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Abstract— The Internet of Medical Things (IoMT) has
become a vital component of modern healthcare, allowing
continuous monitoring, remote diagnosis, and personalized
treatment. However, the sensitivity of medical data and the
critical nature of healthcare systems make [oMT networks prime
targets for cyberattacks. To overcome these challenges, this study
introduces an Intrusion Detection System (IDS) based on Long
Short-Term Memory (LSTM), specifically designed for IoMT
environments. The MedSec-25: IoMT Cybersecurity Dataset is
utilized, covering both benign traffic and multiple attack
categories, including Exfiltration, Initial Access, Lateral
Movement, and Reconnaissance. To improve computational
efficiency, Chi-Square filter-based feature selection is employed
to reduce the feature set from 83 to 20 features. For validation,
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) models are also implemented for comparison.
Among the evaluated models, the proposed Chi-Square + LSTM
approach achieved the best results, reaching an accuracy of
0.992751, precision of 0.992724, recall of 0.992751, and an F1-
score of 0.99273S, thereby demonstrating superior detection
accuracy and efficiency.

Keywords— Chi-Square, Cybersecurity, Feature Selection,
Internet of Medical Things (IoMT), Intrusion Detection System
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L. INTRODUCTION

The swift advancement of the Internet of Things (IoT) has
brought significant transformations across various domains,
such as smart homes, industrial systems, and healthcare [1].
Among these, the Internet of Medical Things (IoMT) has
gained notable momentum, largely driven by the COVID-19
pandemic, which spurred the rapid integration of remote
healthcare solutions [2]. ToMT networks enable continuous
monitoring, remote diagnosis, and timely medical
interventions. As a result, JoMT has become a fundamental
component of modern healthcare systems.

IoMT networks typically consist of interconnected sensors,
biosensors, and wearable devices that monitor vital signs,
medical conditions, and treatment progress of patients [3].
These devices transmit sensitive health data to medical
professionals through wireless communication channels,
supporting real-time decision-making and personalized
healthcare services. The reliability and accuracy of such

systems depend heavily on the confidentiality, availability, and
integrity of the transmitted data [4].

However, the increasing reliance on IoMT networks
introduces serious cybersecurity challenges [5]. Healthcare
data, which is highly sensitive and confidential, has become a
prime target for cybercriminals. Unauthorized access or
manipulation of IoMT data poses serious security risks, as it
can compromise patient privacy and hinder critical hospital
operations,  potentially  resulting in life-threatening
consequences. Therefore, developing robust Intrusion
Detection Systems (IDS) tailored for IoMT environments is
crucial to safeguard patient information, ensure secure data
transmission, and maintain the resilience of healthcare
infrastructure.

A variety of IDSs have been proposed to secure IoMT
networks. In one of these studies, [6] introduced a swarm-
neural network-based IDS to address security and privacy
concerns in patient data transmission. The model was assessed
on the NF-ToN-IoT dataset, incorporating telemetry, operating
system, and network data, and achieved 89% accuracy,
outperforming standard intrusion detection models on the same
dataset. A recent work studied in [7] proposed an IDS using a
stacking ensemble of deep learning and machine learning
models within a Kappa Architecture framework to support
real-time data processing. The system effectively detects and
classifies various cyberattacks, achieving 0.991 accuracy in
binary detection and 0.993 accuracy in multi-class detection,
demonstrating the capability of using ensemble learning.
Similarly, [8] proposed an IDS using tree-based machine
learning classifiers incorporated with filter-based feature
selection approaches. The approach applied XGBoost and
Mutual Information for feature selection, followed by a set
intersection method to extract common features, thereby
improving accuracy and reducing computational cost.
Evaluated on the CICIDS2017 dataset, the model scored
98.79% accuracy, demonstrating its effectiveness for binary
intrusion detection. Furthermore, [9] developed an IDS by
integrating Recursive Feature Elimination (RFE) with deep
learning and machine learning models, evaluated on the
WUSTL-EHMS real-time dataset. The proposed RFE-based
Decision Tree achieved accuracy of 97.85%, demonstrating
effective anomaly detection in IoMT systems against
cyberattacks. In another study, [10] proposed a machine
learning-based IDS that employed classifiers such as Decision



Trees, Logistic Regression, Naive Bayes, Random Forest,
Adaptive Boosting, Gradient Boosting, and XGBoost. Among
these, Adaptive Boosting achieved the best performance on the
ToN-IoT dataset across multiple metrics, including accuracy,
precision, recall, Fl-score, false detection rate, and false
positive rate.

