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Abstract—Accurate Remaining Useful Life (RUL) prediction
for Lithium-Ion Battery (LIB) is essential for ensuring the
reliability and safety of a Battery Management System (BMS).
The non-linear degradation patterns, caused by diverse operating
conditions and complex internal chemical reactions, are a key
factor that makes accurate prediction difficult. In this study,
we propose a prediction model based on a Recurrent Neural
Network (RNN) to effectively learn the non-linear and complex
degradation characteristics of these batteries. The proposed
model features a dual-branch architecture that simultaneously
utilizes both temporal patterns and statistical features from State
of Health (SOH) sequence data. This architecture is designed to
concurrently capture long-term degradation trends and local fluc-
tuations. One branch learns temporal dependencies by directly
taking the SOH sequence as input through a Long Short-Term
Memory (LSTM) or Bidirectional Long Short-Term Memory
(Bi-LSTM) network, while the other branch receives statistical
features, such as the mean and standard deviation, extracted from
that sequence as input. The feature vectors extracted from the two
branches are combined and used for the final RUL prediction.
To validate the model’s performance and structural effectiveness,
we compared and analyzed the prediction performance of LSTM
and Bi-LSTM models applied under the same dataset and dual-
branch architecture. The experimental results indicated that
the Bi-LSTM model demonstrated superior prediction accuracy,
achieving lower Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) compared to the LSTM model. This
suggests that the bidirectional architecture, which utilizes both
past and future contexts of the SOH time-series data, is more
effective in learning battery degradation patterns with greater
precision. The findings of this study are expected to contribute to
the development of more reliable battery management strategies.

Index Terms—Lithium-Ion Battery, Remaining Useful Life,
State of Health, Deep Learning, Bi-LSTM

I. INTRODUCTION

As energy-intensive industries such as electric vehicles,
distributed energy systems, and mobile robotics rapidly ex-
pand, the demand for efficient energy sources is surging. In
current commercial systems, the Lithium-Ion Battery (LIB)
has been established as the standard energy storage device
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across various fields due to its high gravimetric and volumet-
ric energy density, excellent power density, high efficiency,
and long cycle life. [1]-[4]. However, the performance and
lifespan of batteries are subject to significant uncertainty due
to diverse operating conditions, manufacturing variations, and
complex degradation mechanisms. [5]. Therefore, the ability
to accurately predict the Remaining Useful Life (RUL) during
the operational phase plays a crucial role in ensuring safety,
optimizing maintenance and replacement schedules, and es-
tablishing strategies for post-use battery recycling. [6], [7].

Current studies on battery RUL prediction are broadly
classified into physics-based, electrochemical model-driven
and machine learning-driven approaches [8]. Initially, mod-
els based on electrochemical equations, such as the P2D
model and the Newman model, are representative physics-
based/electrochemical models [9]-[11]. These models can
precisely analyze internal state variables—such as lithium
diffusion within the electrodes, electrolyte concentration dis-
tribution, and interfacial reaction kinetics—offering high inter-
pretability and generalizability of the battery’s internal state.
However, they are limited by the need to identify a large
number of parameters and their high computational cost,
making them difficult to implement for real-time, on-board
applications [12], [13].

On the other hand, with advancements in computational
performance and data acquisition technologies, RUL predic-
tion using machine learning techniques has emerged as a
promising alternative [14]. While traditional methods like
Support Vector Machine and Gaussian Process Regression
have been employed, recent research shows a strong trend
towards machine learning techniques such as Recurrent Neural
Network (RNN)-based models, capable of learning long-term
dependencies, and Convolutional Neural Network (CNN)-
based models, effective for processing local patterns [15]-[17].

