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Abstract— Missing values present a critical challenge in
multi-output prediction, as they can propagate bias across
outputs through shared representations. Conventional
imputation  techniques often  overlook inter-variable
dependencies and fail to reduce bias adequately. To address this
issue, this study proposes a bias-corrected predictive imputation
framework combined with metaheuristic-optimized boosting
models. In this study, Extreme Gradient Boosting (XGBoost)
and Light Gradient Boosting Machine (LightGBM), which
inherently handle missing values during training, were further
enhanced through predictive imputation. Their performance
was most notably improved when combined with the Teaching—
Learning-Based Optimization (TLBO) algorithm, which
provided significant reductions in error metrics and
strengthened generalization. Experiments on the dataset
demonstrate that predictive imputation enhances accuracy by
effectively addressing missing values, while bias correction and
TLBO optimization substantially reduce error metrics and
improve generalization. LightGBM with TLBO achieved the
best performance, exceeding 90% accuracy for both outputs.
These results highlight the effectiveness of bias-corrected
predictive imputation and metaheuristic-optimized boosting in
delivering robust and accurate multi-output prediction.
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1. INTRODUCTION

The challenges associated with large and complex datasets
become more pronounced when developing multi-output
prediction models [1], which require complete and high-
quality data to accurately learn the relationships between input
variables and multiple outputs simultaneously. However,
missing values remain a critical issue that can reduce model
learning efficiency and increase the bias of prediction results
[2]. This issue is particularly severe when missing data are Not
Missing at Random (NMAR), where the missingness depends
on the true values of the variables [3]. In such cases, learning
from an incomplete subset may propagate bias across multiple
outputs, and joint loss functions, such as Mean Squared Error
(MSE), may be evaluated incompletely.

Although simple imputation methods have been proposed,
they are limited in multi-output settings because they ignore
inter-output dependencies and cannot adequately reduce bias.
Prior studies have focused either on missing-value handling or
improving multi-output prediction performance, but few
integrate  predictive  imputation with  metaheuristic
hyperparameter optimization [4][5].

To address this gap, this study proposes an approach
combining predictive imputation with multi-output prediction
models using XGBoost and LightGBM, with hyperparameters
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optimized via the Teaching—Learning-Based Optimization
(TLBO) algorithm. The models are evaluated using multiple
metrics, including MSE, MAE, MRE, and accuracy, to
comprehensively assess improvements in predictive
performance and bias mitigation.

II. METHODOLOGY

A. Bias Correction for Missing Data Imputation

In statistical data analysis, missing data is a common
problem. If the model used for imputing missing values is
misspecified, it may lead to biased parameter estimation [6].
To address this issue, bias correction can be applied after the
imputation process. The main idea is to use an imputation
model that allows for easy random sampling of missing
values. After imputation, the likelihood of the model is
adjusted using weights calculated from the density ratio
between the true conditional density of the missing data and
the conditional density from the imputation model. These
weights are then applied to adjust the likelihood function used
for parameter estimation, compensating for the effects of
model misspecification in the imputation process. The
advantage of this method is that it reduces the bias of the
estimates without requiring specification of the missingness
mechanism, which is often difficult in practice. Moreover, it
can be combined with different imputation models [7][8].

B. Predictive Imputation (PI)

PI, or the imputation of missing values through prediction,
is a method of handling missing data by using a model to
estimate the missing values from other variables in the dataset
[9]. Unlike simple imputation techniques such as mean,
median, or mode substitution, which often disregard the
relationships among variables, predictive imputation exploits
existing dependencies within the data. The advantage of this
approach is that it can capture both linear and nonlinear
relationships, producing imputed values that are more
plausible and closer to the true values. It also helps to reduce
bias and variance in the data compared to simpler imputation
methods. In practice, several approaches to predictive
imputation are commonly used. For this study, single
imputation with a Decision Tree Regressor was employed. A
Decision Tree is a supervised learning algorithm that
recursively partitions data based on feature values, allowing it
to model complex and nonlinear relationships without prior
statistical assumptions. This method imputes one column at a
time by constructing a decision tree model from the remaining
observed variables, without assuming prior statistical
distributions (non-parametric). Such an approach is
particularly suitable for complex datasets with nonlinear
relationships. The main strength of this method lies in its
flexibility and its ability to capture complex patterns in the
data more effectively than conventional imputation techniques
[10][11].



C. Extreme Gradient Boosting (XGBoost)

XGBoost is an advanced machine learning algorithm
derived from Gradient Boosted Decision Trees, designed for
high computational efficiency and scalability [12]. As an
ensemble method, it iteratively constructs multiple weak
learners, where each learner focuses on correcting the residual
errors from the previous iteration. One of its key advantages
is the ability to handle missing values inherently during the
training process. Instead of requiring prior imputation,
XGBoost automatically learns the optimal direction to assign
missing data in the decision tree branches. This capability
reduces the risk of introducing additional bias from external
imputation and enables the model to exploit the underlying
data structure more effectively. Consequently, XGBoost is
particularly robust in dealing with incomplete datasets while
maintaining high predictive accuracy in both classification
and regression tasks [13][14].

