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Abstract— Missing values present a critical challenge in 

multi-output prediction, as they can propagate bias across 

outputs through shared representations. Conventional 

imputation techniques often overlook inter-variable 

dependencies and fail to reduce bias adequately. To address this 

issue, this study proposes a bias-corrected predictive imputation 

framework combined with metaheuristic-optimized boosting 

models. In this study, Extreme Gradient Boosting (XGBoost) 

and Light Gradient Boosting Machine (LightGBM), which 

inherently handle missing values during training, were further 

enhanced through predictive imputation. Their performance 

was most notably improved when combined with the Teaching–

Learning-Based Optimization (TLBO) algorithm, which 

provided significant reductions in error metrics and 

strengthened generalization. Experiments on the dataset 

demonstrate that predictive imputation enhances accuracy by 

effectively addressing missing values, while bias correction and 

TLBO optimization substantially reduce error metrics and 

improve generalization. LightGBM with TLBO achieved the 

best performance, exceeding 90% accuracy for both outputs. 

These results highlight the effectiveness of bias-corrected 

predictive imputation and metaheuristic-optimized boosting in 

delivering robust and accurate multi-output prediction.  
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I. INTRODUCTION 

The challenges associated with large and complex datasets 
become more pronounced when developing multi-output 
prediction models [1], which require complete and high-
quality data to accurately learn the relationships between input 
variables and multiple outputs simultaneously. However, 
missing values remain a critical issue that can reduce model 
learning efficiency and increase the bias of prediction results 
[2]. This issue is particularly severe when missing data are Not 
Missing at Random (NMAR), where the missingness depends 
on the true values of the variables [3]. In such cases, learning 
from an incomplete subset may propagate bias across multiple 
outputs, and joint loss functions, such as Mean Squared Error 
(MSE), may be evaluated incompletely. 

Although simple imputation methods have been proposed, 
they are limited in multi-output settings because they ignore 
inter-output dependencies and cannot adequately reduce bias. 
Prior studies have focused either on missing-value handling or 
improving multi-output prediction performance, but few 
integrate predictive imputation with metaheuristic 
hyperparameter optimization [4][5]. 

To address this gap, this study proposes an approach 
combining predictive imputation with multi-output prediction 
models using XGBoost and LightGBM, with hyperparameters 
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optimized via the Teaching–Learning-Based Optimization 
(TLBO) algorithm. The models are evaluated using multiple 
metrics, including MSE, MAE, MRE, and accuracy, to 
comprehensively assess improvements in predictive 
performance and bias mitigation. 

II. METHODOLOGY 

A. Bias Correction for Missing Data Imputation  

In statistical data analysis, missing data is a common 
problem. If the model used for imputing missing values is 
misspecified, it may lead to biased parameter estimation [6]. 
To address this issue, bias correction can be applied after the 
imputation process. The main idea is to use an imputation 
model that allows for easy random sampling of missing 
values. After imputation, the likelihood of the model is 
adjusted using weights calculated from the density ratio 
between the true conditional density of the missing data and 
the conditional density from the imputation model. These 
weights are then applied to adjust the likelihood function used 
for parameter estimation, compensating for the effects of 
model misspecification in the imputation process. The 
advantage of this method is that it reduces the bias of the 
estimates without requiring specification of the missingness 
mechanism, which is often difficult in practice. Moreover, it 
can be combined with different imputation models [7][8]. 