Furthermore, advanced machine learning—based approaches
for state diagnosis and prediction—such as Transformer-
based models, CNN-BiLSTM-Attention hybrids, and con-
volution—recurrent combined models—have been reported in
various fields [18]-[20]. These approaches automatically learn
the correlations between input and output data, achieving high
prediction accuracy without requiring physical models, and
exhibit robustness against measurement noise. In this study,
to apply such advanced machine learning techniques to RUL
prediction, a deep learning model is proposed that uses only a



portion of the previous SOH sequence—rather than the entire
historical sequence—based on the current prediction time. By
focusing on an arbitrary number N of SOH sequences prior to
the prediction point, the proposed model achieves high predic-
tion accuracy while mitigating sample inefficiency, prediction
latency, and storage costs, thereby improving its applicability
to real systems. Additionally, to enhance prediction accuracy,
statistical features of the SOH sequence are incorporated into
the input data. These statistical features include the mean,
standard deviation, skewness, kurtosis, maximum, minimum,
and median values. This is implemented by adding an aux-
iliary neural network that learns the correlation between the
statistical features of the SOH sequence and the RUL, thereby
compensating for the limited predictive capability of RNN-
based models that rely solely on time-series data.

In this study, Long Short-Term Memory (LSTM) and
Bidirectional Long Short-Term Memory (Bi-LSTM) architec-
tures, both based on recurrent neural networks, are adopted
to compare their performance under the same dataset and
training conditions. LSTM processes input sequences in a
unidirectional manner, predicting the current state based on
past information, and is particularly effective at learning long-
term dependencies in time-series data. In contrast, Bi-LSTM
consists of two LSTMs that operate in both forward and
backward directions, enabling the model to utilize information
from both the past and the future. This bidirectional structure
helps mitigate temporal uncertainty in RUL prediction by
allowing the model to determine the relevance of specific
data points using context from both directions. Therefore,
this study quantitatively compares the real-time applicability
of the unidirectional LSTM architecture and the temporal
uncertainty mitigation capability of the bidirectional Bi-LSTM
architecture.

The remainder of this paper is organized as follows. Section
2 describes the architectures of LSTM and Bi-LSTM. Section
3 introduces the dataset used for training and details the
specific structure of the RUL prediction model. Section 4
presents the prediction results of the proposed models and
analyzes their performance through a comparative study. Fi-
nally, Section 5 summarizes the conclusions of this study and
discusses future work and its expected impact.

II. LSTM AND BI-LSTM

RUL prediction for LIB is performed based on State
of Health (SOH) sequence data. Recurrent Neural Network
(RNN) are widely used to effectively learn the features of
such sequential data. However, basic RNN have a limitation
known as the long-term dependency problem, where initial
information fails to propagate through later time steps as
the sequence length increases. This section describes the
architectures and features of LSTM and Bi-LSTM, which are
representative recurrent neural network models proposed to
solve this problem.
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Fig. 1. LSTM cell structure

A. Long Short-Term Memory

LSTM, proposed by Hochreiter and Schmidhuber [21], is
a model designed to solve the long-term dependency problem
found in traditional RNN [21]. The core idea of LSTM is to
effectively control the flow of information by introducing a
cell state and several gates. The cell state acts like a conveyor
belt, selectively carrying information throughout the entire
sequence. This architecture efficiently solves the long-term
dependency problem by allowing important information to
be retained over long sequences while discarding irrelevant
information. In the following subsections, we will describe
the three types of gates that constitute the LSTM architecture
and their roles, and analyze the advantages and disadvantages
of this structure.

1) Forget Gate: The Forget Gate decides what informa-
tion to discard from the previous cell state, C;_1. It passes
information from the hidden state through a sigmoid layer
to produce gate values between O and 1, which are then
applied to the cell state via an element-wise product. This
process determines which information is to be retained. The
corresponding equation is as follows:

fi =0(Wy[hi_1, x¢] + by) (H

2) Input Gate: The Input Gate determines how much of
the new information, based on the current input x; and the
Rrevious hidden state h;_1, should be stored in the cell state,
C.

iy = o(W;[hi—1, ] + b;) ()
C, = tanh(W, [h,_1, ;] + b.) (3)

The cell state for the current time step is updated using the
outputs from the Forget and Input Gates. In this process, the
Forget Gate regulates the proportion of information to retain
from the previous cell state, while the Input Gate regulates the
proportion of the new candidate cell state to incorporate. The
equation is as follows:

Ci=fi-Ci_y+i; C )



3) Output Gate: The Output Gate generates the hidden state
for the current time step based on the updated cell state, Cf.
The output is calculated by taking the element-wise product
of two terms: the output of a sigmoid layer that processes the
previous hidden state, and the updated cell state after being
passed through a hyperbolic tangent layer. This result is the
hidden state for the current time step,h;.

