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Abstract—Noise in industrial environments degrades the per-
formance of deep learning-based anomaly detection. This paper
proposes a noise filtering technique to improve signal quality
during the preprocessing stage, rather than increasing model
complexity. It establishes a Global Noise Baseline and applies 3-
segment masking to enhance signal quality. This preserves core
signals even in complex noise, improving deep learning model
accuracy by over 10%. Future applications include lightweight
models and edge computing for deployment across diverse
industrial settings.

Index Terms—Noise filtering, Anomaly detection, Industry 4.0,
time-series data

I. INTRODUCTION

The Fourth Industrial Revolution and the shift to smart fac-
tories have elevated data-driven management and optimization
of manufacturing processes to a core competitive advantage.
Predictive maintenance, in particular, is gaining attention as a
technology that minimizes production downtime due to equip-
ment failures and reduces maintenance costs. Among these,
acoustic-based diagnostics offer significant practicality as they
can detect early-stage defects using only low-cost sensors [1-
3]. However, in actual factories, signal quality degrades due
to various machine noises and environmental sounds, leading
to reduced performance in deep learning-based anomaly de-
tection. Previous research has primarily pursued performance
improvement through complex model structures, but this ap-
proach consumes significant computational resources, limiting
its applicability in lightweight environments. Therefore, this
paper proposes a novel noise filtering technique that enhances
signal quality during the preprocessing stage. The proposed
technique derives a stable noise baseline based on statistical
analysis of the dataset and maximizes the signal-to-noise ratio
(SNR) while preserving key signals through soft threshold-
based 3-segment masking. Furthermore, it incorporates a logic
filter specialized for specific high-energy periodic signal data,
ensuring flexibility and safety.

II. RELATED WORK

This section examines the core concepts of the proposed
technique. SNR-Aware Masking employs deep learning to
precisely estimate a signal’s SNR, generating and applying a
mask proportional to that value [4-5]. It preserves strong signal
regions while gently suppressing noisy areas, dynamically

adjusting noise intensity to match each data characteristic. This
technique enables reliable signal separation in environments
where noise and signals coexist. Conditional masking is a
flexible filtering technique that dynamically changes the mask
shape and application method based on predefined rules and
conditions [6-7]. In this paper, we utilize multiple conditions
to create a customized filtering strategy that suppresses, pre-
serves, and enhances signals. This enables signal processing
optimized for specific purposes, beyond simple noise suppres-
sion.

III. EXPERIMENT

This section describes the composition of the dataset used,
the proposed noise removal method, the deep learning anomaly
detection model, and the training and evaluation procedures.
Figure 1 shows the overall framework of the proposed model.

A. Dataset

The data used in the experiment was the Malfunction-
ing Industrial Machine Investigation and Inspection [8]. The
MIMII dataset is hierarchically organized based on real factory
environment noise levels, machine types, and product models.
The data consists of 10-second audio recordings categorized
into normal and abnormal samples. All abnormal data is
designated as test data. An equal number of corresponding
normal data points are included in the test data, while all
remaining normal data is used as training data. This ensures
consistent and reproducible dataset partitioning.

B. Noise filter

Convert a single-channel audio file into a Mel Spectrogram
using a frame size of 1024, a hop size of 512, and a Mel
filter of 64. Five frames from the generated Mel Spectrogram
are combined to form a two-dimensional input vector of
dimensions 320x309.

First, we estimate a reliable reference value, the global
noise floor, from the entire training dataset consisting of
normal data. For the entire audio file consisting of normal
data (i = 1, . . . , N ), we find the minimum energy value for
each mel band (l = 1, . . . , nmels) across the entire time axis



Fig. 1. The framework of the proposed model.

in each frequency band. This value becomes the ”minimum
noise profile.”

vi,l = min
t=1,...,Ti

Li(l, t)

The minimum energy profile (vi) of each individual file is
arithmetic averaged to obtain a single average noise profile
(v̄) representing the entire dataset. This process leaves only
the average noise characteristics.

v̄ =
1

N

N∑
i=1

vi

Finally, we select the top 10% of the highest-energy frequency
bands from the average noise characteristics and set those
values as the final global noise floor. In other words, we set
the highest-energy frequency among the values classified as
noise as the noise floor.

θnoise = mean(Stop)

The average of these energy values is defined as the final
global noise floor, θnoise. This process produces a final noise
floor that more accurately represents the actual background
noise level, effectively treating all energy below this value as
noise.

C. Conditional mask

A pre-calculated noise floor is used as a threshold to trans-
form the energy values in the spectrogram. Sections where
the energy value is significantly higher than the noise floor
are considered key information and amplified by a factor of
2, helping subsequent models more easily capture important
features. Conversely, energy below the noise floor is judged as
pure background noise, and its value is set to 0 to completely
remove unnecessary information. Furthermore, energy values
near the noise floor are preserved unchanged. This prevents
artificial artifacts caused by abrupt value changes at the thresh-
old boundary and makes the overall transformation smoother.
This transformation process maximizes the key signal and
effectively removes noise, significantly improving data quality.

