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Abstract—Large Vision-Language Models (LVLMs) often hal-
lucinate objects, relations, or attributes not grounded in the input
image. Existing approaches such as cross-entropy training and
response-level preference optimization (e.g., RLHF, DPO) fail
to explicitly target hallucinations within the reasoning process.
We propose a fine-grained reinforcement learning framework
for Visual Chain-of-Thought (CoT), decomposing responses into
[objects] → [relations] → [answer] with stage-specific rewards.
Using Group Relative Preference Optimization (GRPO), our
method directly penalizes hallucinations at each stage while
ensuring stable training. Experiments on POPE and VQAv2
show substantial hallucination reduction with competitive task
performance, demonstrating the benefit of stage-wise penalization
for aligning LVLM reasoning with visual evidence.

Index Terms—Vision-Language Models, Hallucination Mitiga-
tion, Reinforcement Learning, Chain-of-Thought

I. INTRODUCTION

Recent advancements in Large Vision-Language Models
(LVLMs) have enabled significant progress in multimodal
reasoning tasks such as Visual Question Answering (VQA),
image captioning, and referring expression comprehension
(REC). Models like GPT-4V [1], Gemini [2], Qwen-VL
[3], and LLaVA [4] demonstrate impressive capabilities by
jointly processing images and text, powering applications
in education, healthcare, autonomous driving, and industrial
automation.

Despite these remarkable achievements, LVLMs remain
prone to a critical issue known as hallucination, where the
model generates objects, attributes, or relationships inconsis-
tent with the input image. Hallucination manifests in three
primary forms: (1) Object hallucination, where the mentioned
objects are inconsistent with the objects in the image, (2)
Attribute hallucination, where incorrect properties (e.g., color,
size) are assigned, and (3) Relation hallucination, where
relationships between objects are misrepresented. These errors
are prevalent even in state-of-the-art LVLMs [5], [6], posing
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serious risks in safety-critical domains such as medical image
analysis, autonomous vehicles, and CCTV surveillance.

Most existing methods operate at a coarse, response-level
granularity, making it difficult to localize and penalize hal-
lucinations at the stage where they occur, e.g., during object
recognition, relational reasoning, or final answer generation.
For instance, recent approaches such as supervised fine-tuning
(SFT) with next-token prediction (NTP), multimodal rein-
forcement learning with human feedback (RLHF), and direct
preference optimization (DPO) have shown partial success
in mitigating hallucinations by incorporating visual signals
or preference-based feedback. However, these improvements
remain fundamentally limited due to the structural mismatch
between their training objectives and hallucination suppres-
sion.

This study proposes a new framework that introduces stage-
wise, fine-grained penalties aiming to mitigate hallucinations
at their source. To directly resolve the structural mismatch
identified above, we align the training objective with the
actual goal of hallucination suppression. We enforce a stage-
wise training signal that localizes penalties at the stage where
hallucinations arise.

The response generation from our framework is struc-
tured as a Visual Chain-of-Thought (CoT), decomposed into
[objects] → [relations] → [answer]. This
decomposition enables stage-specific supervision instead of
coarse, response-level signals.

Next, the following four rewards are computed: First, Object
Grounding Precision penalizes object-level inconsistencies by
evaluating whether the predicted objects in the [objects] block
are visually consistent with the image, directly targeting the
object hallucination (i.e., objects inconsistent with the image).
Second, Question-Groundedness rewards question-relevant en-
tities/attributes and penalizes spurious mentions, aligning con-
tent selection with the question intent. Third, Reasoning Valid-
ity evaluates the consistency of relation triples with grounded



boxes and basic geometry (e.g., left-of/on/overlap), targeting
the relational hallucination. Fourth, Answer Accuracy assesses
final answer faithfulness to prevent fluency-only optimization.
Finally, these stage-specific rewards are summed to a compos-
ite reward.

For model training, we adopt a progressive stabilization
approach according to the following three-step curriculum:

1) Step 1: Object Grounding SFT to establish reliable
grounding.

2) Step 2: Visual CoT SFT to learn the full reasoning
format while retaining stage boundaries.