o; = o(Wy [hi_1, ] + b,) )]
ht = O¢ - tanh(Ct) (6)

Fig. 1 illustrates the structure of an LSTM memory cell.
Through this gated architecture, LSTM compensates for the
structural limitations of conventional RNN and mitigates the
long-term dependency problem. LSTM excels at learning long-
term trends from time-series data while filtering out irrelevant
information, making it well-suited for capturing the gradual
degradation patterns present in SOH sequences. However, due
to its unidirectional structure, LSTM is constrained to using
only information from past time steps to predict the output at
the current time step. This causal structure introduces temporal
uncertainty, as it cannot leverage the context from the entire
sequence.

B. Bidirectional-LSTM

Bidirectional LSTM (Bi-LSTM) is a model proposed to
overcome the unidirectional structural limitations of LSTM.
As its name suggests, it aims to utilize contextual information
more broadly by processing the input sequence in two direc-
tions [22], [23]. Fig. 2 illustrates the specific architecture of
Bi-LSTM. Bi-LSTM is designed to simultaneously incorporate
bidirectional information from the sequence by arranging
identical LSTM cells in both forward and backward passes.
The output hidden state at time step ¢ is defined as follows:

he = R, hy] e R )

Through this bidirectional architecture, Bi-LSTM processes
the same sequence in both forward and backward directions,
resulting in a representation for each time step that is an
aggregate of both past and future contexts. In time-series
data, it is difficult for a unidirectional LSTM structure to
discern whether a change at a specific point is short-term
noise or the initial sign of a cumulative pattern shift. Bi-LSTM
addresses this problem of temporal uncertainty by adopting
a bidirectional structure. Furthermore, for the same sequence
length, it can improve prediction accuracy by leveraging a
richer set of hidden layer computations compared to a standard
LSTM. On the other hand, the increased number of parameters
and computations leads to longer training times and can
heighten the risk of overfitting, particularly when the dataset
size is limited. In this study, we apply Dropout and Layer
Normalization to reduce this risk and improve the model’s
generalization performance [24].

This study evaluates the structural characteristics and practi-
cal applicability of LSTM and Bi-LSTM by comparing them
under identical input data and training environments. While
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Fig. 2. Bi-LSTM structure

LSTM offers the advantage of shorter training times due to
lower computational costs, Bi-LSTM can leverage both past
and future contexts to reduce temporal uncertainty and achieve
more stable prediction performance. Notably, as this study
uses only the 100 most recent sequences leading up to the
prediction point, the comparison highlights LSTM’s capability
for unidirectional learning of recent trends against Bi-LSTM’s
interpretive strength in considering the full bidirectional con-
text. Through this experimental comparison, we analyze the
results within a practical battery RUL estimation scenario and
aim to propose a model architecture that is well-suited for
operational deployment.

III. RUL PREDICTION MODEL DESIGN

This chapter describes the detailed architecture of the model
designed for the RUL prediction of lithium-ion batteries.
First, we describe the composition and preprocessing of the
dataset used for training, and then we introduce in detail the
architecture of the proposed model, which utilizes both SOH
sequence data and statistical features.

A. LIB Dataset

In this study, a charge-discharge test is conducted on eight
SAMSUNG INR 18650-25R lithium-ion cells in a thermo-
hygrostatic chamber maintained at 25 °C and 60% relative
humidity. The cells are charged using a 0.5C-rate Constant
Current—Constant Voltage (CC-CV) method and discharged
with random currents. Over 950 cycles are repeated, during
which the voltage and current time-series data for each cycle
are collected. Prior to model training, the collected data
undergoes preprocessing to extract input features effective for
Remaining Useful Life (RUL) prediction. First, after extracting
the Cycle-SOH curve for each cell, a sliding window technique
is applied to construct the dataset for model training. By
setting the window size to N, sequences composed of N
consecutive SOH values are sequentially extracted from the
entire SOH dataset. Each generated sequence is used as
the first model input (the sequence input). Simultaneously,
seven statistical features—mean, standard deviation, skewness,
kurtosis, maximum, minimum, and median—are calculated
from the sequence to form the second model input (the feature
input). Finally, the ground truth RUL for each sequence is
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Fig. 3. Proposed RUL prediction model

calculated as the difference between the battery’s end-of-life
(EOL) cycle number and the cycle number of the last data
point in that sequence.

