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Abstract—Virtual screening is essential for accelerating early-
stage drug discovery through computational estimation of molec-
ular binding affinity. However, conventional pipelines often lack
verifiability, reproducibility, and secure auditability, limiting their
applicability in regulated environments. Existing frameworks do
not provide deterministic logging or lightweight result verifi-
cation within decentralised architectures. This work presents
VeraComm, a blockchain-audited communication protocol inte-
grated with AI-driven binding affinity prediction to enable secure
and reproducible drug screening. The system incorporates an
SVR-based prediction engine, Lipinski filtering, and on-chain
hash verification via the PureChain blockchain, operationalised
through a CLI interface and MetaMask-enabled smart contract
deployment. A curated dataset of 100 molecules targeting the
Amyloid-3 A4 protein was screened. The predictive model
achieved an R2 of 0.78 and an MSE of 0.3615, while the CLI
sustained a throughput of 1.324 molecules/second. Blockchain
latency averaged 1.15 seconds per logging transaction and 245
ms for verification, with 100% success across all operations. The
results confirm suitability for verifiable, high-throughput drug
discovery workflows.

Index Terms—Al Inference Integrity, Alzheimer’s disease,
virtual screening, binding affinity prediction, blockchain veri-
fication, reproducibility, smart contracts

I. INTRODUCTION

The rapid integration of artificial intelligence (Al) into
biomedical research has enabled transformative advances in
areas such as drug discovery, molecular property prediction,
and personalised medicine. At the core of these systems is the
ability to process large volumes of data and generate high-
confidence predictions using machine learning (ML) models
trained on curated molecular datasets [1]. However, as these
pipelines transition from isolated research environments to
collaborative, distributed settings, such as hospital networks,
academic consortia, and biomedical edge computing plat-
forms, they face critical challenges in secure, trustworthy
communication. In particular, the lack of a verifiable infras-
tructure for transmitting and validating Al inference results
across nodes introduces risks of inconsistency, data tampering,
and irreproducibility. This gap is especially problematic in
safety-critical domains, where downstream decisions, such as
experimental validation or clinical prioritisation, depend on the
integrity of upstream Al computations [2].

These limitations are evident in the domain of neurode-
generative disease research, particularly Alzheimer’s disease

(AD), which affects over 57 million people globally and ac-
counts for more than $1 trillion in annual healthcare costs [3].
Machine learning-powered virtual screening (VS) has become
a scalable approach to accelerate the identification of small-
molecule inhibitors by predicting molecular binding affinities
across large compound libraries [4]. For AD targets such
as the Amyloid-8 (A() precursor proteins, models like Sup-
port Vector Regressor (SVR) and ensemble regressors trained
on molecular fingerprints have shown promising predictive
power [5]. However, in collaborative screening environments,
these predictions are often communicated informally or stored
in local silos, with no cryptographic guarantees that results
remain intact or reproducible when shared. Moreover, while
blockchain technologies have been successfully applied to
secure clinical trials, patient records, and workflow prove-
nance [6], [7], few efforts have explored their use as a ver-
ifiable communication infrastructure for ML-driven scientific
inference. Table I summarises these different approaches and
their gaps.

Building on our prior work that integrated blockchain
directly into the Al inference workflow for logging results,
this study advances the approach by introducing VeraComm,
a modular CLI-based protocol that decouples screening from
verification. VeraComm transforms inference outputs into
structured payloads anchored on a permissioned blockchain,
enabling tamper-evident transmission and asynchronous verifi-
cation across nodes without requiring access to the original Al
environment. Positioned as an infrastructure layer for secure
and auditable communication, it addresses the reproducibility
gap in distributed biomedical Al pipelines.

The main contributions of this study are summarised as
follows:

o Design and implementation of VeraComm, a verifiable
communication protocol that integrates blockchain smart
contracts with Al inference outputs for secure and repro-
ducible result transmission.

o Apply the protocol to a drug screening pipeline, inte-
grating prediction, filtering, and blockchain anchoring for
end-to-end traceability.