3) Step 3: Fine-Grained Group Relative Preference
Optimization (GRPO) to compute localized rewards
rather than a single response-level scalar.

Unlike former approaches like NTP, DPO, and RLHF, which
apply uniform or response-level signals, our stage-wise re-
wards (i) localize penalties to the exact stage where hallucina-
tions occur (objects, relations, or answer), (ii) align optimiza-
tion with visual faithfulness, and (iii) preserve interpretabil-
ity via explicitly decomposing responses into [objects],
[relations], and [answer] (See details in Fig. 1). Con-
sequently, our approach can alleviate the mismatch between
the training objective and the hallucination mitigation.

II. RELATED WORK

A. Chain-of-Thought for LVLMs

Visual CoT [7] represents step-by-step reasoning grounded
on explicit regional evidence by iteratively cropping and feed-
ing localized visual cues. This strategy improves recognition
of small or spatially confined objects and encourages models
to expose intermediate reasoning. However, the supervision
signal is largely organized around the output format and
final responses, failing to attribute penalties to specific object,
attribute, or relation mistakes that occur at different stages of
the reasoning process.

Ground-R1 [8] extends Visual CoT with longer internal
thoughts. It optimizes with GRPO using composite rewards
that consider adherence to structure, answer accuracy, and
grounding-aware terms, improving interpretability and stabil-
ity. However, the reward aggregation typically operates at the
response-level; consequently, errors at different stages (object
existence, relations, attributes) are not always disentangled
during training.

B. Preference-Based Alignment for Hallucination Mitigation

RLHF with an explicit reward model is one of the recent
multimodal methods for preference-based alignment. RLHF-
V [9] leverages human-edited responses and a multimodal
reward model to emphasize reliable, visually consistent out-
puts. LLaVA-RLHF [10] trains a reward model from human
preference pairs and updates the policy through proximal pol-
icy optimization (PPO). These approaches effectively integrate
visual signals into alignment and have shown strong empirical
gains. However, their scalar rewards are typically applied
at the response-level, which poses challenges for attributing

hallucinations to specific objects, relations, and intermediate
steps.

DPO, which learns from pairwise preferences without an
explicit reward model, is another approach to preference-based
alignment. DPO variants optimize directly from preference
pairs and avoid policy-gradient loops. POVID [11] improves
image–text consistency by constructing negative samples that
induce hallucinations and discouraging them during training.
HA-DPO [12] contrasts non-hallucinatory and hallucinatory
responses for the same image to steer the model toward faithful
outputs. These methods provide effective alignment signals
with simpler training dynamics. In practice, however, super-
vision often remains coarse at the level of whole responses,
motivating efforts toward more targeted, fine-grained signals
that better localize the error sources.

C. Self-Feedback Guided Revision

VOLCANO [13] mitigates hallucination by having a single
LVLM run a Critique → Revise → Decide loop. The model
generates an answer, produces self-feedback to flag inconsis-
tencies, and revises the output before finalizing. This behavior
is learned through SFT on a corpus of feedback–revision
pairs. This reduces hallucinations without training a separate
reward model and can dynamically refocus attention on rel-
evant regions during reasoning. However, it trades additional
inference-time iterations for improved faithfulness and typ-
ically provides supervision at the response-level rather than
explicitly tying penalties to particular reasoning stages.

D. Fine-Grained Preference Optimization

Beyond response-level alignment, several works explore
more granular supervision. FGAIF [14] decomposes outputs
into atomic facts (e.g., color or presence), verifies each fact
with an auxiliary model, and performs preference optimiza-
tion at the fact level to emphasize visual faithfulness. These
directions move supervision closer to error sources and are
synergistic with approaches that make reasoning steps explicit.
However, in most cases, the granularity is not yet aligned to
an explicit stage-wise structure.

E. Positioning Our Work

Prior studies have advanced alignment along three com-
plementary axes: using evidence explicitly via CoT, opti-
mizing from human feedback or preferences, and reducing
hallucination through hallucination-free training data for SFT.
We build on these insights and pursue a stage-wise Vi-
sual CoT framework ([objects] → [relations] →
[answer]) coupled with fine-grained rewards optimized via
GRPO. By associating supervision signals with specific stages
and error types (object existence, attributes, relations), our
training objective directly targets the origins of hallucination
while remaining compatible with CoT-, preference-, and self-
feedback–based advances.