[11] proposed a blockchain-driven federated learning-based
IDS, addressing privacy and security challenges inherent in
centralized ML approaches. The system combines blockchain
for secure transaction records, federated learning for local
model training, and adaptive Convolutional Neural Network
(CNN) model for classification and evaluated on the Edge-
IIoTSet and TON-IoT datasets, achieved accuracies 97.43%,
and 98.21%, respectively. Similarly, [12] proposed a machine
learning-based IDS to mitigate DDoS attacks in blockchain-
enabled [IoMT networks using the CICIoMT2024 dataset. The
study evaluated XGBoost, Decision Tree, and Random Forest
models, with the Decision Tree achieving the most efficient
prediction time while maintaining high performance across
standard classification metrics. Another study [13] explored the
use of ensemble learning with meta-learning for IDS. The
proposed weighted meta-learning approach adaptively allocates
voting weights to classifiers based on confidence, loss, and
accuracy, improving detection performance. Experiments
demonstrated superior results compared to existing models,
highlighting the potential of meta-learning to enhance IDS
robustness in oM T networks.

However, most of these IDSs do not specifically target
medical-domain datasets and instead rely on general IoT
datasets, which do not accurately represent the unique
characteristics of medical network environments. In this
research, an LSTM-based IDS is proposed to detect
cyberattacks in IoMT networks, specifically targeting a
medical-domain dataset. To enhance efficiency, Chi-Square
filter-based feature selection is applied to reduce the feature
set, thereby lowering computational overhead. For comparative
analysis, Recurrent Neural Network (RNN)-based and CNN-
based models are also employed, and the results show that the
proposed LSTM-driven IDS outperforms these approaches.
The main contributions of this study are summarized as
follows:

e An LSTM-based IDS is developed for IoMT
networks, achieving superior performance compared
to other methods reported in the literature on the same
dataset.

e The feature set is reduced from 83 to 20 using Chi-
Square filter-based feature selection, improving
computational efficiency.

e RNN and CNN models are also implemented for
comparison to verify the effectiveness of the proposed
LSTM-based approach.

The remainder of this paper is organized as follows:
Section 2 describes the methods used in this study, Section 3
provides details of the IoMT dataset, Section 4 explains the
proposed methodology and preprocessing steps, Section 5
presents and discusses the results, and Section 6 concludes the

paper.

II. METHODS

This section outlines the methodologies employed in this
study. An LSTM-based IDS is proposed for detecting
cyberattacks in an [oMT network. The model is designed to
perform multi-class classification, enabling it to distinguish
between different types of attacks as well as non-attack traffic.
To reduce the computational cost of the IDS, Chi-Square
feature selection is applied to reduce the number of input
features. The principles of Chi-Square feature selection method
and the LSTM deep learning approach are described in detail
below.

A. Chi-Square

Chi-Square is a statistical method used to evaluate the
dependency between the target variable and each feature [14].
In the context of classification, it evaluates the extent to which
the actual distribution of feature values differs from the
distribution expected under the assumption of independence
from the class labels. Features with higher Chi-Square scores
are regarded more relevant, as they exhibit a stronger
association with the target class. The Chi-Square test statistic is
calculated as follows:

X% =Y((0; - E)*/E) (1)
where:
e E;is the expected frequency of feature value i,
e Qi is the actual frequency of feature value i,

e X2 is the Chi-Square score.

B. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) method is an advanced
variant of RNNs modeled to effectively process sequential
data, making it highly appropriate for time-series analysis tasks
such as network traffic data [15].

Unlike traditional RNNs, which often suffer from the
vanishing gradient problem that restricts their capability to
preserve information across long sequences, LSTMs over-
come this limitation through a unique memory cell
architecture. This design enables LSTMs to capture both long-
term and short-term temporal dependencies, thereby enhancing
their capability to model complex sequential patterns in data
[16].

A typical LSTM unit consists of several key components:

e  Cell State: Operates as the memory of the network,
maintaining and transferring important information
across time steps. It enables the selective preservation
or removal of information through gating
mechanisms, thereby  facilitating  long-term
dependency learning.

e Input Gate: Regulates the incorporation of new
information into the cell state by determining which
parts of the previous hidden state and the current input
should be stored.



The workflow of the proposed IDS is illustrated in Fig. 1
and consists of two main steps: data preprocessing, and
classification. Each of these steps is described in detail below.

¢ Forget Gate: Controls the disposal of irrelevant or
outdated information from the cell state, guaranteeing
that only useful knowledge is preserved for future

predictions.
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capture these sequential patterns by mapping the input time-
series data into a latent representation and propagating
contextual information across multiple time steps. The final
hidden state of the LSTM is then passed to dense layers for
classification, where softmax or sigmoid activation functions
are used depending on whether the task comprises multi-class
or binary attack detection.

III. IOMT INTRUSION DETECTION DATASET

The dataset used in this study is the MedSec-25: loMT
Cybersecurity Dataset [17], which is publicly available at
https://www kaggle.com/datasets/abdullah001234/medsec-25-
iomt-cybersecurity-dataset (accessed on 17 September 2025).
Unlike most existing datasets that rely on generic intrusion
detection collections unrelated to JoMT communications, this
dataset captures realistic traffic from a custom-built healthcare
IoT lab that mimics hospital operations. The lab setup
incorporated diverse IoMT devices and protocols (e.g., MQTT,
SSH, Telnet, FTP, HTTP, DNS) to reflect real-world
communication patterns. The dataset was collected from a
range of medical sensors and environmental sensors connected
through Raspberry Pi nodes to an IoT server, with network
traffic recorded over 7.5 hours. In total, the dataset comprises
554,534 flows, consisting of 83 input features and a single
target column.

Data collection was conducted under normal conditions
(Benign) and four types of cyberattacks: Reconnaissance,
Initial Access, Lateral Movement, and Exfiltration.
Comprehensive details of the dataset, including the data
collection  process, experimental setup, equipment
specifications, feature descriptions, and device configurations,
are provided in [17]. The dataset was created by collecting
network traffic data in a controlled laboratory environment at
Rochester Institute of Technology, Dubai, and has been fully
anonymized in compliance with privacy regulations such as
HIPAA. No personally identifiable information or sensitive
patient data were included.

IV. ARCHITECTURE OF PROPOSED INTRUSION DETECTION
SYSTEM (IDS)

This section presents the architecture of the proposed IDS
model employed in this study. The proposed IDS is based on a
LSTM network, designed to detect cyberattacks in a [oMT
environment. It is capable of performing multi-class
classification.

Fig. 1. Workflow Diagram of the Proposed IDS.

A. Data Preprocessing

In the data preprocessing step, features with constant values
were first eliminated, as they do not contribute to the learning
process. The eliminated features include: Bwd Blk Rate Avg,
Fwd Byts/b Avg, Init Fwd Win Byts, Fwd Seg Size Min, Fwd
URG Flags, Bwd Pkts/b Avg, Fwd PSH Flags, Fwd Blk Rate
Avg, Bwd Byts/b Avg, and Fwd Pkts/b Avg, reducing the
number of features to 73.

