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Abstract— The Internet of Medical Things (IoMT) has 

become a vital component of modern healthcare, allowing 

continuous monitoring, remote diagnosis, and personalized 

treatment. However, the sensitivity of medical data and the 

critical nature of healthcare systems make IoMT networks prime 

targets for cyberattacks. To overcome these challenges, this study 

introduces an Intrusion Detection System (IDS) based on Long 

Short-Term Memory (LSTM), specifically designed for IoMT 

environments. The MedSec-25: IoMT Cybersecurity Dataset is 

utilized, covering both benign traffic and multiple attack 

categories, including Exfiltration, Initial Access, Lateral 

Movement, and Reconnaissance. To improve computational 

efficiency, Chi-Square filter-based feature selection is employed 

to reduce the feature set from 83 to 20 features. For validation, 

Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN) models are also implemented for comparison. 

Among the evaluated models, the proposed Chi-Square + LSTM 

approach achieved the best results, reaching an accuracy of 

0.992751, precision of 0.992724, recall of 0.992751, and an F1-

score of 0.992735, thereby demonstrating superior detection 

accuracy and efficiency. 

Keywords— Chi-Square, Cybersecurity, Feature Selection, 

Internet of Medical Things (IoMT), Intrusion Detection System 

(IDS), Long Short Term Memory (LSTM) 

I. INTRODUCTION 

The swift advancement of the Internet of Things (IoT) has 
brought significant transformations across various domains, 
such as smart homes, industrial systems, and healthcare [1]. 
Among these, the Internet of Medical Things (IoMT) has 
gained notable momentum, largely driven by the COVID-19 
pandemic, which spurred the rapid integration of remote 
healthcare solutions [2]. IoMT networks enable continuous 
monitoring, remote diagnosis, and timely medical 
interventions. As a result, IoMT has become a fundamental 
component of modern healthcare systems. 

IoMT networks typically consist of interconnected sensors, 
biosensors, and wearable devices that monitor vital signs, 
medical conditions, and treatment progress of patients [3]. 
These devices transmit sensitive health data to medical 
professionals through wireless communication channels, 
supporting real-time decision-making and personalized 
healthcare services. The reliability and accuracy of such 

systems depend heavily on the confidentiality, availability, and 
integrity of the transmitted data [4]. 

However, the increasing reliance on IoMT networks 
introduces serious cybersecurity challenges [5]. Healthcare 
data, which is highly sensitive and confidential, has become a 
prime target for cybercriminals. Unauthorized access or 
manipulation of IoMT data poses serious security risks, as it 
can compromise patient privacy and hinder critical hospital 
operations, potentially resulting in life-threatening 
consequences. Therefore, developing robust Intrusion 
Detection Systems (IDS) tailored for IoMT environments is 
crucial to safeguard patient information, ensure secure data 
transmission, and maintain the resilience of healthcare 
infrastructure. 

A variety of IDSs have been proposed to secure IoMT 
networks. In one of these studies, [6] introduced a swarm-
neural network-based IDS to address security and privacy 
concerns in patient data transmission. The model was assessed 
on the NF-ToN-IoT dataset, incorporating telemetry, operating 
system, and network data, and achieved 89% accuracy, 
outperforming standard intrusion detection models on the same 
dataset. A recent work studied in [7] proposed an IDS using a 
stacking ensemble of deep learning and machine learning 
models within a Kappa Architecture framework to support 
real-time data processing. The system effectively detects and 
classifies various cyberattacks, achieving 0.991 accuracy in 
binary detection and 0.993 accuracy in multi-class detection, 
demonstrating the capability of using ensemble learning. 
Similarly, [8] proposed an IDS using tree-based machine 
learning classifiers incorporated with filter-based feature 
selection approaches. The approach applied XGBoost and 
Mutual Information for feature selection, followed by a set 
intersection method to extract common features, thereby 
improving accuracy and reducing computational cost. 
Evaluated on the CICIDS2017 dataset, the model scored 
98.79% accuracy, demonstrating its effectiveness for binary 
intrusion detection. Furthermore, [9] developed an IDS by 
integrating Recursive Feature Elimination (RFE) with deep 
learning and machine learning models, evaluated on the 
WUSTL-EHMS real-time dataset. The proposed RFE-based 
Decision Tree achieved accuracy of 97.85%, demonstrating 
effective anomaly detection in IoMT systems against 
cyberattacks. In another study, [10] proposed a machine 
learning-based IDS that employed classifiers such as Decision 



