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Abstract—MultiPath TCP (MPTCP) is a transport protocol
that uses multiple network interfaces and IP addresses, allowing
TCP data to be sent over different network paths at the same
time. The Internet Engineering Task Force (IETF) has developed
several congestion control algorithms and packet schedulers for
MPTCP to improve fairness and increase the throughput of each
subflow. However, congestion control algorithms that rely on the
congestion window (CWND) have limitations because they cannot
easily detect which link is the bottleneck or accurately measure
the available bandwidth, making it difficult to maximize total
throughput across all subflows. In recent years, pacing-based con-
gestion control algorithms have been introduced to send packets
at a controlled rate and better identify subflows that share the
same bottleneck link, helping to improve overall throughput. BBR
a pacing-based congestion control algorithm controls the sending
rate based on bottleneck bandwidth estimated and round-trip
propagation time. However, these pacing-based algorithms do not
fully meet the friendliness requirements of MPTCP and cannot
precisely determine whether subflows are on the same bottleneck
link. To address these issues, this paper proposes a new MPTCP
congestion control algorithm and packet scheduler that combine
Software-Defined Networking (SDN) with the BBR algorithm
which call FMBBR. The results of the experiment show that
FMBBR not only maintains high throughput but also improves
fairness of the network environment, and SDN enables MPTCP
to identify the same bottleneck links accurately.

Index Terms—Multipath TCP, BBR, Fairness, Congestion Con-
trol, Packet Scheduling

I. INTRODUCTION

In recent years, the demand for high-performance and
reliable network transmission has been increasing, but using
a single link often faces many limitations. MultiPath TCP
(MPTCP) [1], an extension of TCP, allows senders to use
multiple TP addresses and ports to achieve more efficient
data transmission. Each subflow works as an independent
TCP connection, which improves transmission efficiency and
enhances network stability, providing users with better quality
of service.

TCP relies on congestion control algorithms to prevent
network congestion. However, MPTCP contains multiple sub-
flows that may share the same path, which makes it difficult to
directly apply traditional TCP congestion control algorithms
to MPTCP [2]. In recent years, several congestion control al-
gorithms designed for MPTCP have been proposed, including
LIA [3], BALIA [4], and OLIA [5]. These algorithms improve
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MPTCP throughput while maintaining fairness among sub-
flows. However, to ensure fairness, they couple the throughput
of all subflows, which limits the total throughput of MPTCP
and prevents it from exceeding the throughput of the best
single-path TCP connection [6].

Bottleneck Bandwidth and Round-trip Propagation Time
(BBR) [7] is a congestion control algorithm that operates in
multiple stages. It uses the round-trip time and the number of
packets in flight to build a clear network model. By estimating
the available bandwidth, the bandwidth-delay product, and the
maximum number of packets that can be sent on the current
path, BBR achieves high throughput while keeping queue pres-
sure low. This makes BBR a promising approach to improve
the transmission efficiency of MPTCP. In recent years, several
coupled congestion control algorithms that combine BBR with
MPTCP have been proposed [8]-[10].

MPTCP requires coupled control of multiple subflows,
which makes it challenging to determine whether subflows
are on the same path in complex network environments [11].
Software Defined Networking (SDN) [12] is an emerging
technology that can help address this issue [13]. SDN uses the
OpenFlow protocol [14] to separate the control plane from the
data plane in routers. This separation provides precise routing
information for each subflow, making it possible to accurately
identify shared bottleneck links.

In this paper, we propose a friendly MPTCP coupled
congestion control algorithm called Friendly Multipath BBR
(FMBBR). FMBBR is based on SDN for shared bottleneck
detection and BBR for congestion control. The algorithm
keeps the high throughput benefits of BBR while accurately
identifying groups of collinear subflows. It also reduces the
negative impact on the network performance of other users.
The main contributions of this paper are summarized as
follows:

1) We propose an improved MPTCP congestion control
algorithm called FMBBR, which combines SDN and
BBR. FMBBR uses SDN to accurately identify all
MPTCP subflows that share a bottleneck link. Once
identified, these subflows gradually perform bandwidth
probing in a coordinated manner. This approach protects
the network quality for other users while improving the
overall throughput of MPTCP.