« Introduce a reproducibility check via deterministic hash
comparison, enabling result verification without relying



TABLE I: Comparative Summary of Related Works in Biomedical Screening and Verifiable Drug Discovery

Authors Core Focus

Identified Gap

Our Contribution

Review of ML models for Alzheimer’s
virtual screening (SVM, RF, ANN,
CNN).

Carpenter & Huang (2018) [5]

Focused only on predictive accuracy and
model choice; no infrastructure for repro-
ducibility, traceability, or secure result shar-
ing.

Blockchain-backed communication protocol
ensuring reproducibility and tamper-proof
result exchange.

David et al. (2021) [8] Al frameworks for drug discovery

pipelines.

Emphasis on predictive architectures; did
not include verifiable infrastructure for re-
sults.

Introduces a secure communication and re-
producibility layer integrated with Al infer-
ence.

Hoopes et al. (2022) [6] Blockchain for biomedical or health-

data provenance.

Provided workflow traceability but no inte-
gration with molecular-level virtual screen-

Unify predictive screening with blockchain
verification, addressing both accuracy and

ing models. traceability.
Zhou et al. (2024) [9] Large-scale Al for molecular prediction ~ Demonstrated predictive pipelines  Anchors outputs on-chain, enabling verifi-
workflows. but lacked explicit mechanisms for able cross-institutional reproducibility.

reproducibility across institutions.

Proposed Framework (Vera-
Comm)

Verifiable communication protocol integrating end-to-end pipeline with predictive accuracy, drug-likeness
filtering, blockchain logging, and verifiable reproducibility across distributed biomedical environments.

on the original environment.

The rest of this paper captures Section II as Methodology,
while Section III discusses the Results, and the Conclusion is
presented in Section IV.

II. PROTOCOL ARCHITECTURE AND COMMUNICATION
WORKFLOW

The VeraComm protocol embeds a blockchain-backed ver-
ification layer within an Al-driven molecular inference work-
flow to ensure secure, reproducible transmission of screening
results. It orchestrates a decentralized pipeline comprising
molecular fingerprint encoding, binding affinity prediction,
pharmacokinetic filtering, and cryptographic result hashing.
Each prediction is formatted into a deterministic JSON pay-
load and logged on a permissioned blockchain via smart con-
tracts, enabling tamper-evident registration and asynchronous
verification across distributed biomedical systems. This lay-
ered design, illustrated in Fig. 1, ensures data integrity, au-
ditability, and operational scalability in collaborative screening
environments.
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Fig. 1: System architecture for Al-driven drug screening with
BC-backed result verification.

A. Inference Module and Feature Encoding

The VeraComm protocol is designed to accommodate plug-
gable Al inference modules that generate structured prediction
outputs from domain-specific inputs. In this implementation,

the module is configured for molecular affinity prediction us-
ing curated bioactivity data. Each input sample is represented
as a Simplified Molecular Input Line Entry System (SMILES)-
encoded chemical structure accompanied by a correspond-
ing experimental activity label. As a demonstration use-case,
molecules targeting the Amyloid-S A4 protein were selected
from the ChEMBL database (CHEMBL2487) [10], with activity
values reported in ICso (nM) units.

To align with standard regression-based modeling conven-
tions, all ICsq values were normalized to the pICsg scale using
the transformation:

ICso

o) (1)

pIC50 = —10g1o(

Entries with malformed SMILES or undefined activity val-
ues were excluded. Duplicate molecules with multiple reported
activities were resolved by computing the median pICso across
all associated measurements: § = median(y1, Yo, ---, Yk )-

Each valid molecular structure was subsequently featurized
into a 2048-bit binary vector using the Morgan fingerprint-
ing algorithm, implemented via RDKit. This representation
encodes circular substructures and serves as input to the
regression model. The current inference engine is built on
SVR, trained to map fingerprint vectors z € {0,1}2%48 to
predicted ¢ values approximating binding affinity. The trained
model is stored as a serializable component and loaded during
screening.