 

 

Trees, Logistic Regression, Naive Bayes, Random Forest, 
Adaptive Boosting, Gradient Boosting, and XGBoost. Among 
these, Adaptive Boosting achieved the best performance on the 
ToN-IoT dataset across multiple metrics, including accuracy, 
precision, recall, F1-score, false detection rate, and false 
positive rate. 

[11] proposed a blockchain-driven federated learning-based 
IDS, addressing privacy and security challenges inherent in 
centralized ML approaches. The system combines blockchain 
for secure transaction records, federated learning for local 
model training, and adaptive Convolutional Neural Network 
(CNN) model for classification and evaluated on the Edge-
IIoTSet and TON-IoT datasets, achieved accuracies 97.43%, 
and 98.21%, respectively. Similarly, [12] proposed a machine 
learning-based IDS to mitigate DDoS attacks in blockchain-
enabled IoMT networks using the CICIoMT2024 dataset. The 
study evaluated XGBoost, Decision Tree, and Random Forest 
models, with the Decision Tree achieving the most efficient 
prediction time while maintaining high performance across 
standard classification metrics. Another study [13] explored the 
use of ensemble learning with meta-learning for IDS. The 
proposed weighted meta-learning approach adaptively allocates 
voting weights to classifiers based on confidence, loss, and 
accuracy, improving detection performance. Experiments 
demonstrated superior results compared to existing models, 
highlighting the potential of meta-learning to enhance IDS 
robustness in IoMT networks. 

However, most of these IDSs do not specifically target 
medical-domain datasets and instead rely on general IoT 
datasets, which do not accurately represent the unique 
characteristics of medical network environments. In this 
research, an LSTM-based IDS is proposed to detect 
cyberattacks in IoMT networks, specifically targeting a 
medical-domain dataset. To enhance efficiency, Chi-Square 
filter-based feature selection is applied to reduce the feature 
set, thereby lowering computational overhead. For comparative 
analysis, Recurrent Neural Network (RNN)-based and CNN-
based models are also employed, and the results show that the 
proposed LSTM-driven IDS outperforms these approaches. 
The main contributions of this study are summarized as 
follows: 

• An LSTM-based IDS is developed for IoMT 
networks, achieving superior performance compared 
to other methods reported in the literature on the same 
dataset. 

• The feature set is reduced from 83 to 20 using Chi-
Square filter-based feature selection, improving 
computational efficiency. 

• RNN and CNN models are also implemented for 
comparison to verify the effectiveness of the proposed 
LSTM-based approach. 

The remainder of this paper is organized as follows: 
Section 2 describes the methods used in this study, Section 3 
provides details of the IoMT dataset, Section 4 explains the 
proposed methodology and preprocessing steps, Section 5 
presents and discusses the results, and Section 6 concludes the 
paper. 

II. METHODS 

This section outlines the methodologies employed in this 
study. An LSTM-based IDS is proposed for detecting 
cyberattacks in an IoMT network. The model is designed to 
perform multi-class classification, enabling it to distinguish 
between different types of attacks as well as non-attack traffic. 
To reduce the computational cost of the IDS, Chi-Square 
feature selection is applied to reduce the number of input 
features. The principles of Chi-Square feature selection method 
and the LSTM deep learning approach are described in detail 
below. 

A. Chi-Square 

Chi-Square is a statistical method used to evaluate the 
dependency between the target variable and each feature [14]. 
In the context of classification, it evaluates the extent to which 
the actual distribution of feature values differs from the 
distribution expected under the assumption of independence 
from the class labels. Features with higher Chi-Square scores 
are regarded more relevant, as they exhibit a stronger 
association with the target class. The Chi-Square test statistic is 
calculated as follows: 

�� = ∑���� − 	�

�/	�
                        (1) 

where: 

• Ei is the expected frequency of feature value i, 

• Oi is the actual frequency of feature value i, 

• X2 is the Chi-Square score. 

B. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) method is an advanced 
variant of RNNs modeled to effectively process sequential 
data, making it highly appropriate for time-series analysis tasks 
such as network traffic data [15]. 

Unlike traditional RNNs, which often suffer from the 
vanishing gradient problem that restricts their capability to 
preserve information across long sequences, LSTMs over-
come this limitation through a unique memory cell 
architecture. This design enables LSTMs to capture both long-
term and short-term temporal dependencies, thereby enhancing 
their capability to model complex sequential patterns in data 
[16]. 

A typical LSTM unit consists of several key components: 

• Cell State: Operates as the memory of the network, 
maintaining and transferring important information 
across time steps. It enables the selective preservation 
or removal of information through gating 
mechanisms, thereby facilitating long-term 
dependency learning. 

• Input Gate: Regulates the incorporation of new 
information into the cell state by determining which 
parts of the previous hidden state and the current input 
should be stored. 



 

 

• Forget Gate: Controls the disposal of irrelevant or 
outdated information from the cell state, guaranteeing 
that only useful knowledge is preserved for future 
predictions. 

• Output Gate: Identifies how much of the information 
from the cell state is exposed to the next hidden state, 
thereby influencing the output at each time step. 

In the context of cyberattack classification, LSTMs can 
process sequences of network traffic features to learn temporal 
dependencies that distinguish normal activity from malicious 
behavior. Attack patterns often evolve over time, with subtle 
variations in packet sequences or payload structures. LSTMs 
capture these sequential patterns by mapping the input time-
series data into a latent representation and propagating 
contextual information across multiple time steps. The final 
hidden state of the LSTM is then passed to dense layers for 
classification, where softmax or sigmoid activation functions 
are used depending on whether the task comprises multi-class 
or binary attack detection. 

III. IOMT INTRUSION DETECTION DATASET  

The dataset used in this study is the MedSec-25: IoMT 
Cybersecurity Dataset [17], which is publicly available at 
https://www.kaggle.com/datasets/abdullah001234/medsec-25-
iomt-cybersecurity-dataset (accessed on 17 September 2025). 
Unlike most existing datasets that rely on generic intrusion 
detection collections unrelated to IoMT communications, this 
dataset captures realistic traffic from a custom-built healthcare 
IoT lab that mimics hospital operations. The lab setup 
incorporated diverse IoMT devices and protocols (e.g., MQTT, 
SSH, Telnet, FTP, HTTP, DNS) to reflect real-world 
communication patterns. The dataset was collected from a 
range of medical sensors and environmental sensors connected 
through Raspberry Pi nodes to an IoT server, with network 
traffic recorded over 7.5 hours. In total, the dataset comprises 
554,534 flows, consisting of 83 input features and a single 
target column. 

Data collection was conducted under normal conditions 
(Benign) and four types of cyberattacks: Reconnaissance, 
Initial Access, Lateral Movement, and Exfiltration. 
Comprehensive details of the dataset, including the data 
collection process, experimental setup, equipment 
specifications, feature descriptions, and device configurations, 
are provided in [17]. The dataset was created by collecting 
network traffic data in a controlled laboratory environment at 
Rochester Institute of Technology, Dubai, and has been fully 
anonymized in compliance with privacy regulations such as 
HIPAA. No personally identifiable information or sensitive 
patient data were included. 

IV. ARCHITECTURE OF PROPOSED INTRUSION DETECTION 

SYSTEM (IDS) 

This section presents the architecture of the proposed IDS 
model employed in this study. The proposed IDS is based on a 
LSTM network, designed to detect cyberattacks in a IoMT 
environment. It is capable of performing multi-class 
classification.  

The workflow of the proposed IDS is illustrated in Fig. 1 
and consists of two main steps: data preprocessing, and 
classification. Each of these steps is described in detail below. 

 

Fig. 1. Workflow Diagram of the Proposed IDS. 

A. Data Preprocessing 

In the data preprocessing step, features with constant values 
were first eliminated, as they do not contribute to the learning 
process. The eliminated features include: Bwd Blk Rate Avg, 
Fwd Byts/b Avg, Init Fwd Win Byts, Fwd Seg Size Min, Fwd 
URG Flags, Bwd Pkts/b Avg, Fwd PSH Flags, Fwd Blk Rate 
Avg, Bwd Byts/b Avg, and Fwd Pkts/b Avg, reducing the 
number of features to 73. 