Question: Is there a cup in the image?

• Baseline Output
Yes, there appears to be a cup on the table in the foreground of the image. It
is located near the center-right side of the table and seems to be a standard
drinking cup, possibly for coffee or tea.

• Ours Output
[objects] table at (0.38, 0.47, 1.0, 0.69); bottle at (0.88, 0.38, 0.95, 0.52);
glass window at (0.38, 0.0, 1.0, 0.49); bottle at (0.94, 0.4, 0.97, 0.49); bottle
at (0.97, 0.4, 1.0, 0.51); counter at (0.38, 0.47, 1.0, 0.68); chair at (0.15, 0.42,
0.35, 0.73); [/objects]

[relations]
bottle - ON - table
chair - near - table
[/relations]

[answer] No, there are no cups in the picture. [/answer]

Question: How many elephants in the image?

• Baseline Output
There are two elephants in the image.

• Ours Output
[objects] green, grassy field at (0.0, 0.43, 1.0, 0.86); large, gray elephant
at (0.6, 0.41, 0.67, 0.51); small, gray elephant at (0.55, 0.43, 0.58, 0.48); small,
gray elephant at (0.5, 0.42, 0.54, 0.49); [/objects]

[relations]
elephant - IN - field
elephant - IN - field
elephant - IN - field
tree - behind - elephant
[/relations]

[answer] Three. [/answer]

Fig. 1. Qualitative comparison between Baseline Output and Ours Output. Top: Example of hallucination suppression in binary detection. Bottom: Example
of accurate multi-object counting.

III. METHOD

Our goal is to mitigate hallucinations in LVLMs by explic-
itly supervising where errors occur in the reasoning process.
To this end, we design a three-stage structured output, a
progressive training pipeline, and a fine-grained reinforcement
learning scheme. Fig. 2 provides an overview of our method.

Fig. 2. Overview of our three-stage training pipeline. Step 1 trains
the model to generate only the [objects] block for explicit grounding.
Step 2 extends this to full Visual CoT generation. Step 3 applies GRPO
with four fine-grained rewards (Grounding Precision, Question-Groundedness,
Reasoning Validity, Answer Coherence) to directly mitigate hallucinations
across all stages.

A. Training Data Construction from Visual Genome

To train a model that generates visually grounded reasoning
steps, we require structured supervision that explicitly captures
visual evidence, logical reasoning, and final answers. We
construct training tuples (I,o, r, a) from the Visual Genome
(VG) dataset, where I is an image, o is a set of grounded
objects, r is a set of relationships between these objects, and
a is a short free-form answer to a given question. The detailed
pipeline for data construction is as follows.

a) Structured output format: Each sample is serialized
into a three-stage output format that aligns with our Visual
CoT design.
Descriptions:

• [objects]: a list of detected objects with class labels
and normalized bounding boxes, augmented with key
attributes such as color and size.

• [relations]: spatial or semantic relationships be-
tween objects, e.g., ON, HOLDING.

• [answer]: a concise natural-language response to the
given question.

Example:
[objects]



green bottle at (0.88, 0.38, 0.95, 0.52);
wooden table at (0.38, 0.47, 1.00, 0.69)
[/objects]
[relations]
bottle - ON - table
[/relations]
[answer]
No, there are no cups in the picture.
[/answer]

This explicit structure forces the model to first ground visual
evidence in the [objects] stage, then reason about relation-
ships in the [relations] stage, and finally synthesize the
answer in the [answer] stage. This format is also directly
compatible with the fine-grained rewards introduced in Step 3.

b) Region-based object selection: Each question in VG
is associated with a region of interest (ROI) via region descrip-
tions and QA-to-region mappings. We first locate the region
bounding box and select all objects whose bounding boxes
overlap with the region by an IoU greater than τIoU = 0.01.
This ensures that only objects visually relevant to the question
are included. Objects are described using canonicalized class
labels with up to two key attributes (e.g., “red”, “small”)
from VG’s attribute annotations. Bounding box coordinates
are normalized by image width W and height H:

b̃i =
(x1

W
,
y1
H

,
x2

W
,
y2
H

)
, b̃i ∈ [0, 1]4

where (x1, y1) and (x2, y2) are the top-left and bottom-
right corners of the object box. The final [objects] block
contains up to 10 objects, ordered left-to-right and top-to-
bottom.

