to

roughly 47% (PTQ INT4), showing that low-bit PatchCore
is highly sensitive to geometric distortion. With our
compensation, the best INT4 PatchCore-QA variant lifts
image AUROC to 92.7% and pixel AUROC to above 93%,
while AUPRO exceeds 69%. These numbers approach the
FP32 baseline (96.4% / 96.9% / 78.3%), indicating that
most of the accuracy lost by pure INT4 quantization is
recovered.

• Efficiency gains. Compared to FP32 PatchCore (197 MB,
18.5 ms/image), the best INT4 PatchCore-QA model is
about 5× smaller (≈ 38 MB) and more than 2× faster (≈
8–9 ms/image). Thus, even our most accurate compensated
variant remains markedly more compact and efficient than
the FP32 baseline.

Overall, the results show that PatchCore-Q achieves near-
FP32 accuracy in the INT8/INT4 regime, while preserving
the compression and latency advantages of aggressive low-bit
quantization.

TABLE II: Quantization performance comparison.

Model Quantization AUROC
image (%) ↑

AUROC
pixel (%) ↑

AUPRO
(%) ↑

Model
Size (MB) ↓

Latency
(ms/img) ↓

Patchcore None (FP32) 96.40 96.88 78.29 197.16 18.49

Patchcore PTQ INT8 92.26 95.38 76.37 65.69 8.25
Patchcore QAT INT8 84.03 92.93 68.01 23.71 8.46
Patchcore-QC PTQ INT8 96.75 97.44 78.63 70.93 11.12
Patchcore-QC QAT INT8 86.63 94.42 65.61 28.95 13.36
Patchcore-QA (Ours) PTQ INT8 96.76 97.45 78.88 75.57 13.42
Patchcore-QA (Ours) QAT INT8 87.92 94.56 70.54 34.65 14.97

Patchcore PTQ INT4 79.64 79.96 46.97 25.46 5.02
Patchcore QAT INT4 77.93 89.08 61.09 25.12 6.23
Patchcore-QC PTQ INT4 84.81 88.79 61.28 30.59 6.37
Patchcore-QC QAT INT4 88.61 93.34 71.77 30.47 7.01
Patchcore-QA (Ours) PTQ INT4 92.74 93.66 69.18 37.96 8.33
Patchcore-QA (Ours) QAT INT4 89.39 94.46 72.29 37.62 8.85

Fig. 2: 3D Kernel PCA visualization for the MVTec AD tile category. Normal features for (left) FP32, (center) INT8, and (right) INT8 + Ours are projected
onto the first three Kernel PCA components (PC1, PC2, PC3).

E. Qualitative Results

Beyond aggregate metrics, we qualitatively examine how
quantization and our compensation affect the underlying
feature geometry. We focus on two complementary indicators:
(i) Kernel PCA projections of patch embeddings for the
tile category, and (ii) nearest-neighbor distance distributions
between normal samples and the coreset. In both cases, we
compare three models that appear in our legends: FP32, INT8,
and INT8 + Ours. The following visual analyses show that
INT8 quantization distorts the PatchCore feature manifold,
whereas INT8 + Ours largely restores the FP32 structure.

F. Visual Analysis of the Quantization Compensation

1) Geometric Structure via Kernel PCA: Fig. 2 shows the
feature-space distribution for the MVTec AD tile category,
projected onto the first three Kernel PCA components (PC1,
PC2, PC3) that capture the largest nonlinear variance.

• FP32: Normal patches form a smooth nonlinear manifold
around the memory bank, while abnormal patches occupy
a clearly separated region. This structure allows kNN
scoring to cleanly distinguish defects.

• INT8: After pure INT8 quantization, the normal manifold
partially collapses toward the memory bank and mixes
with abnormal patches. The separation boundary becomes
blurred, consistent with the accuracy drop of the INT8
rows in Table II.

• INT8 + Ours: With our compensation, the normal mani-
fold and abnormal region recover a configuration close
to FP32. Normal patches again wrap around the memory
bank, and abnormal patches are pushed outward, indicating
that the semantic geometry required by PatchCore is
effectively restored.

Fig. 3: Distribution of nearest-neighbor distances between normal training
samples and the closest coreset member for the MVTec AD tile category.
The x-axis denotes cosine distance to the nearest coreset member, and the
y-axis is the probability density.

2) Distance Distribution Analysis: To complement the
geometric view in Fig. 2, Fig. 3 shows the nearest-neighbor
distance distribution between normal training samples and
their closest coreset member. An ideal PatchCore model yields
distances that are small (shifted to the left), indicating that
normal samples lie tightly around the memory manifold.

• INT8: The INT8 model produces larger and more dis-
persed distances than FP32; the distribution shifts to the
right and becomes wider. Many normal samples are pushed
away from the memory manifold, leading to unstable and
less reliable anomaly scores.

• INT8 + Ours: After applying our compensation, the dis-
tance distribution moves back toward the FP32 reference.
Normal samples are again concentrated near the coreset,
confirming that our method recovers the core distance
statistics that drive PatchCore’s kNN-based scoring.

V. CONCLUSION

In this work, we proposed PatchCore-Q, a quantized feature
compensation framework for on-device industrial anomaly de-
tection. We show that naive quantization induces structured dis-
tortions in intermediate features, breaking the local Euclidean
geometry that PatchCore relies on for kNN-based scoring.
Based on this, we argue that preserving FP32 feature geometry—
rather than only minimizing layer-wise reconstruction error—is
crucial for retaining anomaly detection accuracy under low-bit
constraints.

Experiments support this claim both quantitatively and qual-
itatively. PatchCore-QA restores image-level AUROC from the
mid-70% range (pure PTQ) to around 95%, while substantially
reducing model size, latency, and runtime memory. Kernel
PCA visualizations and nearest-neighbor distance distributions
further indicate that our compensation recovers the separation
between normal/abnormal patches and re-concentrates normal
samples around the memory manifold. These results collectively
suggest that local geometry preservation is the key mechanism
enabling FP32-level accuracy in a compact form.

Finally, PatchCore-Q is platform-agnostic: it operates directly
on quantized tensors and requires no device-specific kernels.
While absolute latency/energy depends on hardware, the
consistent reductions in storage and runtime memory—together
with standard INT8/4 execution—make the method inherently
on-device friendly. We will report additional on-device latency
and energy results on ARM/Jetson platforms in future work.

REFERENCES

[1] L. Roth, et al., “Towards Total Recall in Industrial Anomaly Detection,”
in CVPR, 2022.

[2] J. Wu, et al., “Quantization without Tears,” CVPR, 2025.
[3] P. Bergmann, et al., “MVTec AD—A Comprehensive Real-World Dataset

for Unsupervised Anomaly Detection,” in CVPR, 2019.
[4] S. Jacob, et al., “Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference,” in CVPR, 2018.
[5] S. Nagel, et al., “Up or Out: Quick Post-Training Quantization of

Convolutional Networks,” in ECCV Workshops, 2020.
[6] S. Esser, et al., “Learned Step Size Quantization,” in NeurIPS, 2019.
[7] J. Choi, et al., “PACT: Parameterized Clipping Activation for Quantized

Neural Networks,” arXiv preprint arXiv:1805.06085, 2018.
[8] T. Defard, et al., “PaDiM: A Patch Distribution Modeling Framework for

Anomaly Detection and Localization,” in ICPR, 2021.
[9] G. Hinton, et al., “Distilling the Knowledge in a Neural Network,” in

NIPS, 2015.
[10] A. Romero, et al., “FitNets: Hints for Thin Deep Nets,” in ICLR, 2015.