The dataset contained non-numerical columns such as 
Timestamp, Src IP, and Dst IP, which needed to be converted 
into numerical values to enable numerical processing by the 
machine learning model. The Timestamp attribute was 
decomposed into new columns representing second, minute, 
hour, year, month, and day. Both Src IP and Dst IP were 
transformed into their corresponding integer representations. 
Additionally, the Flow ID feature was dropped since its 
information is already captured by other features such as Dst 
Port, Dst IP, Src IP, and Protocol. After these transformations, 
the dataset contained 77 features. 

The features were standardized using the Min-Max Scaler 
to normalize the input space. The scaling formula is defined as 
follows: 

�
 = �� − ����
/����� − ����
                 (2) 

where x is the original feature value, xmax is the maximum 
value of the feature, and xmin is the minimum value of the 
feature. Following this, class labels were then encoded into 
numerical values using a Label Encoder (with mappings as 
Benign: 0, Exfiltration: 1, Initial Access: 2, Lateral Movement: 
3, and Reconnaissance: 4). 

Since 77 features is computationally expensive for IDSs, 
which require fast attack detection, Chi-Square feature 
selection was applied to reduce the number of features to 20. 
The selected features include Dst Port, Flow Duration, Flow 
IAT Std, Flow IAT Max, Fwd IAT Tot, Bwd IAT Tot, Bwd 
IAT Std, Bwd IAT Max, Bwd PSH Flags, RST Flag Cnt, PSH 
Flag Cnt, ACK Flag Cnt, Down/Up Ratio, Idle Mean, Init Bwd 
Win Byts, Idle Min, Idle Max, Month, Day, and Minute. This 
reduction enhances the computational efficiency of the 
machine learning model while retaining discriminative power. 



 

 

Finally, the preprocessed dataset was split into two parts: 
80% was used for training the model, while the remaining 20% 
was set aside for testing its performance. 

B. Architecture of the LSTM-driven IDS Model 

The proposed model is designed using a sequential 
architecture comprising one Input layer, one LSTM layer, one 
Dense layer, two Batch Normalization layers, and two Dropout 
layers. It initiates with an input layer that receives the 
preprocessed feature set.  A single LSTM layer follows it with 
16 hidden units, which captures temporal dependencies within 
the IoMT communication data. To improve training stability 
and accelerate convergence, a Batch Normalization layer is 
employed immediately after the LSTM output. This is 
followed by a Dropout layer with a rate of 0.3 to mitigate 
overfitting. 

The extracted temporal features are further refined through 
one fully connected (Dense) layer with 8 neurons, employing 
the activation function as ReLU. This Dense layer is 
interleaved with Batch Normalization and Dropout layers to 
enhance generalization. The architecture concludes with an 
output Dense layer, utilizing softmax activation function for 
multi-class classification process. 

For training the model, the Adam optimizer was used with 
a learning rate of 0.0001, which helped the model learn 
steadily without making sudden jumps in the parameter 
updates. The loss function was set as categorical cross-entropy, 
since the task involved multi-class classification and this 
function is well-suited for handling errors across multiple 
classes. Training was run for 50 epochs with a batch size of 32, 
a setup that provided a good balance between training speed 
and the model’s ability to generalize. 

V. RESULTS AND DISCUSSION 

A. Evaluation Metrics 

The performance of the proposed LSTM-based IDS was 
assessed using widely adopted classification metrics, including 
F1-score, precision, recall, and accuracy. These evaluation 
metrics are derived from the fundamental evaluation 
parameters, including False Positives (FP), True Positives 
(TP), False Negatives (FN), and True Negatives (TN), where 
TP denotes correctly classified attack instances, TN represents 
correctly recognized normal traffic, FP corresponds to normal 
traffic misclassified as attacks, and FN denotes attack instances 
that were incorrectly classified as normal. Based on these 
values, the performance metrics are defined as follows: 

�1 − ����� =
� × ������� × � ���!�"�
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                    (3) 
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B. Discussion of Experimental Results 

The performance of the proposed Chi-Square + LSTM 
model was compared with Chi-Square + RNN, and Chi-Square 

+ CNN models using standard classification metrics: F1-score, 
precision, recall, and accuracy. The results are summarized in 
Table 1. 