c) Relation extraction and filtering: From the VG re-
lationship annotations, we extract triplets (s, p, o) where s
(subject) and o (object) are among the region-selected ob-
jects. Predicates p are normalized into a compact vocabulary
P = Pspatial∪Psemantic, covering both spatial (ON, IN, LEFT
OF) and semantic (HOLDING, WEARING) relations. To reduce
noise, we keep only the top-five most relevant relations based
on region overlap and frequency. The following is an example
relation serialization:

"person - HOLDING - umbrella".

d) Answer alignment: For QA-style supervision, the
[answer] stage uses the ground-truth short answer provided
by VG.

e) Curriculum-aware filtering: To ensure high-quality
supervision for curriculum learning, we apply three filtering
steps. First, we remove QA samples where no objects overlap
with the region. Second, we discard relations where neither
subject nor object is visually grounded in the selected region.
Lastly, we limit the number of objects and relations to prevent
long, noisy outputs.

f) Benefits of this design: Our data construction pipeline
offers two key benefits:

• Explicit grounding: The normalized bounding boxes in
[objects] provide precise visual evidence.

• Stage-wise error attribution: By separating reasoning
into distinct stages, hallucination penalties can be local-
ized.

This design bridges the gap between raw multimodal data and
fine-grained reinforcement learning, enabling robust halluci-
nation mitigation in subsequent training steps.

B. Training Pipeline

Our training proceeds in three progressive stages:
a) Step 1. Object Grounding SFT: The model input in

this step is image I only, and the target block is [object].
We train the model to output serialized label–box pairs using
teacher forcing and cross-entropy:

Lstep1 =
∑
t∈So

− log πθ(yt | y<t, I),

where So represents tokens of the [objects] stage. This
step isolates visual grounding and prevents leakage of spurious
linguistic priors.

b) Step 2. Visual CoT SFT: In this step, the model
takes image I and question x as inputs, and the target is
the full structured output: [objects] → [relations]
→ [answer]. We fine-tune the model to jointly generate all
stages using cross-entropy:

Lstep2 =
∑

t∈So∪Sr∪Sa

− log πθ(yt | y<t, x, I),

where So, Sr, and Sa represent tokens for the [objects],
[relations], and [answer] stages respectively.

c) Step 3. Fine-grained GRPO Training: Building on
Step 2, Step 3 optimizes the same structured outputs using
fine-grained reinforcement learning. For each input, we sam-
ple N = 8 candidate responses. Next, instead of a single
global reward, we decompose the responses into stage-specific
components. If the response can be successfully parsed into
the required [objects], [relations], and [answer]
blocks, we compute the fine-grained composite reward:

r = λgprgp + λqgrqg + λrvrrv + λacrac.

where each reward term evaluates a specific stage:
• rgp: Grounding Precision for [objects] stage,
• rqg: Question-Groundedness of selected objects,
• rrv: Reasoning Validity in the [relations] stage,
• rac: Answer Coherence for the [answer] stage.

Otherwise (i.e., when parsing fails), we assign a fixed penalty:

r = −0.2.

Subsequently, rewards are normalized within each group,
and token-level updates are applied using the following PPO-
style clipped objective:

Lgrpo = −Ei,t

[
min

(
ρi,t Âi, clip(ρi,t, 1− ϵ, 1 + ϵ) Âi

)]
,

where ρi,t is the ratio of new vs. old policy likelihoods, and Âi

is the group-normalized advantage. This design ensures stable
optimization while directly addressing hallucinations in each
stage.



IV. EXPERIMENTAL SETUP

A. Evaluation Datasets

We evaluate the proposed model on two benchmarks:
• POPE [5]: hallucination probe with Random, Popular,

and Adversarial splits.
• VQAv2 [15]: 3,000 samples randomly drawn (random

seed = 42) from the standard open-ended Visual Question
Answering (VQAv2) validation set.