The dataset contained non-numerical columns such as
Timestamp, Src IP, and Dst IP, which needed to be converted
into numerical values to enable numerical processing by the
machine learning model. The Timestamp attribute was
decomposed into new columns representing second, minute,
hour, year, month, and day. Both Src IP and Dst IP were
transformed into their corresponding integer representations.
Additionally, the Flow ID feature was dropped since its
information is already captured by other features such as Dst
Port, Dst IP, Src IP, and Protocol. After these transformations,
the dataset contained 77 features.

The features were standardized using the Min-Max Scaler
to normalize the input space. The scaling formula is defined as
follows:

x' = (x _ xmin)/(xmax _ xmin) (2)

where x is the original feature value, x™* is the maximum
value of the feature, and x™" is the minimum value of the
feature. Following this, class labels were then encoded into
numerical values using a Label Encoder (with mappings as
Benign: 0, Exfiltration: 1, Initial Access: 2, Lateral Movement:
3, and Reconnaissance: 4).

Since 77 features is computationally expensive for IDSs,
which require fast attack detection, Chi-Square feature
selection was applied to reduce the number of features to 20.
The selected features include Dst Port, Flow Duration, Flow
IAT Std, Flow IAT Max, Fwd IAT Tot, Bwd IAT Tot, Bwd
IAT Std, Bwd IAT Max, Bwd PSH Flags, RST Flag Cnt, PSH
Flag Cnt, ACK Flag Cnt, Down/Up Ratio, Idle Mean, Init Bwd
Win Byts, Idle Min, Idle Max, Month, Day, and Minute. This
reduction enhances the computational efficiency of the
machine learning model while retaining discriminative power.



Finally, the preprocessed dataset was split into two parts:
80% was used for training the model, while the remaining 20%
was set aside for testing its performance.

B. Architecture of the LSTM-driven IDS Model

The proposed model is designed using a sequential
architecture comprising one Input layer, one LSTM layer, one
Dense layer, two Batch Normalization layers, and two Dropout
layers. It initiates with an input layer that receives the
preprocessed feature set. A single LSTM layer follows it with
16 hidden units, which captures temporal dependencies within
the IToMT communication data. To improve training stability
and accelerate convergence, a Batch Normalization layer is
employed immediately after the LSTM output. This is
followed by a Dropout layer with a rate of 0.3 to mitigate
overfitting.

The extracted temporal features are further refined through
one fully connected (Dense) layer with 8 neurons, employing
the activation function as ReLU. This Dense layer is
interleaved with Batch Normalization and Dropout layers to
enhance generalization. The architecture concludes with an
output Dense layer, utilizing softmax activation function for
multi-class classification process.

For training the model, the Adam optimizer was used with
a learning rate of 0.0001, which helped the model learn
steadily without making sudden jumps in the parameter
updates. The loss function was set as categorical cross-entropy,
since the task involved multi-class classification and this
function is well-suited for handling errors across multiple
classes. Training was run for 50 epochs with a batch size of 32,
a setup that provided a good balance between training speed
and the model’s ability to generalize.

V. RESULTS AND DISCUSSION

A. Evaluation Metrics

The performance of the proposed LSTM-based IDS was
assessed using widely adopted classification metrics, including
Fl-score, precision, recall, and accuracy. These evaluation
metrics are derived from the fundamental evaluation
parameters, including False Positives (FP), True Positives
(TP), False Negatives (FN), and True Negatives (TN), where
TP denotes correctly classified attack instances, TN represents
correctly recognized normal traffic, FP corresponds to normal
traffic misclassified as attacks, and FN denotes attack instances
that were incorrectly classified as normal. Based on these
values, the performance metrics are defined as follows:

2 X (Recall x Precision)

F1 — Score = — 3)
Recall + Presicion

Precision =TP/(FP + TP) 4)

Recall =TP/(FN +TP) %)

Accuracy = (TP +TN)/(FP+ TP +FN +TN) (6)

B. Discussion of Experimental Results

The performance of the proposed Chi-Square + LSTM
model was compared with Chi-Square + RNN, and Chi-Square

+ CNN models using standard classification metrics: F1-score,
precision, recall, and accuracy. The results are summarized in
Table 1.