D. Light Gradient-Boosting Machine (LightGBM)

LightGBM is an algorithm developed from decision trees
by incorporating an ensemble technique known as boosting
[15]. In this approach, multiple weak decision tree models are
sequentially combined, where each subsequent tree corrects
the errors of the preceding one until an optimal model is
obtained. This type of algorithm is referred to as Gradient
Boosting Decision Trees (GBDTs), which provides an
efficient framework for both classification and regression
tasks. A distinctive feature of LightGBM is its inherent ability
to handle missing values during the training process. Instead
of requiring prior imputation, LightGBM automatically
determines the optimal split direction for missing values
within the decision tree construction. This mechanism reduces
the dependency on external preprocessing steps and mitigates
the risk of bias introduced by simple imputation methods.
Combined with its leaf-wise growth strategy—which enables
more effective loss reduction and faster computation—
LightGBM demonstrates robust performance when applied to
large-scale, high-dimensional, and incomplete datasets
[16][17].

E. Teaching—Learning-Based Optimization (TLBO)

TLBO is a population-based metaheuristic inspired by the
classroom learning process [18]. Each candidate solution
represents a learner, with the best solution regarded as the
teacher. The algorithm iterates through two phases. The
Teacher Phase, where learners are guided toward the teacher’s
performance, and the Learner Phase, where learners improve
through peer-to-peer interaction. This mechanism balances
exploration and exploitation, progressively refining solutions
[19][20]. Before applying TLBO, missing values in the dataset
were first imputed using Predictive Imputation (PI), and the
optimization was performed on the resulting complete dataset.
By systematically evaluating  different parameter
configurations, TLBO identifies the combinations that yield
the highest predictive performance [21][22]. This integration
enhances the ability of XGBoost and LightGBM to generalize
from data, reduces error metrics, and strengthens model
robustness in multi-output prediction tasks, particularly in the
presence of missing values.

III. EXPERIMENTS AND RESULTS

In this study, two boosting algorithm models were
employed: Extreme Gradient Boosting (XGBoost) and Light
Gradient Boosting Machine (LightGBM). These models were
selected due to their proven efficiency and strong predictive

performance, particularly when working with large-scale,
high-dimensional datasets. Both algorithms are well-suited for
scenarios involving imputation preprocessing. The models
were evaluated in combination with predictive imputation
techniques and compared against each other, with their
hyperparameters optimized using the metaheuristic algorithm.
To further illustrate the proposed method, we conducted an
analysis using the UCI Bias Correction of Numerical
Prediction Model Temperature Forecast dataset [23],
comprising 7,750 instances, 23 input features, and 2 output
variables. This dataset supports the bias correction of next-day
maximum and minimum temperature forecasts from the Local
Data Assimilation and Prediction System (LDAPS) model
over Seoul, South Korea, using summer data from 2013 to
2017. The inputs include LDAPS forecasts, observed
temperatures, and geographic variables, while the outputs are
the next-day maximum and minimum temperatures. Model
evaluation was conducted using a 10-fold cross-validation
scheme repeated 10 times to ensure the robustness and
statistical reliability of the findings across all five models. In
each repetition, the dataset was randomly shuffled and split
into training and testing subsets. For every iteration, the mean
absolute error (MAE), mean relative error (MRE), mean
squared error (MSE), and accuracy (ACC) were calculated for
both training and testing sets. All reported performance values
correspond to the error measured on the testing, or unseen,
data.

n
1
MAE = ;Zb’i — ¥l (D
i=1
1 ly; - 9l
MRE = 100 x —ZM )
n & Vi
=1
1 n
MSE = ;Z(b’i — 9:1)? (3)
i=1
1 n
ACC = ;Z 1(ly; — 9i] < €) x 100 o
i=1

In the above equations, y; denotes the true value of the
output variable, J; represents the predicted value, and n is the
number of samples in the training or testing dataset, where i
ranges from 1 to n.

For regression evaluation, ACC is defined as the
proportion of predictions within a specified tolerance of the
true values. Formally, a prediction ¥ is considered accurate if
its absolute error does not exceed a specified tolerance €. In
this study, the tolerance € was set to 0.05 for all outputs, and
ACC was computed as the percentage of predictions meeting
this criterion.

Table I presents the predictive performance of all model
configurations on unseen test data for the two output variables
(Y1 and Y2). The models were evaluated using four metrics:
MAE, MRE, MSE, and ACC.



TABLE L.