2) We conducted simulation experiments using Mininet.
The results show that, compared to directly using BBR
for bandwidth probing, FMBBR achieves a higher initial
probing bandwidth and reduces the negative impact on
other users. In addition, we compared FMBBR with
other MPTCP congestion control algorithms, and the
results demonstrate that FMBBR provides better overall
performance.

The remainder of this article is organized as follows. Section
IT introduces the background and related work. Section III
describes the design of FMBBR. Section IV presents the per-
formance evaluation. Finally, Section V concludes the study.

II. BACKGROUND

The Internet Engineering Task Force (IETF) defined three
main design objectives for MPTCP [2]:

1) Improve Throughput: The throughput of MPTCP should
be at least as high as the throughput of the best single
path among all available paths.

2) Do No Harm: The capacity used by MPTCP on any path
should not be greater than the capacity used by a regular
TCP connection.

3) Balance Congestion: When the first two conditions are
satisfied, MPTCP should help relieve network conges-
tion and maintain balanced transmission efficiency.

The first goal is the main reason for designing MPTCP. The
second goal aims to ensure fairness in the Internet environment
and improve overall service quality. The third goal is based on
the resource pooling principle [15]. As a result, most MPTCP-
related algorithms focus on congestion control and shared
bottleneck detection.

A. Bottleneck Detection

[11] points out that current bottleneck detection methods
often rely on packet loss and latency to identify shared
bottlenecks. However, these signals are rare and unreliable in
well-performing network environments. To address this issue,
they propose using One-Way Delay (OWD) as the main metric,
combined with skewness, variability, and key frequency, to
detect shared bottlenecks as described in [16]. However, their
approach requires adding new MPTCP timestamps to the
kernel, which is less flexible than using modules or eBPF. In
addition, the algorithm depends heavily on time synchroniza-
tion. In real-world Internet environments, time synchronization
errors can greatly affect the accuracy of the measurements.

[17] proposes a new method for shared bottleneck detection
based on Explicit Congestion Notification (ECN). This method
uses the birth-death Markov model [18] to calculate an optimal
sampling period D. Detection is then performed by analyzing
the arrival times of ECN packets within this period. However,
although ECN adoption has grown, many devices still do not
fully support it. In addition, in complex network topologies
with multiple bottlenecks and queues, ECN-based collinearity
detection can easily lead to misjudgments or missed detections.

B. Congestion Control

To meet the design requirements, existing congestion con-
trol algorithms such as LIA [3], BALIA [4], and OLIA
[5] aim to achieve relative fairness. However, they prevent
MPTCP from fully using the available bandwidth of sub-
flows, regardless of whether those subflows share the same
bottleneck path. In addition, congestion algorithms based on
congestion windows and packet loss detection mainly rely on
Additive Increase Multiplicative Decrease (AIMD) to control
the congestion window (CWND). When packet loss occurs,
a subflow’s CWND is typically reduced by half. As a result,
packet loss in one subflow can also affect other subflows under
these algorithms. Consequently, these approaches focus more
on satisfying the second design rule but often fail to meet the
first rule.

Google’s BBR [7] algorithm is a rate-based congestion
control method that uses a built-in network model to improve
bandwidth utilization and reduce latency. Since BBR controls
both the congestion window (CWND) and the transmission
rate, it can maintain high transmission efficiency even when
packet loss occurs.

[19] implements a simple multipath BBR by using BBR
as the congestion control algorithm for each subflow. They
evaluate the transmission performance of MPTCP under dif-
ferent packet loss scenarios. However, their approach does not
consider the principle of fairness between subflows.

[10] proposes a coupling-based method to control the con-
gestion of all subflows. This approach allocates the bandwidth
of the best-performing subflow to all subflows according to the
detected bandwidth of each one. Although this method effec-
tively maintains fairness in MPTCEP, it still limits the actual
available bandwidth of subflows in real network conditions.

[9] uses RTT to identify subflows that share the same
bottleneck. Based on this detection, the algorithm only limits
the bandwidth of subflows on the same bottleneck path. As
a result, the total bandwidth of these subflows does not ex-
ceed the maximum bandwidth of the best-performing subflow
on the current path, while still ensuring efficient bandwidth
utilization.