POPE [5] probes object hallucination by polling candidate
objects for a given image, yielding object-level metrics. On
the other hand, VQAv2 [15] measures overall question an-
swering performance. Together, these benchmarks allow us to
quantify object-level hallucination while monitoring general
multimodal capability; they complement, rather than replace,
our analysis of stage-wise behavior during training.

B. Metrics

In terms of POPE, we report accuracy and F1 for each split,
plus the mean across splits. For VQAv2, we report accuracy.

C. Implementation Details

Backbone is Qwen2.5-VL [16] with 448×448 vision en-
coder. We train with 2×A100 (BF16). Steps 1 and 2 use
AdamW (lr=5×10−5); Step 3 uses GRPO (lr=5×10−6). Batch
size: 16 (SFT) / 8 (RL). For Step 1 (object grounding) and
Step 2 (Visual CoT supervision), training runs for 1 epoch
on our curated 43,080 Visual Genome–based samples. For
Step 3, we perform GRPO training with fine-grained rewards
on the GQA dataset, running for 2,240 optimization steps.
Fine-grained rewards are computed by a frozen unified reward
model (UnifiedReward-Think-7b [17]).

V. RESULTS AND DISCUSSION

A. Main Results on POPE

Table I compares our method against representative 7B
models, including LLaVA 1.5 [4], FGAIF [14], HA-DPO
[12], LLAVA-RLHF [10], and VOLCANO [13]. Our Step3
(GRPO) attains the best mean accuracy and F1, with especially
strong gains on the Adversarial split. Specifically, compared
to strong RL/PO methods, Step3 achieves the best mean F1
(88.0) and Accuracy (88.3). While HA-DPO slightly leads on
Random, our model is markedly stronger on the Adversarial
split (F1: 86.1 vs. 82.5), driving the average performance
and reflecting the improved resistance to hallucination. Unlike
other models, our model explicitly outputs visual evidence it
further reinforces this evidence through fine-grained rewards;
as a result, our model can exclude plausible yet nonexistent
objects from its responses.

B. POPE Ablation across Training Stages

Table II presents the ablation results of our staged training
procedure on POPE. Within our pipeline, the mean F1 on
POPE improves monotonically from the Baseline (82.8) →
Step2 (84.3; +1.5) → Step3 (88.0; +3.7 over Step2, +5.2 over
Baseline). The mean accuracy shows the same trend (85.0 →

TABLE I
POPE RESULTS ACROSS THREE SETTINGS. ALL MODELS ARE 7B. BEST

SCORES ARE BOLDED AND SECOND ONES ARE UNDERLINED.

Model Random Popular Adversarial mean Acc mean F1
Acc. F1 Acc. F1 Acc. F1

Qwen2.5-VL [16] 85.5 83.1 85.3 83.2 84.1 82.2 85.0 82.8
LLaVA 1.5 [4] 88.2 87.3 87.3 86.2 85.2 84.2 86.9 85.9
FGAIF [14] 87.0 86.7 84.0 83.7 79.6 79.9 83.5 83.4
HA-DPO [12] 90.5 90.2 87.9 88.1 81.5 82.5 86.6 86.9
LLAVA-RLHF [10] 84.8 83.3 83.3 81.8 80.7 79.5 82.9 81.5
VOLCANO [13] 89.9 89.4 88.5 87.9 86.2 85.7 88.2 87.7
Ours (Step2) 87.0 85.3 85.9 84.2 85.1 83.4 86.0 84.3
Ours (Step3, GRPO) 90.2 89.6 87.9 88.2 86.7 86.1 88.3 88.0

86.0 → 88.3; +3.3 total). These gains align with our reward
design: rgp reduces object hallucination at the [objects]
stage, rrv filters inconsistent [relations], and rac encour-
ages answers consistent with grounded evidence.

TABLE II
POPE BY TRAINING STAGE (OURS). BEST SCORES ARE BOLDED AND

SECOND ONES ARE UNDERLINED.

