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Abstract—Lidar sensors are essential perception components
for autonomous vehicles, providing high-resolution 3D point
clouds for tasks such as object detection and localization. Sensor
faults, including channel failures, partial or full occlusions,
and environmental noise, can degrade point-cloud quality and
compromise driving safety. Detecting such faults is challenging
due to the difficulty and rarity of safely collecting real-world
fault data. To address this, we propose a pipeline that generates
fault point clouds by systematically injecting diverse lidar fault
patterns into normal driving data. We further introduce a
hybrid neural network that integrates a 3D Graph Convolutional
Network (3D-GCN) for local geometric feature extraction with
a Transformer to capture long-range contextual dependencies.
A stepwise verification procedure progressively analyzes point-
cloud characteristics to enhance detection reliability. Experi-
mental evaluation on synthetic test sets demonstrates that the
proposed method achieves 96.25% classification accuracy with
only 1.08 million parameters, outperforming existing approaches
while supporting real-time inference. This framework provides
a practical and effective solution for early lidar fault detection,
facilitating robust perception in autonomous driving.

Index Terms—Autonomous driving, Lidar fault detection, Syn-
thetic fault data, 3D point clouds, 3D-GCN, Transformer

I. INTRODUCTION

Lidar sensors provide high-resolution 3D point clouds that
are essential for autonomous vehicle perception tasks, in-
cluding object detection, localization, and mapping. How-
ever, lidars are susceptible to faults such as channel failures,
occlusions, and surface contamination, which can degrade
point cloud quality and compromise downstream perception
modules [8]–[10]. Rapid and reliable fault detection is there-
fore critical for autonomous driving safety. Existing detection
approaches can be broadly categorized into three types: (i)
hardware- and signal-based methods leveraging internal sensor
measurements [13], (ii) multi-sensor consistency checks using

radar data [17], and (iii) data-driven point cloud methods,
including variational autoencoder reconstruction and graph-
based models [7], [16], [17]. Nevertheless, these approaches
are constrained by the scarcity of labeled fault data, making
real-world data collection both costly and hazardous. Synthetic
fault generation provides a practical alternative [15], enabling
efficient dataset augmentation. Consequently, effective models
should capture both local geometric distortions and global con-
textual patterns to distinguish transient noise from persistent
faults.

We propose a practical framework for lidar fault detection
that integrates synthetic fault generation and a hybrid deep
architecture, as shown in Fig. 1. A deformable 3D-GCN
extracts direction-aware local features, while the Transformer
module captures long-range contextual dependencies. The
main contributions of this work are summarized as follows:

1) A synthetic fault generation pipeline that creates multi-
ple realistic lidar fault modes for data-efficient training.

2) A hybrid detection network combining the 3D-GCN and
Transformer module to effectively model both local and
global features.

3) A multi-stage, confidence-driven verification scheme
that reduces false positives during streaming inference.

4) Experimental validation on synthetic datasets demon-
strating improved fault detection performance compared
to existing methods.

The remainder of the paper is organized as follows: Sec-
tion II reviews related work. Section III details the synthetic
fault generation process and the hybrid network. Section IV
presents experimental results. Section V concludes the study.



Fig. 1. Lidar fault diagnosis framework: hybrid 3D-GCN and Transformer-based fault detection for lidar condition assessment.

II. RELATED WORK

A. Lidar Faults and Synthetic Data

Lidar faults, including channel failures, occlusions, and
hardware degradation, can significantly degrade autonomous
vehicle perception. Detection approaches include hardware-
and signal-based diagnostics [13], multi-sensor fusion [17],
and data-driven point cloud methods [7], [16], [17]. Hardware-
based methods are typically sensor-specific and difficult to
generalize. Multi-sensor approaches can be sensitive to cal-
ibration errors and environmental conditions. Data-driven
methods offer scalability and flexibility but are constrained by
the scarcity of labeled fault data, which is costly to collect. To
overcome this limitation, synthetic fault data—including oc-
clusion masks, Gaussian noise, and partial point dropout—can
be generated to augment training datasets and create controlled
evaluation scenarios [8]–[10], [14], [15]. Carefully designing
fault types and systematic pipelines enables these synthetic
datasets to approximate real-world conditions closely, sup-
porting robust deployment of models in autonomous vehicle
systems.