Among the models, the Chi-Square + LSTM approach
achieved the highest performance, with an Fl-score of
0.992735, precision of 0.992724, recall of 0.992751, and
accuracy of 0.992751. The Chi-Square + RNN model also
demonstrated strong performance, achieving an Fl-score of
0.990654, precision of 0.990630, recall of 0.990740, and
accuracy of 0.990740, indicating that incorporating temporal
dependencies improves classification results compared to
CNN-based models. The Chi-Square + CNN model, while
performing well, yielded lower metrics with an Fl-score of
0.942138, precision of 0.953244, recall of 0.937641, and
accuracy of 0.937641.

The results indicate that combining Chi-Square feature
selection with recurrent architectures, particularly LSTM,
significantly enhances classification performance. This
improvement can be attributed to ability of LSTM to capture
long-term dependencies in the feature space, which is
especially beneficial for datasets with complex temporal or
sequential patterns. The consistent improvement across all
evaluation metrics demonstrates the robustness and reliability
of the proposed Chi-Square + LSTM model compared to other
architectures.

TABLE L PERFORMANCE RESULTS OF THE CLASSIFICATION MODELS
WITH FEATURE SELECTION PROCESS
Model F1-Score | Precision | Recall Accuracy
Chi-Square + CNN 0.942138 | 0.953244 0.937641 | 0.937641
Chi-Square + RNN 0.990654 | 0.990630 0.990740 | 0.990740
Chi-Square + LSTM 0.992735 | 0.992724 0.992751 | 0.992751

*Best results are in bold.

The class-level performance of the proposed LSTM-based
IDS with Chi-Square feature selection method was evaluated to
assess its ability to accurately detect each type of attack. In
addition proposed IDS, the class-level performances of CNN-
based IDS and RNN-based IDS were also assessed. The
obtained class-based results of Chi-Square + CNN, Chi-Square
+ RNN, and Chi-Square + LSTM approaches are given in
Table 2, Table 3, and Table 4, respectively.

As shown in Table 2, the Chi-Square + CNN-based IDS
achieved perfect detection performance for the Benign class
only. The Reconnaissance, Lateral Movement, and Initial
Access classes yielded promising results with accuracies of
0.951990, 0.949600, and 0.942502, respectively. The lowest
performance was observed in the Exfiltration class with an F1-
score of 0.753853, precision of 0.877724, recall of 0.660621,
and accuracy of 0.660621.

TABLE II. CLASS-BASED DETECTION PERFORMANCE OF
PROPOSED CHI-SQUARE + CNN APPROACH
Class F1-Score | Precision | Recall Accuracy
Benign 1.0 1.0 1.0 1.0
Exfiltration 0.753853 | 0.877724 0.660621 0.660621




Initial Access 0.926016 | 0.910097 0.942502 0.942502
Lateral Movement | 0.579378 | 0.416857 0.949600 0.949600
Reconnaissance 0.967893 0.984337 0.951990 0.951990

As shown in Table 3, the Chi-Square + RNN-based IDS
performed perfect detection for the Benign and Reconnaissance
classes, with all metrics equal to 1.0, indicating that these
classes are easily recognizable by the approach. The Initial
Access class also demonstrated strong performance with an F1-
score of 0.999976, precision of 0.999951, recall of 1.0, and
accuracy of 1.0. The lowest performance was observed in the
Lateral Movement class with an Fl-score of 0.787753,
precision of 0.815767, recall of 0.761600, and accuracy of
0.761600. The Exfiltration class followed as the second
weakest performing one.