BBR operates in several stages: STARTUP, DRAIN,
PROBEBW, and PROBERTT. During these stages, BBR uses
two key parameters, pacing-gain and cwnd-gain, to control the
sending rate and the size of the congestion window (CWND).

For ordinary TCP, BBR executes these stages in order.
In the STARTUP phase, BBR sets the pacing-gain to 2/In2
to quickly fill the link and estimate the maximum available
bandwidth. This approach works well for single-path TCP.
However, in MPTCP, when multiple subflows pass through the
same bottleneck link, starting the STARTUP phase of BBR at
the same time can lead to severe network congestion [20].

Therefore, although [9] follows the second principle of the
MPTCP design guidelines, the special bandwidth detection
method used by BBR often fails to detect enough bandwidth
during the initial detection phase. As a result, subflows that
share the same bottleneck link may not use the available
bandwidth efficiently.



At the same time, during the STARTUP stage, subflows that
share the same bottleneck link can cause a significant negative
impact on other network users during the initial detection
process, even though their bandwidth will later be limited in
the PROBE_BW stage.

IITI. SYSTEM DESIGN DETIALS

In this section, we introduce FMBBR, which is designed
to detect subflows that share the same bottleneck and achieve
high initial bandwidth detection under friendly conditions.

A. Overview

To achieve high throughput with the BBR algorithm while
following the design principles of MPTCP, FMBBR introduces
a user-friendly initialization phase that leverages an SDN-
based feedback mechanism to identify bottleneck subflows.
After detection, it applies a congestion control algorithm to al-
locate optimal bandwidth to each subflow during transmission.
This approach reduces the negative impact on other users and
improves MPTCP’s overall utilization of network resources.

B. SDN Based Bottleneck Detection

We use the controller to capture SYN and SYN|ACK
packets sent by MPTCP during the initial phase to collect data.
A small server runs inside the controller. Once the MPTCP
sender confirms that all subflows are established, it retrieves
the data from the server.

MPTCP uses TCP options [1] to control its behavior, as
shown in TABLE I. To accurately capture MPTCP SYN
packets, the controller only collects SYN and SYN|ACK
packets that contain the MP-Capable and MP-JOIN options.

To avoid misjudgments caused by other MPTCP connec-
tions in the network, we extract the receiver’s key from
SYN|ACK packets containing MP-Capable and use it to
calculate a unique token. For each subflow that joins the
connection, its MPTCP option must include both MP-JOIN
and the same token. This process allows us to accurately gather
path information for all subflows. By checking whether these
subflows pass through the same router, we can identify which
subflows share the same bottleneck link.

TABLE I: MPTCP Option Subtypes

Value Symbol Name

0x0 MP_CAPABLE Multipath Capable
0x1 MP_JOIN Join Connection
0x2 DSS Data Sequence Signal
0x3 ADD_ADDR Add Address

0x4 REMOVE_ADDR Remove Address
0x5 MP_PRIO Change Subflow Priority
0x6 MP_FAIL Fallback

0x7 MP_FASTCLOSE Fast Close

C. BBR Based Congestion Control

Before all subflows are established, each subflow maintains
its default minimum congestion window (cwnd) for data

transmission. During this stage, we record the minimum RTT
of each subflow.

After retrieving the collinear subflow data from the SDN
controller, the subflows are instructed to enter the STARTUP
phase in order, based on their minimum RTT and collinearity
status.

To reduce the total time spent in the STARTUP phase,
subflows on different paths are initiated at the same time. For
subflows that share the same bottleneck path, they are first
sorted by their minimum RTT and then started sequentially.

To prevent incomplete detection of subflows on the same
bottleneck path and to minimize the impact on other network
users, only one subflow on the same bottleneck path is allowed
to be in the STARTUP phase at any given time.

After all subflows complete the STARTUP phase, we record
the maximum bandwidth obtained by each subflow i during
the detection process as prob_bwi. We then determine the
MAX_BW for the entire set of subflows sharing the same
bottleneck link S. The calculation of M AX_ BW can be
expressed as:

MAX_BW «+ masxprob_bwi (1)
1€

After obtaining M AX_BW, we allocate a bandwidth limit
limitbw; to each subflow sub; based on the order of their RTT
values. The allocation for each subflow sub; can be described
as:

o prob_bw;, MAX_BW > prob_bw;
limitbw; = )
MAX_BW, MAX_BW < prob_bw;
MAX BW = MAX_ BW — limitbw; 3)

Algorithm 1 Give the pseudocode for the description.