Model Random Popular Adversarial mean Acc mean F1
Acc. F1 Acc. F1 Acc. F1

Baseline (Qwen2.5-VL) [16] 85.5 83.1 85.3 83.2 84.1 82.2 85.0 82.8
Step2 (SFT – Full Data) 87.0 85.3 85.9 84.2 85.1 83.4 86.0 84.3
Step3 (GRPO) 90.2 89.6 87.9 88.2 86.7 86.1 88.3 88.0

C. VQAv2 Results

Table III shows the accuracy of our model on VQAv2
[15]. Step3 improves +1.2 points over the Baseline and +4.5
over Step2 by reducing parsing errors and aligning reasoning
with visual evidence. Notably, Step2 drops to 81.4%; this is
probably due mainly to format parsing errors (i.e., missing
or malformed [answer] blocks), which cause valid pre-
dictions to be discarded. Introducing fine-grained rewards in
Step3—including a format-validity term—stabilizes structure
and lifts accuracy to 84.9%, showing that structural guidance
complements content rewards.

TABLE III
VQAV2 ACCURACY BY TRAINING STAGE. BEST SCORE IS BOLDED.

Model VQAv2 Accuracy (%)
Baseline (Qwen2.5-VL) [16] 83.7
Step2 (SFT – Full Data) 81.4
Step3 (GRPO) 84.9

D. Takeaway

Our results indicate that stage-wise GRPO substantially
improves hallucination robustness (POPE) while enhancing
the downstream task utility (VQA). Enforcing the struc-
tured output and rewarding stage-specific correctness produce
(i) stronger robustness on adversarial hallucination probes,
and (ii) better end-task accuracy, without relying on global,
response-level signals alone. Numbers for external methods
are reproduced from their reports under comparable 7B set-
tings [4], [10], [12]–[14], [16]; absolute values may vary with
implementation details, but the trends are consistent: stage-
wise, fine-grained optimization yields the best overall POPE
mean and the highest VQA accuracy in our setup.



VI. LIMITATIONS AND FUTURE WORK

While our approach significantly mitigates hallucinations
and improves reasoning accuracy, several limitations remain.
First, our training relies on datasets such as Visual Genome,
which contain explicit object and relation annotations. These
datasets are limited in domain coverage and may not capture
the full diversity of real-world scenarios, leading to potential
performance degradation when deployed in open-world en-
vironments. Second, the fine-grained rewards are computed
using a frozen reward model that itself may be imperfect or
biased. Incorrect judgments from the reward model can propa-
gate errors during GRPO training, potentially over-penalizing
correct outputs or reinforcing spurious correlations. Lastly, our
model is primarily trained on question–answer pairs from the
Visual Genome dataset. As a result, the model exhibits weaker
instruction-following ability compared to models trained on
broader instruction-tuning corpora.

In future research, we plan to (i) expand our training to
include large-scale, diverse datasets for broader coverage, (ii)
improve the reward model through various types of hallucina-
tion data to reduce bias and noise, and (iii) explore alternative
response formats beyond the conventional “objects + relations
+ answer,” including natural language explanations, explicit
reasoning chains, evidence-supported responses, and struc-
tured graphs, to assess which format best enhances grounding
reliability and mitigates hallucinations.

VII. CONCLUSION

In this paper, we proposed a fine-grained, stage-wise re-
inforcement learning framework to mitigate hallucinations
in LVLMs. Our approach decomposes model outputs into
three explicit stages, [objects] → [relations] →
[answer], enabling precise localization and penalization of
hallucinations at their sources.

By integrating four carefully designed reward
components—grounding precision, question-groundedness,
reasoning validity, and answer coherence—we align the
training objective directly with hallucination suppression.
Extensive experiments on VQAv2 and POPE benchmarks
demonstrate that our method not only achieves significant
improvements in hallucination mitigation but also enhances
overall reasoning performance.

This work highlights the importance of stage-wise su-
pervision for faithful multimodal reasoning and provides a
foundation for developing more reliable LVLMs. In future
research, we plan to extend our approach to diverse real-world
datasets and further refine the reward modeling process to
reduce bias and enhance scalability.