B. Point Cloud Learning

Although early point cloud methods applied voxelization
or bird’s-eye projections to enable 2D CNN processing, this
often resulted in a loss of fine geometric details [3]. PointNet
and its variants process raw point sets directly, preserving
local structures and capturing neighborhood information [1],
[2], while PointNext improves training efficiency and scala-
bility for larger point clouds [12]. Graph-based representa-
tions treat points as vertices connected by edges, capturing
local connectivity and structural relationships. Graph convo-
lutional networks with deformable kernels extract expressive
local features that adapt to varying point densities, whereas
Transformer-based models effectively capture global context
and long-range dependencies [4], [5], [11]. Inspired by the
Conformer model for image classification [6], we propose a
hybrid 3D-GCN + Transformer architecture that jointly models
local and global features, improving robustness to sparse or
partially missing points for enhanced lidar fault detection.

III. OUR METHOD

A. Fault Data Generation
Due to the limited availability of real lidar fault data,

synthetic fault data are generated from normal point clouds.
A normal point cloud is defined as:

P = {pi ∈ R3 | i = 1, . . . , N}, (1)

where N denotes the number of points, and each point pi

may include additional attributes such as intensity or return
index. Points outside a predefined spatial region [xmin, xmax]×
[ymin, ymax]×[zmin, zmax] are first removed to ensure data quality
before fault generation.

1) Channel Failure: Partial loss of lidar channels can occur
due to LED failures or physical damage. To simulate channel
failures, the point cloud is divided along the z-axis into dense
and sparse regions:

PK = {pi | zKmin ≤ zi ≤ zKmax}, (2)

PDB = {pi | zi < zKmin or zi > zKmax}. (3)

Here, PK is the dense middle region, and PDB contains the
sparse lower and upper regions.

In the dense region, K-Means clustering is applied to the
z-coordinates:

{ĈK
j }

Kclusters
j=1 = KMeans({zi}pi∈PK), Kclusters = 50, (4)

while in the sparse regions, DBSCAN is applied to all three
coordinates:

{ĈDB
j } = DBSCANϵ=0.5,minPts=5({pi}pi∈PDB). (5)

Clusters from both regions are combined:

C = {ĈK
j } ∪ {ĈDB

j }. (6)

A subset of clusters, Cdrop, is randomly sampled according
to the drop fraction pdrop. A drop fraction pdrop ∈ [0.3, 0.8]
is randomly selected to simulate moderate to severe channel
failures. Each point pi is then updated as:

p′
i =

{
pi, pi ∈ Cj and Cj /∈ Cdrop,

∅, otherwise.
(7)

This procedure preserves local density characteristics while
realistically simulating channel failure.



(a) Channel clustering

(b) Channel filtering

Fig. 2. Generation of channel failures with clustering of points and removal
of selected clusters.

(a) Normal

(b) Global occlusion

Fig. 3. Global occlusion generated by randomly removing a fraction of points
from the normal point cloud.

2) Global Occlusion: Global occlusion occurs when a
fraction of points across the full field of view of the lidar is
lost, e.g., due to dirt, dust, dew, or snow. A removal proportion
premove ∈ [0.3, 0.5] is chosen to simulate moderate occlusion:

p′
i =

{
pi, with probability 1− premove,

∅, with probability premove.
(8)

3) Partial Occlusion: Partial occlusion affects only specific
angular sectors, e.g., due to dirt, dust, dew, or snow. The point
cloud

P = {pi = (xi, yi, zi)}Ni=1 (9)

is converted to cylindrical coordinates (ρi, ϕi, zi):

ρi =
√
x2
i + y2i , ϕi = arctan 2(yi, xi), (10)

where ρi is the radial distance and ϕi the azimuth angle. Each
occlusion sector k = 1, . . . ,K is characterized by a maximum
radial distance ρ

(k)
mask, an azimuthal range ϕ

(k)
range ∈ [25◦, 45◦], a

(a) Normal (b) Partial occlusion

Fig. 4. Partial occlusion by selective point removal in cylindrical coordinate
sectors.

vertical range z
(k)
range, and a point removal probability r

(k)
del ∈

[0.5, 1.0]. For each point cloud, the number of occlusion
sectors K is randomly sampled from 1 to 4.

Points within each sector are then removed stochastically:

p′
i =

{
pi, pi /∈ mask(k),
∅, pi ∈ mask(k) with probability r

(k)
del .

(11)

The sector mask is defined as

mask(k) = {pi | ρi ≤ ρ
(k)
mask, ϕi ∈ ϕ(k)

range, zi ∈ z(k)range}. (12)

This stochastic selection preserves the overall point cloud
structure while enabling reproducible partial-occlusion scenar-
ios.