Two CSV-based input formats are supported within the
protocol implementation:

e training_data.csv — includes SMILES and activ-
ity labels for model training.

e molecules_for_screening.csv — unlabeled
compounds for inference and on-chain verification.

While the described implementation targets Alzheimer’s-
related affinity prediction, the architecture permits substitution
of the model and descriptors to support other biomedical
domains, physical property prediction, or image-based modal-
ities. The inference module is encapsulated and communicates



with the VeraComm protocol interface via structured predic-
tion objects, enabling flexible and domain-agnostic deploy-
ment.

To estimate molecular binding affinity, each compound
is encoded as a 2048-bit Morgan fingerprint vector x €
{0,1}2%94® using RDKit, which captures atomic substructures
for machine-learning input. Several regressors: Support Vector
Regression (SVR), Gradient Boosting (GB), Ridge Regression,
Random Forest (RF), k-Nearest Neighbors (KNN), and Multi-
layer Perceptron (MLP), were trained (80/20 split) to learn
f : X — ¢, with g as the predicted pICso. Model performance
was evaluated using the coefficient of determination (R?):

Z?:1(Yi —¥i)?
Z?=1(Yi —¥i)?

where y;, y;, and g; denote ground truth, predicted, and
mean affinity values, respectively. SVR was selected for its
balance of predictive accuracy, inference latency, and repro-
ducibility, key for blockchain-backed validation. Although
deep models were considered, their overhead conflicted with
verifiability and lightweight deployment.

For each input molecule x;, the trained model outputs a
predicted binding affinity §; = f(x;). This prediction is then
used to construct a structured result object r; that encapsulates
the molecular identifier, input SMILES, predicted affinity, and
additional pharmacokinetic descriptors.

To ensure that only pharmacologically viable compounds
are registered for downstream processing, each molecule un-
dergoes descriptor-based filtering using Lipinski’s Rule of
Five. The following criteria are applied:

RP=1-— )

MW; < 500, logP; <5, HBD; <5, HBA; <10

where MW; denotes molecular weight, logP, is the oc-
tanol-water partition coefficient, and HBD,; and HBA; represent
the number of hydrogen bond donors and acceptors, respec-
tively. These descriptors are computed using RDKit.

If a molecule satisfies all constraints, a result object r;
is instantiated in JSON format and becomes eligible for
cryptographic hashing and blockchain registration. Table II
outlines the structure of each result payload.

TABLE II: Structure of Serialized Result Object r

Field Description
molecule_id Unique identifier
smiles Canonical SMILES string

predicted_pIC50 Model inference output
molecular_weight | MW descriptor

logP Lipophilicity estimate
hbd H-bond donor count
hba H-bond acceptor count

lipinski_pass
timestamp

Boolean filter pass flag
Result generation time

This result object r; serves as the atomic unit of com-
munication in the VeraComm protocol. It is serialized de-
terministically, hashed via SHA-256, and submitted to the
blockchain as a verifiable transaction record. Only filtered,

protocol-compliant result objects are included in the on-chain
registry.

B. Result Verification and Reproducibility via Blockchain
Anchoring

The VeraComm protocol ensures tamper-evident and repro-
ducible communication of Al inference results by anchoring
output payloads to a permissioned blockchain using crypto-
graphic hashing. This mechanism enables any authorized node
to verify the integrity of inference outcomes by comparing lo-
cally recomputed hashes against immutable on-chain records,
without requiring access to the originating system or model
instance.