ACKNOWLEDGEMENT

This research has been funded (i) by the Industrial Technol-
ogy Innovation Program (P246800032, Development of Multi-
Modal Foundational Models and AI Accelerators for Zero-shot
Intelligent Surveillance System) of the Ministry of Industry,
Trade and Energy of Korea and (ii) by the BK21 FOUR (Fos-
tering Outstanding Universities for Research) funded by the

Ministry of Education (MOE, Korea) and National Research
Foundation of Korea (NRF).

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023. [Online]. Available: https://arxiv.org/abs/2303.08774

[2] R. Anil et al., “Gemini: A family of highly capable multimodal
models,” arXiv preprint arXiv:2312.11805, 2023. [Online]. Available:
https://arxiv.org/abs/2312.11805

[3] P. Wang et al., “Qwen2-vl: Enhancing vision-language model’s percep-
tion of the world at any resolution,” arXiv preprint arXiv:2409.12191,
2024. [Online]. Available: https://arxiv.org/abs/2409.12191

[4] H. Liu et al., “Visual instruction tuning,” in Advances in Neural
Information Processing Systems 36 (NeurIPS 2023), 2023. [Online].
Available: https://arxiv.org/abs/2304.08485

[5] Y. Li et al., “Evaluating object hallucination in large vision-language
models,” in Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2023, pp. 292–305.
[Online]. Available: https://aclanthology.org/2023.emnlp-main.20/

[6] Z. Sun et al., “Aligning large multimodal models with factually
augmented RLHF,” in Findings of the Association for Computational
Linguistics: ACL 2024, 2024, pp. 13 088–13 110, introduces MMHal-
Bench. [Online]. Available: https://aclanthology.org/2024.findings-acl.
775/

[7] H. Shao et al., “Visual cot: Advancing multi-modal language models
with a comprehensive dataset and benchmark for chain-of-thought
reasoning,” arXiv preprint arXiv:2403.16999, 2024. [Online]. Available:
https://arxiv.org/abs/2403.16999

[8] M. Cao et al., “Ground-r1: Incentivizing grounded visual reasoning
via reinforcement learning,” arXiv preprint arXiv:2505.20272, 2025.
[Online]. Available: https://arxiv.org/abs/2505.20272

[9] T. Yu et al., “Rlhf-v: Towards trustworthy mllms via behavior alignment
from fine-grained correctional human feedback,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024. [Online]. Available: https://arxiv.org/abs/2312.00849

[10] Z. Sun et al., “Aligning large multimodal models with factually
augmented RLHF,” in Findings of the Association for Computational
Linguistics: ACL 2024, 2024, pp. 13 088–13 110. [Online]. Available:
https://aclanthology.org/2024.findings-acl.775/

[11] Y. Zhou et al., “Aligning modalities in vision large language models
via preference fine-tuning,” arXiv preprint arXiv:2402.11411, 2024.
[Online]. Available: https://arxiv.org/abs/2402.11411

[12] Z. Zhao et al., “Beyond hallucinations: Enhancing lvlms through
hallucination-aware direct preference optimization,” arXiv preprint
arXiv:2311.16839, 2023. [Online]. Available: https://arxiv.org/abs/2311.
16839

[13] S. Lee et al., “Volcano: Mitigating multimodal hallucination through
self-feedback guided revision,” in Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational
Linguistics (NAACL), Long Papers, 2024, pp. 391–404. [Online].
Available: https://aclanthology.org/2024.naacl-long.23/

[14] L. Jing et al., “Fgaif: Aligning large vision-language models with
fine-grained ai feedback,” Transactions on Machine Learning Research
(TMLR), 2025. [Online]. Available: https://jmlr.org/tmlr/papers/

[15] Y. Goyal et al., “Making the v in VQA matter: Elevating the
role of image understanding in visual question answering,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 6904–6913. [Online]. Available:
https://arxiv.org/pdf/1612.00837

[16] P. Wang et al., “Qwen2-vl: Enhancing vision-language model’s percep-
tion of the world at any resolution,” arXiv preprint arXiv:2409.12191,
2024. [Online]. Available: https://arxiv.org/abs/2409.12191

[17] U.-R. Team, “Unified-reward: Open and unified reward model for
llms/lvlms,” https://codegoat24.github.io/UnifiedReward/, 2025, we used
the UnifiedReward-Think-7B checkpoint in our experiments.