L′(f, t) is log-Mel value after masking. δMargin is +5dB. This
transformation process significantly improves data quality by
maximizing core signals and effectively removing noise.

L′(f, t) =


2 · L(f, t), if L(f, t) ≥ θnoise + δMargin

L(f, t), θnoise ≤ L(f, t) < θnoise + δMargin

0, if L(f, t) < θnoise

D. Anomally detection model

An autoencoder (AE), an unsupervised neural network, is
then trained to reconstruct the input as an anomaly detection
model. The model is trained using the Adam optimizer and
the Mean Squared Error (MSE) loss function, which measures
the difference between the original input vector (X) and the
reconstructed output (x̂).

min
θ,ϕ

Ex∼pdata [L(x, gϕ(fθ(x)))]

The training and testing were performed on identical com-
puters: an Intel i7-10700, an Nvidia Geforce RTX 2080, and
a batch size of 512. The entire process is implemented in
Python using the PyTorch framework. The model is trained
for 50 epochs.

RESULT

Figure 2 shows the results after applying the noise filter.
The original is the signal’s mel-spectrogram image. The apply
condition mask and SNR-swap mask show the result images
when applying only one mask each. The proposed shows the
result of the proposed noise filter. The system’s performance
is quantified using the Area Under the Receiver Operating
Characteristic Curve (AUC). The reconstruction error for each
vector is the mean squared error between the input and output,
which determines whether the model is normal or abnormal
based on how well it reconstructs the data. The anomaly
score for an entire audio file is calculated as the average of
the reconstruction errors for all vectors from that file. AUC
is a comprehensive performance indicator that indicates how
well the model distinguishes between normal and abnormal
data, and takes a value between 0 and 1. A value closer to 1
indicates excellent performance, meaning the model perfectly
distinguishes between normal and abnormal data. A value
closer to 0.5 indicates poor model performance. A value closer



Fig. 2. The result image of noise filter.

to 0 indicates that the model is predicting the opposite of
normal and abnormal data.

Table 1 summarizes the anomaly detection performance of
the proposed noise filtering method compared with existing
approaches. Overall, the proposed noise floor–based masking
achieved the highest average performance of 0.68, surpassing
the original baseline 0.58, the SNR-aware masking 0.58, and
the conditional masking 0.66. Consistent improvements were
observed across machine types. In particular, the proposed
method significantly improved the performance of Pump, from
0.57 to 0.77, and Slider, from 0.61 to 0.72. Fan performance
improved moderately, from 0.70 to 0.72, while Valve showed
only a limited increase, from 0.46 to 0.49. Under various
SNR conditions, the proposed method consistently improved
detection performance, demonstrating notable robustness. This
indicates that the method effectively handles noisy environ-
ments. In addition, performance gains were consistently ob-
served across all device IDs. For example, the score for ID 00
improved from 0.54 to 0.67, and ID 06 from 0.54 to 0.67,
highlighting the robustness of the proposed method against
device-specific variations. In summary, the proposed masking
consistently outperforms existing single masking approaches,
and it is particularly effective in noisy environments and for
machine types with complex acoustic characteristics such as
pumps and sliders.

CONCLUTION

This study proposes a novel noise filtering and data prepro-
cessing method that enhances the signal quality of machine
acoustic data collected in industrial environments without
increasing the computational load of deep learning models.
This approach establishes a global noise baseline and applies

soft threshold-based three-directional masking and adaptive
masking to suppress background noise while preserving key
signal components. This method focuses on improving feature
quality before inputting data into the autoencoder model.
It automatically learns a machine-specific background noise
baseline using normal operating data, guiding a two-step
adaptive filtering process that maximizes the signal-to-noise
ratio. The core elements—global noise floor estimation and
conditional masking—analyze the minimum energy values
across multiple normal datasets to establish a stable baseline,
suppress background noise, and emphasize the primary signal.
This enables the data to self-identify signal-to-noise ratios and
flexibly adapt to various machines and environments. Exper-
imental results demonstrate that the proposed preprocessing
method outperforms the unfiltered approach. This shows that

TABLE I
COMPARISON WITH EXISTING NOISE FILTERS BY TYPES

Type Original SNR-aware Mask Apply conditional mask Proposed

Total 0.58 0.58 0.66 0.68

Fan 0.70 0.65 0.69 0.72
Pump 0.57 0.59 0.75 0.77
Slider 0.61 0.64 0.76 0.72
Valve 0.46 0.45 0.43 0.49

0dB 0.59 0.59 0.67 0.68
6dB 0.63 0.62 0.72 0.71

min6dB 0.54 0.55 0.59 0.63

ID 00 0.54 0.58 0.60 0.67
ID 02 0.62 0.62 0.70 0.69
ID 04 0.63 0.59 0.63 0.68
ID 06 0.54 0.55 0.70 0.67



preprocessing alone can significantly enhance anomaly detec-
tion performance without modifying the model architecture.

Future research will explore dedicated noise models re-
flecting valve-specific operational and acoustic characteristics,
along with strategies for selectively enhancing valve signals.
This consideration stems from the relatively limited perfor-
mance improvement observed in valve data.
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