Following successful affinity prediction and descriptor-
based filtering, each accepted result object r is serialized into a
canonical JSON format. This structured object includes molec-
ular descriptors, the predicted pICsy, and protocol metadata,
formatted with strict field ordering and numerical precision.
This deterministic representation is then hashed using the
SHA-256 function as:

h = H(r) 3)

where H(-) denotes SHA-256, and h € {0,1}%° is the
resulting digest. Only this cryptographic hash is submit-
ted to a smart contract deployed on a custom blockchain,
Purechain, designed by the Networked Systems Laboratory
(NSL), initialised via Metamask web extension (for signing
and broadcasting) through a deploy.js script. The contract
operates under a Proof-of-Authority and Association (PoAZ)
consensus mechanism [11], and records the molecule identifier
and its corresponding hash value. No raw molecular data
or prediction contents are stored on-chain, preserving both
privacy and communication efficiency.

The protocol supports reproducibility verification by allow-
ing any remote node to independently regenerate the result
object r’ using the same input and model configuration. The
recomputed hash H(z’) is then compared to the corresponding
on-chain digest hop_chain:

2
H(I‘/) = hon-chain (4’)

A successful match confirms that r’ is identical to the orig-
inally recorded result and has not been altered or corrupted.
This mechanism provides a formal basis for verifiability across
distributed biomedical infrastructures, enabling external parties
to audit inference results without requiring access to model
internals, training data, or centralized infrastructure.

To maintain scalability, full result objects and descriptors
are stored off-chain (e.g., in screening_results.csv),
while only the minimal cryptographic digest is commit-
ted on-chain. This design supports high-throughput inference
pipelines with lightweight verification guarantees.

The hashing and verification process is implemented as a
modular CLI routine, with support for individual and batch-
level validation. Each entry in the verification log includes the



Algorithm 1: Blockchain-Audited High-Throughput
Screening Pipeline

1 molecules_for_ screening.csv,
binding_affinity_model. joblib ;
2 screening_results.csv, Blockchain-verified results
3 Initialize Components:
4 binding_model <— LOADMODEL (binding affinity_model.joblib)
5 blockchain_connector < INITIALIZECHAINCONNECTOR ()
6 results < EMPTYLIST() ;
7 Load Molecules:
8 screening_molecules < LOADCSV (molecules_for_screening.csv)

H
9 foreach molecule € screening_molecules do

10 try

11 Step 1: Validate SMILES

12 validated_smiles <— VALIDATESMILES (molecule.smiles) ;
13 if not validated_smiles then

14 | continue

15 end

16 ;

17 Step 2: Feature Extraction

18 morgan_fp +

MORGANFINGERPRINT (validated_smiles, radius =
2,nBits = 2048) ;

19 Step 3: Binding Affinity Prediction
20
predicted_pIC50 < binding_model PREDICT(morgan_fp) ;
21 Step 4: Drug-Likeness Filtering
2 lipinski < EVALUATELIPINSKI(validated_smiles) ;
23 Step 5: Aggregate Result Object
24 result +— CREATERESULT(molecule.id,
25 validated_smiles, predicted_pIC50, lipinski)
26 Step 6: Blockchain Logging (if viable)
27 if lipinski.passes_filter then
28 json < SERIALIZETOJSON(result) ;
29 hash < SHA256HASH(json) ;
30 tx < blockchain_connector.RECORD(molecule.id, hash)
31 result.blockchain_tx < tx.transaction_hash ;
32 result.blockchain_verified < true ;
3 end
34 else
35 ‘ result.blockchain_verified < false ;
36 end
37 Step 7: Store Result
38 results.APPEND(result) ;
39 catch Exception e: LOGERROR(e) ;
40 end

41 Save All Results:
42 SAVETOCSV(results, screening_results.csv) ;
43 return results, screening_results.csv, blockchain_records

molecule ID, recomputed hash, on-chain hash, and verification
status. This workflow serves as the communication integrity
layer of VeraComm and underpins the system’s reproducibility
guarantees. A schematic of this interaction between inference,
hashing, and verification is given in Algorithm 1.

C. CLI-Based Communication Protocol and Command In-
terface

To enable decentralized and reproducible interaction with
the screening and verification pipeline, a modular Python-
based Command Line Interface (CLI) was implemented as
the primary client interface to the protocol. This CLI ab-
stracts the internal operations, such as blockchain connectivity,
affinity prediction, drug-likeness filtering, and on-chain result
anchoring, into reusable commands that support automation,
asynchronous execution, and integration with containerised
deployments.