B. Predictive Imputation (PI) 

PI, or the imputation of missing values through prediction, 
is a method of handling missing data by using a model to 
estimate the missing values from other variables in the dataset 
[9]. Unlike simple imputation techniques such as mean, 
median, or mode substitution, which often disregard the 
relationships among variables, predictive imputation exploits 
existing dependencies within the data. The advantage of this 
approach is that it can capture both linear and nonlinear 
relationships, producing imputed values that are more 
plausible and closer to the true values. It also helps to reduce 
bias and variance in the data compared to simpler imputation 
methods. In practice, several approaches to predictive 
imputation are commonly used. For this study, single 
imputation with a Decision Tree Regressor was employed. A 
Decision Tree is a supervised learning algorithm that 
recursively partitions data based on feature values, allowing it 
to model complex and nonlinear relationships without prior 
statistical assumptions. This method imputes one column at a 
time by constructing a decision tree model from the remaining 
observed variables, without assuming prior statistical 
distributions (non-parametric). Such an approach is 
particularly suitable for complex datasets with nonlinear 
relationships. The main strength of this method lies in its 
flexibility and its ability to capture complex patterns in the 
data more effectively than conventional imputation techniques 
[10][11]. 



C. Extreme Gradient Boosting (XGBoost)   

XGBoost is an advanced machine learning algorithm 
derived from Gradient Boosted Decision Trees, designed for 
high computational efficiency and scalability [12]. As an 
ensemble method, it iteratively constructs multiple weak 
learners, where each learner focuses on correcting the residual 
errors from the previous iteration. One of its key advantages 
is the ability to handle missing values inherently during the 
training process. Instead of requiring prior imputation, 
XGBoost automatically learns the optimal direction to assign 
missing data in the decision tree branches. This capability 
reduces the risk of introducing additional bias from external 
imputation and enables the model to exploit the underlying 
data structure more effectively. Consequently, XGBoost is 
particularly robust in dealing with incomplete datasets while 
maintaining high predictive accuracy in both classification 
and regression tasks [13][14]. 

D. Light Gradient-Boosting Machine (LightGBM) 

LightGBM is an algorithm developed from decision trees 
by incorporating an ensemble technique known as boosting 
[15]. In this approach, multiple weak decision tree models are 
sequentially combined, where each subsequent tree corrects 
the errors of the preceding one until an optimal model is 
obtained. This type of algorithm is referred to as Gradient 
Boosting Decision Trees (GBDTs), which provides an 
efficient framework for both classification and regression 
tasks. A distinctive feature of LightGBM is its inherent ability 
to handle missing values during the training process. Instead 
of requiring prior imputation, LightGBM automatically 
determines the optimal split direction for missing values 
within the decision tree construction. This mechanism reduces 
the dependency on external preprocessing steps and mitigates 
the risk of bias introduced by simple imputation methods. 
Combined with its leaf-wise growth strategy—which enables 
more effective loss reduction and faster computation—
LightGBM demonstrates robust performance when applied to 
large-scale, high-dimensional, and incomplete datasets 
[16][17]. 

E. Teaching–Learning-Based Optimization (TLBO) 

TLBO is a population-based metaheuristic inspired by the 
classroom learning process [18]. Each candidate solution 
represents a learner, with the best solution regarded as the 
teacher. The algorithm iterates through two phases. The 
Teacher Phase, where learners are guided toward the teacher’s 
performance, and the Learner Phase, where learners improve 
through peer-to-peer interaction. This mechanism balances 
exploration and exploitation, progressively refining solutions 
[19][20]. Before applying TLBO, missing values in the dataset 
were first imputed using Predictive Imputation (PI), and the 
optimization was performed on the resulting complete dataset. 
By systematically evaluating different parameter 
configurations, TLBO identifies the combinations that yield 
the highest predictive performance [21][22]. This integration 
enhances the ability of XGBoost and LightGBM to generalize 
from data, reduces error metrics, and strengthens model 
robustness in multi-output prediction tasks, particularly in the 
presence of missing values. 