TABLE IIL CLASS-BASED DETECTION PERFORMANCE OF
PROPOSED CHI-SQUARE + RNN APPROACH

Class F1-Score | Precision | Recall Accuracy
Benign 1.0 1.0 1.0 1.0
Exfiltration 0.902478 | 0.888556 0.916844 0.916844
Initial Access 0.999976 | 0.999951 1.0 1.0
Lateral Movement | 0.787753 | 0.815767 0.761600 0.761600
Reconnaissance 1.0 1.0 1.0 1.0

As given in Table 4, the proposed Chi-Square + LSTM-
based IDS achieved perfect detection for the Benign, Initial
Access, and Reconnaissance classes, with all metrics equal to
1.0, indicating that these classes are easily distinguishable by
the proposed approach. For the Exfiltration class, the model
achieved an Fl-score of 0.922737, precision of 0.919204,
recall of 0.926298, and accuracy of 0.926298, demonstrating
strong performance, though slightly lower than the benign
classes. The Lateral Movement class posed the greatest
challenge, with an Fl-score of 0.837903, precision of
0.844715, recall of 0.8312, and accuracy of 0.8312, suggesting
some overlap or similarity with other classes.

TABLE IV. CLASS-BASED DETECTION PERFORMANCE OF PROPOSED CHI-
SQUARE + LSTM APPROACH

Class F1-Score | Precision | Recall Accuracy

Benign 1.0 1.0 1.0 1.0

Exfiltration 0.922737 10.919204 0.926298 0.926298

Initial Access 1.0 1.0 1.0 1.0

Lateral Movement | 0.837903 | 0.844715 0.831200 0.831200

Reconnaissance 1.0 1.0 1.0 1.0

The results state that the Chi-Square + LSTM model is
highly effective for multi-class detection, achieving near-
perfect performance for most classes while maintaining robust
detection for more challenging attack types. This highlights the
capability of the proposed IDS to handle imbalanced and
complex datasets with diverse attack categories. Furthermore,

by lessening the number of features, the IDS enhances
computational efficiency, enabling timely and reliable
identification of cybersecurity threats within IoMT networks.

C. Comparison of Results with State-of-the-Art Models

The proposed Chi-Square + LSTM approach is evaluated
against other models reported in the literature using the same
dataset. Decision Tree and K-Nearest Neighbors (KNN)
models, as employed in [17], serve as benchmarks. The testing
results indicate that the proposed Chi-Square + LSTM model
achieves an Fl-score of 0.9927 and accuracy of 0.9928,
outperforming the Decision Tree model, which achieves an F1-
score of 0.9778 and accuracy of 0.9835, as well as the KNN
model, which achieves an Fl-score of 0.9745 and accuracy of
0.9809. This demonstrates that the Chi-Square + LSTM
approach provides a notable improvement in predictive
performance across traditional machine learning models. Fig. 2
presents a visual comparison of the accuracies, clearly
highlighting the superior performance of the proposed Chi-
Square + LSTM approach.

1.00

Accuracy
0.9928 0.9927 F1-Score
0.99
0.9835
0.9809
0.98 0.9778
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0.97
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0.95 T sl
Chi-Square + LSTM Decision Tree KNN

Fig. 2. Performance Comparison of the Proposed Chi-
Square + LSTM Approach with the Other Models from the
Literature.

VI. CONCLUSION

In this study, an LSTM-based IDS was proposed to
enhance the security of [oMT networks using the MedSec-25:
IoMT Cybersecurity Dataset. The system was designed to
detect both benign and malicious activities, including
Exfiltration, Initial Access, Lateral Movement, and
Reconnaissance attacks. To improve computational efficiency,
Chi-Square feature selection method was applied to reduce the
number of features, enabling faster processing. For
comparison, RNN-based and CNN-based IDS models were
also implemented, and the experimental results demonstrated
that the Chi-Square + LSTM technique achieved superior
performance across evaluation metrics, outperforming the
alternative models.

Despite these promising results, the proposed IDS has
certain limitations. Its performance was validated only on a
single IoMT dataset, which may restrict its generalizability
across different real-world scenarios and diverse IoMT
environments. To address this, future research should assess
the robustness of the IDS on multiple IoMT datasets to ensure



broader applicability. Moreover, the LSTM model can be
further enhanced by integrating more advanced deep learning
architectures, such as hybrid or attention-based models, to
improve detection accuracy and adaptability against evolving
cyber threats.
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