The core CLI commands include:

e python main.py connect: Initializes a connection
to the local Ethereum blockchain node.

e python main.py screen <name> <SMILES>
-—target <id>: Screens a single compound based
on its SMILES representation and logs the result hash
on-chain.

e python main.py batch molecules. json: Ex-
ecutes batch-mode screening on a file containing multiple
molecular entries.

e python main.py verify <job_id>
<tx_hash>: Verifies the SHA-256 hash of a locally
recomputed result against the corresponding on-chain
entry.

e python main.py history: Displays a persistent
local log of past screening sessions and verification
attempts.

The interface supports fault-tolerant command logging, en-
abling traceable interactions across distributed Al inference
nodes. By decoupling the core logic from the user interface,
the CLI acts as a scalable protocol layer for secure com-
munication between biomedical agents, infrastructure nodes,
and blockchain validators. This modularity facilitates cross-
institutional reproducibility while preserving lightweight op-
erability on edge devices.

D. System Integration and Deployment Modularity

The VeraComm pipeline integrates modular components, a
binding affinity predictor, a Lipinski filter, a JSON serializer,
and a blockchain connector into a unified Python-based CLI
system. Each module is encapsulated to allow replacement or
extension without impacting the core pipeline. For instance,
the default SVR engine can be substituted with alternative
regressors, including CatBoost, LightGBM, or deep learning
models, without changes to the downstream verification layer.

Similarly, the blockchain backend is abstracted through a
ChainConnector interface, enabling compatibility with alter-
native distributed ledger technologies such as Hyperledger
Fabric, Besu, or Polygon SDK. The current implementation
uses Purechain with PoA? consensus, selected for development
efficiency and deterministic finality.

The communication protocol defined in the CLI inter-
face (see Section II-C) remains invariant to model type or
blockchain substrate, making VeraComm application-agnostic.
This protocol can support any Al-driven inference pipeline
where verifiable result transmission and auditability are criti-
cal, ranging from biomedical screening to federated diagnos-
tics, IoT anomaly detection, or financial model validation.

E. Performance Benchmarking and Evaluation

Benchmarking was carried out with the
end_to_end_test.py script on a test set of 100 molecules,
recording four key metrics: (i) Al inference latency,



measuring the time from molecular input to predicted pICso;
(i) blockchain logging time, covering result hashing and
transaction confirmation; (iii) total processing time, which
includes affinity prediction, filtering, serialization, and on-
chain submission; and (iv) success rate, defined as the fraction
of molecules successfully logged. The evaluation shows that
cryptographic guarantees and auditability incur only modest
latency overheads, validating the feasibility of PureChain in
real-time and distributed biomedical environments.

III. RESULT AND DISCUSSION

To evaluate the system’s predictive accuracy, communica-
tion efficiency, and verifiability, two experiments were con-
ducted. First, six regression models were benchmarked on 999
curated molecules. Then, the full pipeline was tested on 100
compounds, measuring Al inference, filtering, and blockchain-
backed result verification. Metrics are reported across five di-
mensions: prediction accuracy, screening throughput, latency,
reliability, and blockchain cost.

A. Binding Affinity Prediction and Screening Outcomes
TABLE III: ML Model Performance

Model R-squared MSE MAE Training Model
Time (s) Size
GB 0.7262 0.4500 0.5286 1.90 127.7
Ridge 0.7240 0.4537 0.5206 0.82 16.5
RF 0.7217 0.4575 0.4968 5.81 5637.5
KNN 0.7217 0.4575 0.4903 0.51 10677.9
MLP 0.4551 0.8957 0.6654 31.18 6419.8
SVR 0.7801 0.3615 0.4682 1.45 8860.1

The curated dataset comprised 999 compounds encoded as
2048-bit Morgan fingerprints, with associated pICso values. A
standard 80/20 split yielded 799 training and 200 test sam-
ples. Six regressors were benchmarked for predictive perfor-
mance (Table III), with SVR (RBF kernel, C = 1.0, e = 0.1)
achieving the best results: R? = 0.7801, MSE = 0.3615, and
MAE = 0.4682 as captured in Fig. 2.
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Flg. 2: Al model prediction performance highlighting (a) Prediction error; (b) Training
time; and (c¢) Model size.