Among the models, the Chi-Square + LSTM approach 
achieved the highest performance, with an F1-score of 
0.992735, precision of 0.992724, recall of 0.992751, and 
accuracy of 0.992751. The Chi-Square + RNN model also 
demonstrated strong performance, achieving an F1-score of 
0.990654, precision of 0.990630, recall of 0.990740, and 
accuracy of 0.990740, indicating that incorporating temporal 
dependencies improves classification results compared to 
CNN-based models. The Chi-Square + CNN model, while 
performing well, yielded lower metrics with an F1-score of 
0.942138, precision of 0.953244, recall of 0.937641, and 
accuracy of 0.937641. 

The results indicate that combining Chi-Square feature 
selection with recurrent architectures, particularly LSTM, 
significantly enhances classification performance. This 
improvement can be attributed to ability of LSTM to capture 
long-term dependencies in the feature space, which is 
especially beneficial for datasets with complex temporal or 
sequential patterns. The consistent improvement across all 
evaluation metrics demonstrates the robustness and reliability 
of the proposed Chi-Square + LSTM model compared to other 
architectures. 

TABLE I.  PERFORMANCE RESULTS OF THE CLASSIFICATION MODELS 

WITH FEATURE SELECTION PROCESS 

Model F1-Score Precision Recall Accuracy 

Chi-Square + CNN 0.942138 0.953244 0.937641 0.937641 

Chi-Square + RNN 0.990654 0.990630 0.990740 0.990740 

Chi-Square + LSTM 0.992735 0.992724 0.992751 0.992751 

*Best results are in bold. 

The class-level performance of the proposed LSTM-based 
IDS with Chi-Square feature selection method was evaluated to 
assess its ability to accurately detect each type of attack. In 
addition proposed IDS, the class-level performances of CNN-
based IDS and RNN-based IDS were also assessed. The 
obtained class-based results of Chi-Square + CNN, Chi-Square 
+ RNN, and Chi-Square + LSTM approaches are given in 
Table 2, Table 3, and Table 4, respectively. 

As shown in Table 2, the Chi-Square + CNN-based IDS 
achieved perfect detection performance for the Benign class 
only. The Reconnaissance, Lateral Movement, and Initial 
Access classes yielded promising results with accuracies of 
0.951990, 0.949600, and 0.942502, respectively. The lowest 
performance was observed in the Exfiltration class with an F1-
score of 0.753853, precision of 0.877724, recall of 0.660621, 
and accuracy of 0.660621. 

TABLE II.  CLASS-BASED DETECTION PERFORMANCE OF 

PROPOSED CHI-SQUARE + CNN APPROACH 

Class F1-Score Precision Recall Accuracy 

Benign 1.0 1.0 1.0 1.0 

Exfiltration 0.753853 0.877724 0.660621 0.660621 



 

 

Initial Access 0.926016 0.910097 0.942502 0.942502 

Lateral Movement 0.579378 0.416857 0.949600 0.949600 

Reconnaissance 0.967893 0.984337 0.951990 0.951990 

 

As shown in Table 3, the Chi-Square + RNN-based IDS 
performed perfect detection for the Benign and Reconnaissance 
classes, with all metrics equal to 1.0, indicating that these 
classes are easily recognizable by the approach. The Initial 
Access class also demonstrated strong performance with an F1-
score of 0.999976, precision of 0.999951, recall of 1.0, and 
accuracy of 1.0. The lowest performance was observed in the 
Lateral Movement class with an F1-score of 0.787753, 
precision of 0.815767, recall of 0.761600, and accuracy of 
0.761600. The Exfiltration class followed as the second 
weakest performing one. 