III. EXPERIMENTS AND RESULTS 

In this study, two boosting algorithm models were 
employed: Extreme Gradient Boosting (XGBoost) and Light 
Gradient Boosting Machine (LightGBM). These models were 
selected due to their proven efficiency and strong predictive 

performance, particularly when working with large-scale, 
high-dimensional datasets. Both algorithms are well-suited for 
scenarios involving imputation preprocessing. The models 
were evaluated in combination with predictive imputation 
techniques and compared against each other, with their 
hyperparameters optimized using the metaheuristic algorithm. 
To further illustrate the proposed method, we conducted an 
analysis using the UCI Bias Correction of Numerical 
Prediction Model Temperature Forecast dataset [23], 
comprising 7,750 instances, 23 input features, and 2 output 
variables. This dataset supports the bias correction of next-day 
maximum and minimum temperature forecasts from the Local 
Data Assimilation and Prediction System (LDAPS) model 
over Seoul, South Korea, using summer data from 2013 to 
2017. The inputs include LDAPS forecasts, observed 
temperatures, and geographic variables, while the outputs are 
the next-day maximum and minimum temperatures. Model 
evaluation was conducted using a 10-fold cross-validation 
scheme repeated 10 times to ensure the robustness and 
statistical reliability of the findings across all five models. In 
each repetition, the dataset was randomly shuffled and split 
into training and testing subsets. For every iteration, the mean 
absolute error (MAE), mean relative error (MRE), mean 
squared error (MSE), and accuracy (ACC) were calculated for 
both training and testing sets. All reported performance values 
correspond to the error measured on the testing, or unseen, 
data. 
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In the above equations, 
�  denotes the true value of the 
output variable, 

� represents the predicted value, and � is the 
number of samples in the training or testing dataset, where � 
ranges from 1 to n. 

For regression evaluation, ACC is defined as the 
proportion of predictions within a specified tolerance of the 
true values. Formally, a prediction 

 is considered accurate if 
its absolute error does not exceed a specified tolerance �. In 
this study, the tolerance � was set to 0.05 for all outputs, and 
ACC was computed as the percentage of predictions meeting 
this criterion. 

Table I presents the predictive performance of all model 
configurations on unseen test data for the two output variables 
(Y1 and Y2). The models were evaluated using four metrics: 
MAE, MRE, MSE, and ACC. 

 

 



TABLE I.  METRICS PERFORMANCE ON UNSEEN DATA FOR PREDICTING OF EACH  

Model 
Y1 Y2 

MAE MRE MSE ACC. MAE MRE MSE ACC 

XGBoost 0.0320 0.0584 0.0017 79.22 0.0279 0.0489 0.0013 84.95 

LightGBM 0.0321 0.0586 0.0017 79.18 0.0279 0.0488 0.0013 85.03 

XGBoost with PI 0.0313 0.0572 0.0017 80.2 0.0275 0.0484 0.0013 85.46 

LightGBM with PI 0.0317 0.0582 0.0017 79.68 0.0279 0.0490 0.0013 85.12 

XGBoost with TLBO 0.0261 0.0478 0.0012 86.94 0.0235 0.0416 0.0010 90.30 

LightGBM with TLBO 0.0257 0.0468 0.0012 87.76 0.0232 0.0410 0.0010 90.64 

 

For the baseline models without missing value handling, 
XGBoost and LightGBM achieved similar performance, with 
MAE values around 0.032 for Y1 and 0.028 for Y2, and 
accuracy levels ranging from 79.18% to 85.03%. 
Incorporating PI led to modest improvements: XGBoost with 
PI reduced MAE and MRE while slightly increasing ACC, 
whereas LightGBM with PI showed minor improvements for 
Y1.  

The largest performance gains were observed when the 
models were optimized using TLBO. XGBoost with TLBO 
reduced the MAE to 0.0261 for Y1 and 0.0235 for Y2, with 
corresponding accuracies of 86.94% and 90.30%. LightGBM 
with TLBO further improved performance, achieving the 

lowest MAE, MRE, and MSE values, as well as the highest 
ACC for both outputs (87.76 for Y1 and 90.64 for Y2). These 
results indicate that combining predictive imputation with 
metaheuristic optimization significantly enhances both the 
accuracy and stability of XGBoost and LightGBM for multi-
output prediction tasks.  