Although Gradient Boosting and Ridge were competitive
in R2, they showed higher error margins. Random Forest
and KNN performed similarly but required excessive memory
(>5MB). MLP underperformed on all metrics and incurred
the highest training cost. Overall, the SVR provided the best
trade-off between accuracy, generalization, and computational
efficiency, as highlighted in graphs in Fig 2(a), (b), and (c).

The screening pipeline was then applied to 100 diverse
molecules targeting the Amyloid-5 A4 protein using the
trained SVR model. 59 (59.0%) passed all Lipinski filters,
indicating favorable oral bioavailability. The predicted pICso
values ranged from 4.49 to 7.82, with a mean of 5.750
£+ 0.598 and a median of 5.627. High-affinity compounds

Model Size (MB)

(pICso > 6.0) totaled 22, of which 12 also passed Lipinski
criteria, suggesting a 12% hit rate for viable high-affinity drug-
like candidates.

TABLE IV: Top 10 Screened Drug-Like Candidates

ChEMBL ID pICsy Mol. Wt LogP HBD HBA Lipinski
CHEMBL570378  7.82 257.32 3.11 2 5 Pass
CHEMBLA429448  7.57 539.7 491 0 5 Fail
CHEMBL2048310 7.42 258.2 3.38 2 4 Pass
CHEMBL236191  7.36 529.6 3.34 1 6 Fail
CHEMBLI1788121 7.34 265.4 3.11 2 5 Pass
CHEMBL2203386 7.23 270.3 242 0 5 Pass
CHEMBL3330749 6.99 300.4 4.96 0 4 Pass
CHEMBL231545  6.65 560.2 572 0 5 Fail
CHEMBLA489792  6.59 3234 4.69 0 4 Pass
CHEMBL231448  6.37 508.0 2.98 1 6 Fail

The top 10 candidates (Table IV) span a range of struc-
tural and physicochemical profiles. CHEMBL570378, the
highest-ranked molecule, showed strong affinity (7.82) and
full Lipinski compliance. Four of the top 10 compounds
passed all filters, underscoring the model’s ability to identify
potent and drug-like hits. Overall, this result validates the
hybrid pipeline’s capacity to enrich for pharmacologically
relevant molecules from raw input, combining Al accuracy
with bioavailability constraints for verifiable drug discovery.
B. Communication Protocol Efficiency and System Latency

The CLI-based communication interface was evaluated
for latency, throughput, and verification accuracy using the
VeraComm protocol. Timing benchmarks were conducted
on a sample of 10 single-molecule screen executions and
5 verify operations. Each command was profiled using
Python’s time.perf_counter(), with results exported to CSV
for reproducibility. Key findings are summarized in Table V.

TABLE V: VeraComm CLI Command Latency

Component Min (s) Avg (s) Max (s)
CLI Screen Command (per molecule) 5.89 6.33 £0.74 8.36
Batch Throughput 1.324 molecules/sec
Blockchain Recording (10 tx) 0.42 1.15 2.46
Hash Verification (5 tx) 0.00003 0.245 0.250

Results indicate that single-molecule screening via CLI
required an average of 6.33 seconds, while batch processing
achieved a throughput of 1.324 molecules/sec. Blockchain
transaction times ranged from 0.42 to 2.46 seconds, corre-
sponding to the local PureChain ledger running under PoA?
consensus. This moderate latency reflects typical block con-
firmation under permissioned networks. Verification of results
via hash-based lookup on PureChain yielded a low average
latency of 245 ms with a 100% success rate, affirming both
integrity and reproducibility. No transaction failures or hash
mismatches were recorded, highlighting the protocol’s robust-
ness for real-time and fault-tolerant drug discovery pipelines.