D. Initial Redundant Packet Scheduler

For BBR-based MPTCP, when a subflow enters the
STARTUP phase, both the pacing_gain and cwnd_gain are
set to 2/In2. During this phase, the subflow needs to send a
large number of packets to probe the available link bandwidth.
Therefore, we prioritize allocating packets to the subflow in
this state. However, to avoid excessive packet loss during
the probing process and to prevent overuse of RWND,
which could interfere with the normal transmission of other
non-collinear subflows, we design a simple redundant packet
scheduling mechanism called Initial Redundant Packet Sched-
uler (IRPS). This scheduler specifically manages subflows in
the STARTUP phase.

After all subflows complete the STARTUP stage, we sched-
ule packets based on the smoothed round-trip time (SRTT) of
each subflow. Subflows with lower SRTT are given higher
priority to improve transmission efficiency and reduce overall
latency. Algorithm 2 shows the pseudocode for this scheduling
process.



Algorithm 1 FMBBR Congestion Control Algorithm

Step 1: Build up all subflows and collect min rtt
if All subflows build up done then
Go to Step 2
for Each subflow i get a new ack do
if min_rtt; < current_rtt; then
man_rtt; = current_rtti
end if
end for
end if
Step 2: Startup each subflow
Get bottleneck link subflows from controller to S
S« sort(S, key = min_rtt, order = ascending)
for each sub; ¢ S do
sub;.bbr_mode = STARTU P
end for
index = 0 > subflows in set S get in STARTUP by index
for each sub; € S do
if sub; = S[index] then
subj.bbr_mode = STARTU P
else if sub;.bbr_mode = PROBE_BW and sub; =
Slindex] then
index = index + 1
else if sub;.bbr_mode = PROBE_BW and sub; #
Slindex] then
subj.cund = 4
end if
end for
Step 3: Bandwidth limited
MAX_BW <+ max;cg prob_bw;
for sub; € S do
if MAX_BW > prob_bw; then
limitbw; = prob_bw;
MAX_BW = MAX_BW — limitbw;

> According to BBR parameter

else
limitbw; = MAX_BW
MAX _BW =0
end if
end for

Algorithm 2 Initial Redundant Packet Scheduler

Step 1: Startup Not Finished
for Each sub; do
if sub; in STARTUP stage then
Schedule redundant packet to sub;
else
Schedule normal packet to sub;
end if
end for
Step 2: Startup Finished
bestsk < arg min;c n subi.srtt
Schedule normal packet to bestsk

IV. PERFORMANCE ANALYSIS
A. Simulation Setting

We implement FMBBR and IRPS as Linux kernel modules
in MPTCP v0.96, running on Linux kernel version 5.4.230.
To evaluate their performance, we build a simple network
topology using the Mininet simulator [21] and use RYU [22]
as the SDN controller. The BBR version is bbr_v1 and the
algorithm follows the default parameter setting. We implement
random packet loss model in the topology. Fig. 1 shows the
topology of the evaluated bottleneck link, while TABLE II
lists the relevant parameters of the link, S is the set of links
that share the same bottleneck.

TABLE II: Topo Parameters

Item Shared Bottleneck Non-shared bottleneck
Bandwidth [Mbps] 0.8 x Zies bw; 10-25

Delay [ms] 15 10-25

Loss [%] 0.1 0.05

Router buffer [BDP] 1 1

To simplify the control of each subflow’s path, we use
fullmesh as the path manager. The receiver is directly con-
nected to an access switch, referred to as R5, where both delay
and queue size are negligible. Therefore, no bottleneck issues
occur at this point in the network.

SDN
Server

MPTCP
Sender

MPTCP
Receiver

Fig. 1: Mininet Topo

B. Performance Evaluation

1) Initial Probed Maximum Bandwidth: We first com-
pare the initial bandwidth measurements obtained using the
FMBBR congestion control algorithm and the standard BBR
algorithm.