B. Hybrid Architecture

Our approach combines two complementary strategies:
(i) 3D-GCN to capture local geometric structures [4], and
(ii) Conformer-inspired integration of local feature extrac-
tors with global Transformer modules to model long-range
dependencies [6]. Given a faulty point cloud P ′, prepro-
cessing steps—including range filtering and distance-based
sampling—produce the network-ready point cloud:

P ′′ = {p′′
i ∈ R3}Ni=1. (13)

These steps reduce tens of thousands to millions of points
per second to a manageable input while preserving density
variations crucial for fault detection.

1) Range filtering: Points outside a predefined 3D spatial
region [xmin, xmax]×[ymin, ymax]×[zmin, zmax] are removed
to eliminate distant or noisy points. In our implementa-
tion, points with x or y outside [−3, 3] m or z outside
[−50, 50] m are removed.

2) Distance-based sampling: Remaining points are sorted
by Euclidean distance from the sensor origin, and the
closest Ninput points are selected to form a fixed-size
input, preserving local density variations for effective
fault detection.

The resulting sampled point cloud is:

Psampled = {pi ∈ R3}Ninput
i=1 , (14)

which serves as the input to the hybrid network.



Fig. 5. Comparison of preprocessed lidar point clouds under normal and
channel failure scenarios.

1) 3D Graph Construction: A directed k-nearest neighbor
(k-NN) graph G = (V, E) is constructed:

Ni = arg topk min
j

∥pi − pj∥2, (15)

where each vertex represents a point, and edges connect to its
k nearest neighbors.

2) Local Feature Extraction and Initial Transformer: Local
features are extracted using deformable-kernel surface convo-
lution:

h
(0)
i = LocalFeature(pi). (16)

A Transformer encoder captures long-range dependencies:

H(0) = [h
(0)
1 , . . . ,h

(0)
N ]⊤, (17)

H′ = GlobalContext(H(0)). (18)

Local and global features are fused element-wise:

h
(0,fused)
i = h

(0)
i ⊙ h′

i, (19)

providing graph convolution layers with features enriched by
both local geometry and global context.

3) Graph Convolution Layers: For l = 1, . . . , L:

h
(l+1)
i = σ

( ∑
j∈Ni

w
(l)
ij h

(l)
j

)
, w

(l)
ij = fθ(pj − pi), (20)

where fθ is a learnable MLP and σ is a non-linear activation.
4) Global Pooling and Classification: Point-wise features

are aggregated by global max-pooling:

hglobal = max
i=1,...,N

h
(L+1)
i . (21)

A fully connected layer with softmax predicts the fault class:

ŷ = Softmax(Wfchglobal + bfc). (22)

C. Stepwise Lidar Fault Detection Flow

To enhance robustness, lidar fault detection is comple-
mented by a stepwise verification procedure that combines
simple heuristics with model inference confidence. This pro-
cedure includes the following stages:

Fig. 6. Hybrid 3D-GCN and Transformer architecture for lidar fault detection.

1) Point Count Threshold Check: Let Npoints denote the
number of points in a received point cloud and Nthresh a
predefined threshold. A potential lidar fault is suspected if:

Npoints < Nthresh (23)

Otherwise, data acquisition is further verified.
2) Data Acquisition Timer-Based Check: The duration re-

quired to acquire the point cloud, Tduration, is compared with a
threshold Tthresh, setting a timer fault flag as:

TimerFlag =

{
True, Tduration ≥ Tthresh

False, Tduration < Tthresh
(24)

If consecutive timer faults exceed a predefined limit
Tcounter thresh, a data acquisition error is concluded.

3) Model Confidence-Based Verification: After initial
checks, the pre-trained lidar fault detection model provides
a confidence score Cmodel ∈ [0, 1]. The lidar fault flag is set
according to:

LidarFaultFlag =

{
True, Cmodel ≥ Cthresh

False, Cmodel < Cthresh
(25)

If consecutive model fault flags exceed a counter threshold
Lcounter thresh, a lidar fault is concluded.

4) Final Fault Output: If a lidar fault is detected through
either the timer-based accumulation or model confidence eval-
uation, the system outputs the fault result through a desig-
nated interface, potentially signaling other modules within an
autonomous vehicle control system. This stepwise procedure
ensures robust and reproducible lidar fault detection by com-
bining lightweight heuristics with learned feature representa-
tions, complementing the hybrid 3D-GCN and Transformer
architecture described above.



Fig. 7. Real-world lidar data collection setup across highways, urban roads,
and rural environments.

TABLE I
PERFORMANCE COMPARISON OF LIDAR FAULT DETECTION MODELS ON

THE SYNTHETIC VALIDATION SET.