C. Blockchain Logging Overhead and Verification Robust-
ness

To evaluate the operational cost and auditability of
blockchain-backed result logging, we profiled the PureChain
system’s behavior during screening and verification. All trans-
actions were executed via CLI using the screen and verify
commands under a PoA? network. Blockchain transaction



latency ranged from 0.42 to 2.46 seconds, with a mean of
1.15 seconds per molecule (see Table V). This reflects typical
confirmation delays under the Byzantine Fault Tolerant (BFT)
consensus mechanisms, contributing under 20% to the total
CLI screening time. All 10 transactions were successfully
recorded without failure, confirming PureChain’s write-path
reliability and deterministic behavior.

For verification, hash-based auditing was conducted on 5
randomly selected entries. Each result was serialized to JSON,
re-hashed using SHA-256, and matched against the on-chain
entry. Table VI summarizes the latency breakdown for this
operation.

TABLE VI: PureChain Hash Verification Latency

Metric Min (s) Avg (s) Max (s)
Hash Calculation Time 0.000022 0.000033 0.000047
Blockchain Lookup Time 0.206 0.2446 0.288
Total Verification Time 0.209 0.245 0.288

The verification process completed in an average of 0.245s
per transaction, with no hash mismatches or errors across
all cases. This confirms the feasibility of rapid, deterministic
verification even in batch-mode scenarios. In addition to
timing metrics, Table VII presents a sample of real audit
records retrieved from the chain. Each entry links a molecule’s
prediction output to its on-chain hash, demonstrating tamper-
evident traceability and reproducibility.

TABLE VII: Sample Audit Trail for Molecules Recorded on
PureChain

Molecule pICsg SMILES Blockchain Tx Hash (trun-
D cated)

mol_1 7.99 CN(C)CCOC(=0)clcec2[nH]c(=0)cce2c] 0xb49b8e. . . beed8c
mol_2 9.05 CN(C)CCOC(=0)clceee2ncec(=0)c12 0x03f25a. . .eadal5
mol_3 6.62 Ccleee(ccl)C(=0)NC(C)C 0x5273b7...9bbddc

These results validate PureChain’s ability to deliver
blockchain-backed verifiability with minimal overhead, full
audit traceability, and deterministic performance, all essential
traits for scalable Al-driven drug discovery pipelines with
cryptographic result guarantees.

While current benchmarking uses Amyloid-beta A4 to
demonstrate proof-of-concept, the VeraComm protocol is ag-
nostic to the molecular target. The pipeline can accommodate
other targets by re-training or swapping the inference model,
and descriptor filtering remains valid across diverse scaffolds.
Future work will extend the evaluation to multi-target set-
tings and further explore scalability in high-throughput virtual
screening scenarios.

IV. CONCLUSION

This study introduces a verifiable and reproducible drug
screening pipeline that combines Al-driven binding affinity
prediction with blockchain-backed result validation. By inte-
grating SVR-based regression models, Lipinski filtering, and
PureChain-enabled hash verification into a CLI-controlled ar-
chitecture, the system ensures deterministic processing, trace-
able audit logs, and end-to-end transparency. Experimental

evaluation demonstrated strong predictive accuracy (R? =
0.78), consistent screening throughput (1.324 molecules/sec),
and low-latency blockchain interaction (1.15 s logging, 245
ms verification), all with 100% success rates across 100
compounds. These findings validate the feasibility of embed-
ding secure, tamper-evident mechanisms into virtual screen-
ing pipelines without compromising computational efficiency.
The framework presents a scalable solution for trustworthy
molecular discovery in high-stakes biomedical applications,
setting the stage for future extensions involving smart con-
tract automation, multi-target screening, and deployment in
decentralized research ecosystems.
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