Here, the State of Health (SOH), a key indicator repre-
senting the degree of performance degradation in lithium-ion
batteries, is defined in this study as a capacity-based metric.
The available capacity, @i, at the k-th cycle is calculated by
integrating the current. The equation is as follows:

fend L+ 1
Qi = / 1(t) dt, szijTAti. ®)

start

The reference capacity, Q)f, is defined as the nominal
capacity of the cell. Consequently, the capacity-based SOH
is calculated as follows:

Qr

ref

Additionally, the battery’s end-of-life (EOL) is defined as
the point when the SOH reaches 80%, and for each cell, this
cycle index is recorded as kgor,. Accordingly, the Remaining
Useful Life (RUL) at cycle k is calculated as follows and used
as the target variable for training the LSTM and Bi-LSTM
models.

SOHy, = x 100%.

€))

RUL(k) = kgor — k (10)

B. RUL Prediction Model

The RUL prediction model proposed in this study features
a dual-branch architecture designed to simultaneously learn
both the dynamic patterns and static features of the SOH time
series. The overall model architecture is illustrated in Fig. 3.

The first path is the sequence branch, which takes the
SOH sequence data as input and uses the most recent N
SOH samples prior to the prediction point. In this study, the
proposed model is validated with N = 100. In Fig. 3, z;
denotes the SOH value at the time step t within the SOH
sequence data, and h; represents the hidden state learned by

the Bi-LSTM model from the SOH sequence that includes
x, which serves as a high-dimensional feature vector that
captures temporal dependencies around the time step ¢. The
input sequence is transformed into hidden states through the
LSTM and Bi-LSTM layers and then compressed into a final
feature vector via the fully connected (FC) layer.

The second path is the feature branch, which uses a
statistics-based feature vector extracted from the same SOH
sequence segment as the sequence branch. Specifically, from
each sequence, statistical properties such as mean, standard
deviation, skewness, and kurtosis are calculated, along with
positional statistics including the minimum, maximum, and
median values. This feature vector is processed through two
FC layers and a normalization step before being combined
with the vector obtained from the sequence branch.

The fusion of these branches is achieved through both
concatenation and addition operations, a design that ensures
both the time-series contextual information and the statistical
features are jointly reflected. Specifically, the feature vector
from the sequence branch is utilized in both the concatenation
and addition layers, a design choice that allows the features
from the sequence data to carry more weight in the final
representation. After these fusion steps, the resulting vector is
passed through a final FC layer and transformed into a single
scalar value, which represents the predicted RUL.

IV. MODEL VALIDATION

This chapter validates and analyzes the performance of the
RUL prediction model designed in Chapter 3. First, we define
the dataset partitioning method, the training environment, and
the performance evaluation metrics used in the experiments.
Subsequently, under the same dual-branch architecture, we
compare the prediction results of the models applying LSTM
and Bi-LSTM to the sequence branch, respectively, and quan-
titatively evaluate the accuracy of each model using error
metrics.



A. Experimental Environment and Evaluation Metrics

The performance validation of the proposed model was con-
ducted using the MATLAB Deep Learning Toolbox [25]. Out
of the total eight battery cell datasets, six (batteries 1-6) were
used for model training and validation, while the remaining
two (batteries 7-8) were set aside as a completely unseen test
set to evaluate the model’s generalization performance. The
Adam optimizer [26] was used for model training, with the
following key hyperparameters: a maximum of 600 epochs,
a mini-batch size of 128, an initial learning rate of 3e-4,
and L2 regularization of le-4. Additionally, an early stopping
strategy was employed, halting the training if the validation
performance did not improve for 100 consecutive epochs.

To quantitatively evaluate the prediction accuracy of the
models, Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) were used as performance metrics. The equation
for each metric is as follows:

1 n N
MAE = EZL%‘ — i
=1

Where, n is the total number of test data points, y; is the
actual RUL value, and g; is the RUL value predicted by the
model.