Algorithm 1 shows that the initial maximum bandwidth
detected for the same bottleneck directly affects the subse-
quent bandwidth allocation limit. Therefore, a higher initially
measured available bandwidth for the same bottleneck leads
to better transmission performance in later stages.

In Fig. 2, subflow 1 operates on an independent link, while
subflow 2 and subflow 3 share the same bottleneck link. The
results show that when BBR is used as the congestion control
algorithm, only subflow 1 achieves a high bandwidth detection
value. In contrast, subflow 2 and subflow 3, which pass through
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the shared bottleneck, detect only a small amount of available
bandwidth.

In contrast, when using FMBBR, all subflows are able
to detect high bandwidth values. This is because subflows
that share the same bottleneck link are detected sequentially,
ensuring that they do not interfere with each other during the
detection process.

2) Other User-friendliness: To verify the friendliness of
FMBBR toward other users sharing the bottleneck link, we
established an independent TCP connection between R4 and
RS with a fixed bandwidth of 5 Mbps. This connection also
uses BBR as its congestion control algorithm.

We evaluated the overall user friendliness of FMBBR and
compared it with standard BBR. In addition, we examined the
impact of FMBBR’s gradual STARTUP phase by comparing
its performance with and without this mechanism.

(a): As shown in Fig. 3(a), when MPTCP uses BBR as its
congestion control algorithm, it quickly consumes bandwidth.
This causes the independent TCP connection to decrease its
bandwidth, which would be influence to other users in real-
world network scenarios.

As shown in Fig. 3(b), which illustrates the changes in
bandwidth over time, individual TCP connections are affected
by MPTCP’s traffic preemption during transmission. However,
they are still able to keep a high bandwidth.
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(b): Fig. 4(a) shows the scenario where FMBBR is used
as the congestion control algorithm, but the collinear subflows
are not gradually entered into the STARTUP phase. As seen
in the figure, when the collinear subflows simultaneously
enter the STARTUP phase, the independent TCP connection
experiences a sharply bandwidth decrease, which occur around
the 6-second mark.

In contrast, Fig. 4(b) shows the scenario where FMBBR
gradually enters the STARTUP phase. In this case, the behav-
ior is much more user-friendly.
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3) DSN and Throughput: Fig. 5(a) compares the throughput
performance of BALIA and LIA using the default minRTT
scheduler with FMBBR using IRPS under the same link
conditions. The results show that FMBBR achieves higher
throughput than the other two combinations. Compared to the
more conservative MPTCP congestion algorithms, BALIA and
LIA, FMBBR makes better use of available bandwidth and
delivers superior overall throughput.

Fig. 5(b) shows the amount of data received over time
during the same transmission period. As observed, FMBBR
is comparable to BALIA and LIA between 0 and 2 seconds.
This delay occurs because FMBBR is in the STARTUP phase,
during which it explores and detects the available bandwidth.
However, after this initial phase, FMBBR surpasses both
BALIA and LIA for the rest of the simulation, achieving
higher data transmission performance.
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V. CONCLUSION AND FUTURE WORK

To ensure MPTCP fairness while fully utilizing the band-
width of each subflow, we propose a user-friendly shared bot-
tleneck detection and congestion control algorithm, FMBBR,
which is based on SDN and BBR. FMBBR uses SDN to accu-
rately identify shared bottleneck information for each MPTCP
subflow. By adopting a step-by-step startup mechanism, sub-
flows are sequentially brought into the BBR STARTUP phase.
This approach not only increases the bandwidth detected by
subflows during the initial phase but also reduces their impact
on other network users. After detection, bandwidth is allocated
to the subflows on the shared bottleneck link according to



their RTT values. Simulation results demonstrate that FMBBR
achieves higher initial detection bandwidth compared to both
standard BBR and non-step-by-step startup methods. At the
same time, it minimizes the negative impact on other users’
network quality and delivers superior performance compared
to existing MPTCP congestion control algorithms.

The experiments are currently perform on simple local
networks, in the future, the work will expand to more complex
SDN-WAN networks. We also aim to conduct evaluations in
real-world scenarios to validate its effectiveness and robustness
under practical network conditions.
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