METRICS PERFORMANCE ON UNSEEN DATA FOR PREDICTING OF EACH

Model Y1 Y2

ode MAE | MRE | MSE | ACC. | MAE | MRE | MSE | ACC

XGBoost 0.0320 | 0.0584 | 0.0017 | 79.22 | 0.0279 | 0.0489 | 0.0013 | 84.95
LightGBM 0.0321 | 0.0586 | 0.0017 | 79.18 | 0.0279 | 0.0488 | 0.0013 | 85.03
XGBoost with PI 0.0313 | 0.0572 | 0.0017 | 802 | 0.0275 | 0.0484 | 0.0013 | 85.46
LightGBM with PI 0.0317 | 0.0582 | 0.0017 | 79.68 | 0.0279 | 0.0490 | 0.0013 | 85.12
XGBoost with TLBO 0.0261 | 0.0478 | 0.0012 | 86.94 | 0.0235 | 0.0416 | 0.0010 | 90.30
LightGBM with TLBO | 0.0257 | 0.0468 | 0.0012 | 87.76 | 0.0232 | 0.0410 | 0.0010 | 90.64

For the baseline models without missing value handling,
XGBoost and LightGBM achieved similar performance, with
MAE values around 0.032 for Y1 and 0.028 for Y2, and
accuracy levels ranging from 79.18% to 85.03%.
Incorporating PI led to modest improvements: XGBoost with
PI reduced MAE and MRE while slightly increasing ACC,
whereas LightGBM with PI showed minor improvements for
Y1.

The largest performance gains were observed when the
models were optimized using TLBO. XGBoost with TLBO
reduced the MAE to 0.0261 for Y1 and 0.0235 for Y2, with
corresponding accuracies of 86.94% and 90.30%. LightGBM
with TLBO further improved performance, achieving the
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lowest MAE, MRE, and MSE values, as well as the highest
ACC for both outputs (87.76 for Y1 and 90.64 for Y2). These
results indicate that combining predictive imputation with
metaheuristic optimization significantly enhances both the
accuracy and stability of XGBoost and LightGBM for multi-
output prediction tasks.

Residual plots for all models and both output variables are
shown in Figure 1. Residual analysis was performed to
evaluate the validity with particular attention to whether the
errors were randomly distributed around zero and showed no
identifiable systematic patterns.
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Fig. 1. The residual plots of all models.
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The residual plots of all models for the two output
variables are presented in Figure 1. Residual analysis was
conducted to evaluate whether the errors were randomly
dispersed around zero without discernible systematic patterns.
XGBoost reduced some of these patterns but still exhibited
clustered residuals in certain regions of the predicted values.
In contrast, LightGBM displayed residuals more evenly
distributed around the zero line, suggesting a stronger ability
to capture nonlinear relationships in the data and mitigate
systematic bias.

Further improvements were observed when predictive
imputation was incorporated into both models. Specifically,
XGBoost with predictive imputation and LightGBM with
predictive imputation demonstrated more balanced residual
distributions and reduced clustering effects. Moreover, the
integration of the TLBO algorithm further enhanced model
performance. In particular, XGBoost with TLBO and
LightGBM with TLBO showed the most notable
improvements, with residuals appearing more randomly
dispersed and centered around zero, indicating better
generalization and reduced systematic error. These results
highlight the effectiveness of imputation and optimization
techniques in improving model robustness and predictive
accuracy.

IV. CONCLUSION

This study introduced a bias-corrected predictive
imputation framework integrated with metaheuristic-
optimized boosting models to address the persistent challenge
of missing values in multi-output prediction. While XGBoost
and LightGBM inherently provide mechanisms to handle
missing values during training, experimental results
demonstrate that their performance can be substantially
improved through predictive imputation. By explicitly
modeling inter-variable dependencies, predictive imputation
reduces bias introduced by incomplete data and enhances the
plausibility of imputed values. The integration of TLBO
further reinforced the models, delivering significant
reductions in error metrics and improving generalization
performance across both outputs. Among all configurations,
LightGBM with TLBO achieved the highest predictive
accuracy, exceeding 90% for both maximum and minimum
temperature forecasts, thereby validating the effectiveness of
the proposed framework.

The findings highlight several important contributions.
First, the study provides evidence that predictive imputation is
not only complementary but also synergistic with boosting
algorithms that already incorporate missing value handling
mechanisms. Second, the integration of metaheuristic
optimization with boosting models offers a systematic
approach to parameter tuning, leading to consistent
improvements in predictive performance. Third, the
application to the dataset demonstrates the framework’s
potential for real-world forecasting tasks where missing
values and multi-output relationships are unavoidable.
Collectively, these contributions address a key research gap
by showing that the joint consideration of bias correction,
imputation, and optimization provides a more reliable solution
for multi-output prediction under incomplete data conditions.

Despite these promising results, certain limitations
warrant further investigation. In this study, TLBO was
selected for hyperparameter optimization due to its simplicity
and efficiency. The study focused on a single metaheuristic

algorithm (TLBO), and future research could benefit from
evaluating alternative optimization strategies. Other
metaheuristic algorithms, such as Genetic Algorithm, Particle
Swarm Optimization, or Differential Evolution, could be
applied in future studies to assess potential differences in
model performance. The proposed bias-corrected predictive
imputation framework with metaheuristic-optimized boosting
models offers a robust and accurate solution for multi-output
prediction in the presence of missing values. By combining
predictive imputation, bias correction, and metaheuristic
optimization, this study contributes a comprehensive
approach to mitigating data incompleteness and improving
forecasting reliability, paving the way for future
advancements in both theory and practice.

Future work may explore the extension of this framework
to other domains and datasets, the comparison with additional
metaheuristic algorithms, and the investigation of ensemble
strategies that further enhance the stability of multi-output
prediction under incomplete data conditions.
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