B. Experimental Results and Analysis

Table I presents the quantitative comparison of prediction
errors for each model across different batteries. The Bi-LSTM-
based model outperformed the LSTM model in all evaluation
metrics for both test batteries. Specifically, for Battery 7,
which was not used during training, the MAE decreased
from 8.62 to 6.53, and the RMSE decreased from 10.58 to

TABLE I
PERFORMANCE COMPARISON OF RUL PREDICTION MODELS ACROSS ALL
BATTERIES
Battery | Model [ MAE RMSE
Training Batteries (1-6)

Battery 1 .LSTM—based Model 4.99 6.67
Bi-LSTM-based Model 4.74 6.16

Battery 2 ‘LSTM—based Model 9.03 13.19
Bi-LSTM-based Model 7.57 10.38

Battery 3 'LSTM-based Model 7.39 11.46
Bi-LSTM-based Model 5.10 7.19

Battery 4 ‘LSTM—based Model 5.87 8.53
Bi-LSTM-based Model 5.74 7.98

Battery 5 .LSTM—based Model 10.32 13.64
Bi-LSTM-based Model 8.38 10.44

Battery 6 _LSTM—based Model 1091 12.84
Bi-LSTM-based Model 9.76 11.64

Validation Batteries (7-8)

Battery 7 ‘LSTM—based Model 8.62 10.58
Bi-LSTM-based Model 6.53 8.19

Battery 8 LSTM-based Model 6.67 9.02
Bi-LSTM-based Model 6.23 8.01
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Fig. 4. Prediction results of the LSTM-based model
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Fig. 5. Prediction results of the Bi-LSTM-based model

8.19, demonstrating a significant improvement in performance.
Similarly, for Battery 8, the Bi-LSTM model achieved lower
errors, confirming its stable prediction capability. In particular,
the noticeable reduction in RMSE is noteworthy. While the
MAE represents the average magnitude of prediction errors,
the RMSE assigns greater weight to larger errors. Therefore,
the lower RMSE of the Bi-LSTM model indicates a reduced
likelihood of severe prediction failures, implying that Bi-
LSTM provides higher reliability for practical applications
such as Battery Management Systems (BMS), where prevent-
ing system malfunctions or safety issues is critical.
Furthermore, the superior performance of the Bi-LSTM
model is also evident in Figs. 4-5. These figures show scatter
plots comparing the actual versus predicted RUL for the
LSTM and Bi-LSTM models, respectively. While both models
predict the overall degradation trend effectively, it is clear that
the predictions from the Bi-LSTM model are more densely



clustered around the ideal 1:1 line (dotted line).

Meanwhile, an analysis of performance across different
RUL ranges reveals that both models tend to show a slight
increase in prediction error as the battery approaches its
end-of-life (i.e., at lower RUL values). This suggests that
the models have some difficulty in perfectly capturing the
accelerated degradation phenomena that often occur late in a
battery’s life. Nevertheless, the Bi-LSTM model’s predictions
remained more tightly clustered around the ideal 1:1 line,
demonstrating its robustness by maintaining relatively stable
predictions compared to the LSTM, especially in the end-of-
life region.

In conclusion, these results confirm that by learning from
both forward and backward information in the SOH time
series, the Bi-LSTM can more robustly handle non-linear
patterns, such as local capacity regeneration and changes in
the degradation rate. This leads to the conclusion that the Bi-
LSTM, which comprehensively understands bidirectional con-
text, performs more stable and reliable predictions compared to
the LSTM, which processes information only unidirectionally.

V. CONCLUSION

In this study, we proposed a dual-branch deep learning
model for the accurate RUL prediction of lithium-ion batteries,
which simultaneously utilizes both the dynamic patterns and
static features of SOH sequences. Furthermore, within this
proposed architecture, we compared and analyzed the perfor-
mance of RUL prediction models based on LSTM and Bi-
LSTM. The experimental results confirmed that the Bi-LSTM-
based model, which learns from the bidirectional context of
time-series data, achieved lower errors and demonstrated supe-
rior prediction accuracy compared to the LSTM-based model.
In particular, the Bi-LSTM model showed a more significant
improvement in the RMSE metric, which is sensitive to large
errors, thus proving its robustness against outliers like major
prediction failures. This implies that it can ensure higher
stability and reliability in real-world system applications.

The model architecture and the applicability of Bi-LSTM
proposed in this study are expected to enhance the reliability
of battery management systems and contribute to the efficient
and safe operation of batteries in various industrial fields.
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