Model Sampling Acc (%) #Param

CNN FPS 30.62 3.32M
CNN Distance-based 67.34 3.32M
PointNet++ FPS 28.28 1.48M
PointNext FPS 32.64 0.80M
3D-GCN Distance-based 94.45 0.89M
3D-GCN + Transformer (Ours) Distance-based 96.25 1.08M

IV. EXPERIMENTS

A. Experimental Setup

Experiments were conducted using synthetic fault data gen-
erated from real-world lidar scans, enabling controlled learning
and evaluation of labeled fault scenarios. Normal point clouds
were collected using a Velodyne HDL-32E (32 channel) lidar
across highways, urban, and rural roads during both day and
night, with a sampling rate of 10 to 15 Hz. The dataset consists
of 7,000 normal point clouds and 21,000 synthetic fault point
clouds (7,000 per fault type: channel failure, global occlusion,
partial occlusion). Using the proposed distance-based sam-
pling, Ninput = 12,000 points per cloud were selected. The
dataset was split into training, validation, and testing subsets
in a 70 percent, 15 percent, and 15 percent ratio. Preprocessing
steps were applied to all point clouds, and optional data
augmentation, including rotations, translations, and Gaussian
noise, was performed. Evaluation metrics include classification
accuracy and confusion matrices.

The hybrid 3D-GCN + Transformer network was imple-
mented in PyTorch with 4 graph convolution layers (F = 64),
k = 16 neighbors, and 2 Transformer encoder layers. Training
was performed with a batch size of 16 using the Adam
optimizer (1×10−3) for 100 epochs, incorporating online data
augmentation. All experiments were conducted on an NVIDIA
RTX 3090 GPU, as shown in Fig. 7. Baseline models include
CNN with Farthest Point Sampling(FPS), CNN with distance-
based sampling, PointNet++ [2] with FPS, PointNext [12] with
FPS, and 3D-GCN with distance-based sampling [4].

Fig. 8. Confusion matrix of the proposed 3D-GCN + Transformer model on
the synthetic test set.

B. Results

Table I summarizes the validation performance on the
synthetic dataset during training. The proposed 3D-GCN
+ Transformer model achieved 96.25% validation accuracy,
outperforming CNN with distance-based sampling (67.34%),
CNN-FPS (30.62%), PointNet++-FPS (28.28%), PointNext-
FPS (32.64%), and standalone 3D-GCN with distance-based
sampling (94.45%). Ablation studies indicate that including
the Transformer module improved validation accuracy by 1.8

To evaluate generalization, a separate test set was used
to compute the confusion matrix, shown in Fig. 8. On the
test set, channel failures and global occlusions were classified
almost perfectly, while partial occlusions achieved 81.1%
accuracy. Distance-based sampling contributed significantly by
preserving local point density variations, which are critical for
detecting lidar faults, as illustrated in Fig. 9. In contrast, FPS
methods tend to obscure these density differences, often pro-
ducing patterns resembling global occlusions, which reduces
classification performance.

C. Discussion

The experimental results demonstrate that the proposed
hybrid 3D-GCN + Transformer framework generalizes well
across multiple lidar fault types. The model effectively com-
bines local geometric feature extraction with global context
modeling, enabling robust detection even in sparse point
clouds. Distance-based sampling is critical for maintaining
local point density variations, which facilitate distinguishing
between fault types. FPS is commonly adopted in point cloud
classification models, has traditionally been used in deep
learning-based point cloud methods to classify specific objects
while preserving their shape as much as possible. However, it
can obscure density differences and produce patterns similar
to global occlusions, resulting in lower performance in both
partial and global occlusion scenarios.



(a) Original

(b) FPS

(c) Distance-based

Fig. 9. Comparison of point cloud sampling methods: (a) original (47,150
points), (b) FPS-sampled (12,000 points), and (c) distance-based sampled
(12,000 points), which better preserves spatial distribution.

V. CONCLUSION

We proposed a hybrid 3D-GCN + Transformer framework
for lidar fault detection, leveraging distance-based sampling
to preserve point cloud connectivity and density variations.
The model achieved 96.25% accuracy, with the Transformer
module contributing a 1.8% improvement, highlighting the
benefit of long-range dependency learning. Distance-based
sampling outperformed FPS by retaining density patterns
essential for detecting subtle faults. Although effective on
synthetic datasets, real-world lidar faults may involve complex
interactions not fully captured synthetically. Future work will
extend synthetic data coverage, develop adaptive threshold
strategies, and validate the framework on large-scale real-
world datasets for real-time autonomous vehicle integration.

Overall, the proposed approach provides a practical and robust
solution for lidar fault detection with potential for real-time
deployment.
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