TABLE III.  CLASS-BASED DETECTION PERFORMANCE OF 

PROPOSED CHI-SQUARE + RNN APPROACH 

Class F1-Score Precision Recall Accuracy 

Benign 1.0 1.0 1.0 1.0 

Exfiltration 0.902478 0.888556 0.916844 0.916844 

Initial Access 0.999976 0.999951 1.0 1.0 

Lateral Movement 0.787753 0.815767 0.761600 0.761600 

Reconnaissance 1.0 1.0 1.0 1.0 

 

As given in Table 4, the proposed Chi-Square + LSTM-
based IDS achieved perfect detection for the Benign, Initial 
Access, and Reconnaissance classes, with all metrics equal to 
1.0, indicating that these classes are easily distinguishable by 
the proposed approach. For the Exfiltration class, the model 
achieved an F1-score of 0.922737, precision of 0.919204, 
recall of 0.926298, and accuracy of 0.926298, demonstrating 
strong performance, though slightly lower than the benign 
classes. The Lateral Movement class posed the greatest 
challenge, with an F1-score of 0.837903, precision of 
0.844715, recall of 0.8312, and accuracy of 0.8312, suggesting 
some overlap or similarity with other classes. 

TABLE IV.  CLASS-BASED DETECTION PERFORMANCE OF PROPOSED CHI-
SQUARE + LSTM APPROACH 

Class F1-Score Precision Recall Accuracy 

Benign 1.0 1.0 1.0 1.0 

Exfiltration 0.922737 0.919204 0.926298 0.926298 

Initial Access 1.0 1.0 1.0 1.0 

Lateral Movement 0.837903 0.844715 0.831200 0.831200 

Reconnaissance 1.0 1.0 1.0 1.0 

 

The results state that the Chi-Square + LSTM model is 
highly effective for multi-class detection, achieving near-
perfect performance for most classes while maintaining robust 
detection for more challenging attack types. This highlights the 
capability of the proposed IDS to handle imbalanced and 
complex datasets with diverse attack categories. Furthermore, 

by lessening the number of features, the IDS enhances 
computational efficiency, enabling timely and reliable 
identification of cybersecurity threats within IoMT networks. 

C. Comparison of Results with State-of-the-Art Models 

The proposed Chi-Square + LSTM approach is evaluated 
against other models reported in the literature using the same 
dataset. Decision Tree and K-Nearest Neighbors (KNN) 
models, as employed in [17], serve as benchmarks. The testing 
results indicate that the proposed Chi-Square + LSTM model 
achieves an F1-score of 0.9927 and accuracy of 0.9928, 
outperforming the Decision Tree model, which achieves an F1-
score of 0.9778 and accuracy of 0.9835, as well as the KNN 
model, which achieves an F1-score of 0.9745 and accuracy of 
0.9809. This demonstrates that the Chi-Square + LSTM 
approach provides a notable improvement in predictive 
performance across traditional machine learning models. Fig. 2 
presents a visual comparison of the accuracies, clearly 
highlighting the superior performance of the proposed Chi-
Square + LSTM approach. 

 

Fig. 2. Performance Comparison of the Proposed Chi-
Square + LSTM Approach with the Other Models from the 
Literature. 

VI. CONCLUSION 

In this study, an LSTM-based IDS was proposed to 
enhance the security of IoMT networks using the MedSec-25: 
IoMT Cybersecurity Dataset. The system was designed to 
detect both benign and malicious activities, including 
Exfiltration, Initial Access, Lateral Movement, and 
Reconnaissance attacks. To improve computational efficiency, 
Chi-Square feature selection method was applied to reduce the 
number of features, enabling faster processing. For 
comparison, RNN-based and CNN-based IDS models were 
also implemented, and the experimental results demonstrated 
that the Chi-Square + LSTM technique achieved superior 
performance across evaluation metrics, outperforming the 
alternative models. 

Despite these promising results, the proposed IDS has 
certain limitations. Its performance was validated only on a 
single IoMT dataset, which may restrict its generalizability 
across different real-world scenarios and diverse IoMT 
environments. To address this, future research should assess 
the robustness of the IDS on multiple IoMT datasets to ensure 



 

 

broader applicability. Moreover, the LSTM model can be 
further enhanced by integrating more advanced deep learning 
architectures, such as hybrid or attention-based models, to 
improve detection accuracy and adaptability against evolving 
cyber threats. 
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