Residual plots for all models and both output variables are 
shown in Figure 1. Residual analysis was performed to 
evaluate the validity with particular attention to whether the 
errors were randomly distributed around zero and showed no 
identifiable systematic patterns. 
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Fig. 1. The residual plots of all models. 



The residual plots of all models for the two output 
variables are presented in Figure 1. Residual analysis was 
conducted to evaluate whether the errors were randomly 
dispersed around zero without discernible systematic patterns. 
XGBoost reduced some of these patterns but still exhibited 
clustered residuals in certain regions of the predicted values. 
In contrast, LightGBM displayed residuals more evenly 
distributed around the zero line, suggesting a stronger ability 
to capture nonlinear relationships in the data and mitigate 
systematic bias. 

Further improvements were observed when predictive 
imputation was incorporated into both models. Specifically, 
XGBoost with predictive imputation and LightGBM with 
predictive imputation demonstrated more balanced residual 
distributions and reduced clustering effects. Moreover, the 
integration of the TLBO algorithm further enhanced model 
performance. In particular, XGBoost with TLBO and 
LightGBM with TLBO showed the most notable 
improvements, with residuals appearing more randomly 
dispersed and centered around zero, indicating better 
generalization and reduced systematic error. These results 
highlight the effectiveness of imputation and optimization 
techniques in improving model robustness and predictive 
accuracy. 

IV. CONCLUSION  

This study introduced a bias-corrected predictive 
imputation framework integrated with metaheuristic-
optimized boosting models to address the persistent challenge 
of missing values in multi-output prediction. While XGBoost 
and LightGBM inherently provide mechanisms to handle 
missing values during training, experimental results 
demonstrate that their performance can be substantially 
improved through predictive imputation. By explicitly 
modeling inter-variable dependencies, predictive imputation 
reduces bias introduced by incomplete data and enhances the 
plausibility of imputed values. The integration of TLBO 
further reinforced the models, delivering significant 
reductions in error metrics and improving generalization 
performance across both outputs. Among all configurations, 
LightGBM with TLBO achieved the highest predictive 
accuracy, exceeding 90% for both maximum and minimum 
temperature forecasts, thereby validating the effectiveness of 
the proposed framework. 

The findings highlight several important contributions. 
First, the study provides evidence that predictive imputation is 
not only complementary but also synergistic with boosting 
algorithms that already incorporate missing value handling 
mechanisms. Second, the integration of metaheuristic 
optimization with boosting models offers a systematic 
approach to parameter tuning, leading to consistent 
improvements in predictive performance. Third, the 
application to the dataset demonstrates the framework’s 
potential for real-world forecasting tasks where missing 
values and multi-output relationships are unavoidable. 
Collectively, these contributions address a key research gap 
by showing that the joint consideration of bias correction, 
imputation, and optimization provides a more reliable solution 
for multi-output prediction under incomplete data conditions. 

Despite these promising results, certain limitations 
warrant further investigation. In this study, TLBO was 
selected for hyperparameter optimization due to its simplicity 
and efficiency. The study focused on a single metaheuristic 

algorithm (TLBO), and future research could benefit from 
evaluating alternative optimization strategies. Other 
metaheuristic algorithms, such as Genetic Algorithm, Particle 
Swarm Optimization, or Differential Evolution, could be 
applied in future studies to assess potential differences in 
model performance. The proposed bias-corrected predictive 
imputation framework with metaheuristic-optimized boosting 
models offers a robust and accurate solution for multi-output 
prediction in the presence of missing values. By combining 
predictive imputation, bias correction, and metaheuristic 
optimization, this study contributes a comprehensive 
approach to mitigating data incompleteness and improving 
forecasting reliability, paving the way for future 
advancements in both theory and practice. 

Future work may explore the extension of this framework 
to other domains and datasets, the comparison with additional 
metaheuristic algorithms, and the investigation of ensemble 
strategies that further enhance the stability of multi-output 
prediction under incomplete data conditions. 
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