Lifestyle-Driven CKD Risk Prediction in Diabetes
Using AutoGluon
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Abstract—Chronic kidney disease (CKD) is a major global
health burden, characterized by a progressive decline in renal
function over time. Compared with reliance on physiological
data, we adopt lifestyle factors for risk prediction. In patients
with diabetes, chronic hyperglycemia further predisposes to
glomerular hyperfiltration and renal injury. In this study, we
utilized AutoGluon, an automated machine learning (AutoML)
framework, to improve prediction of CKD risk in diabetic
patients. The platform also provides a user-friendly graphical
user interface (GUI), which simplifies workflow and improves
efficiency. The dataset was obtained from BIRDEM General
Hospital in Bangladesh and included 22 key features for model
training, encompassing demographic variables (e.g., gender,
body mass index [BMI]), comorbidities, and lifestyle factors
(including diet, physical activity, smoking, and water intake), as
well as urinary status. We compared three models—AutoGluon,
XGBoost, and TabPFN—evaluating their performance using
metrics such as accuracy, area under the ROC curve (ROC-
AUC), precision, and recall. The results demonstrated that
AutoGluon and TabPFN outperformed XGBoost. Specifically,
the F1-scores were 0.8948, 0.9642, and 0.8718, respectively;
recall values were 0.8264, 0.9617, and 0.9267; precision values
were 0.9755, 0.9666, and 0.8231; accuracy values were 0.9813,
0.9648, and 0.8638; and ROC-AUC values were 0.9778, 0.9648,
and 0.8638. Despite the superior numerical performance of
TabPFN, its interpretability was limited. Notably, it suggested
that longer duration of diabetes reduced the likelihood of CKD,
a finding that is contradicted established clinical knowledge.
Therefore, AutoGluon was selected as the primary predictive
model. These findings highlight AutoGluon’s potential to
support early intervention and disease prevention in clinical
practice.
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I. INTRODUCTION

Chronic kidney disease (CKD) results from a sustained
lose in renal function and is commonly manifested by
symptoms such as edema, hypertension, and anemia [1].
Populations with diabetes mellitus (DM), gout, obesity, or
high-salt dietary habits are at elevated risk for kidney disease.

As diabetes progresses, it induces systemic complications,
and prolonged hyperglycemia impairs renal function [2].
Chronic hyperglycemia damages tubuloglomerular feedback,
leading to dilation of the afferent arteriole. Simultaneously,
activation of the RAAS system enhances the effect of
angiotensin II on the efferent arteriole. This dual mechanism
results in persistent glomerular hyperfiltration, which, over
time, contributes to renal damage and increases the risk of
subsequent complications. As renal injury is irreversible,
patients in the early stages can only slow disease progression
through pharmacological and dietary interventions, whereas
those in the advanced stages often require long-term
hemodialysis or await kidney transplantation. Implementing
preventive measures at an early stage can substantially
mitigate disease progression.

In Taiwan, the prevalence of chronic kidney disease in
2022 was approximately 11% (2.6 million individuals) [3].
Among patients with diabetes, about 33% develop kidney
disease within 10 years. Both figures are higher compared to
neighboring countries, including Korea, Japan, and China.
Projections suggest that by 2027, the prevalence will rise to
12.4% (3 million individuals). The annual total expenditure of
the National Health Insurance is estimated to increase from
NT$51.96 billion in 2022 to NT$62.18 billion in 2027. As
kidney transplantation remains uncommon at present, patients
with kidney disease largely depend on pharmacological
treatment and renal replacement therapies (hemodialysis and



peritoneal dialysis). This situation is expected to impose a
substantial burden on the National Health Insurance system,
potentially affecting the allocation of healthcare resources for
other patients.

The application of artificial intelligence (AI) in the
management of chronic kidney disease (CKD) has been
expanding rapidly, with applications ranging from early
disease detection, risk stratification, prognosis prediction, and
automated image analysis (e.g., ultrasound or pathology) to
personalized treatment planning and clinical decision support
systems. Beyond their applications, previous studies have
shown that Al models deliver tangible benefits in CKD care—
enhancing patient prognosis, enabling more personalized
treatment strategies, and improving the efficiency of
healthcare resource allocation [4].

In addition, Al has also been applied to the prediction of
complication risks among CKD patients. For instance, one
study employed Least Absolute Shrinkage and Selection
Operator (LASSO) regression analysis to identify eight key
predictive factors—including age, history of hypertension,
gender, use of antiplatelet agents, high-density lipoprotein
(HDL) levels, serum sodium concentration, 24-hour urinary
protein levels, and estimated glomerular filtration rate
(eGFR)—to estimate the risk of cardiovascular disease (CVD)
in patients with CKD [5]. Such approaches facilitate the early
identification of high-risk individuals and enable timely
interventions.

In recent years, a growing number of studies have
proposed and documented methods for predicting CKD risk
among patients with diabetes.
One such study focused on patients with type 2 diabetes
mellitus [6], utilizing logistic regression (LR) and
incorporating seven routinely available clinical features: age,
body mass index (BMI), eGFR, serum creatinine, albumin,
glucose, and hemoglobin Alc (HbAlc). The LR model
demonstrated strong performance, achieving an area under the
receiver operating characteristic curve (AUC) of 0.79. When
the same set of features was used in a random forest (RF)
model, the AUC increased to 0.83. Furthermore, the study
evaluated the commercially available KidneyIntelX model,
emphasizing the importance of external validation and model
calibration for clinical deployment. The authors also
recommended the development of more broadly applicable
and interpretable Al models, underscoring the value of using
routine laboratory data to enhance generalizability and avoid
limitations due to test-specific requirements. The study also
proposed integrating such models into electronic health record
(EHR) systems to facilitate the effective transfer of knowledge
into clinical decision-making processes.

Another study concentrated on patients with type 1
diabetes mellitus [7], using a diverse set of features—
including albumin excretion rate (AER), estimated serum
creatinine (eSCR), eGFR, HbAlc, duration of insulin-
dependent diabetes mellitus (IDDM), age, and alcohol
consumption—to evaluate twelve machine learning models,
including LR, RF, XGBoost, and multilayer perceptron
(MLP). In contrast to prior studies that primarily focused on
predicting end-stage renal disease (ESRD), this work
introduced an innovative approach to predict the overall ten-
year risk of CKD development in type 1 diabetic patients. The
authors proposed an advanced heterogeneous ensemble model,
termed STK, which exhibited exceptional predictive
performance: mean accuracy of 0.97, specificity of 0.98,

sensitivity/recall of 0.96, precision of 0.98, F1-score of 0.97,
Kappa and Matthews correlation coefficient (MCC) scores of
0.94, AUROC 0f 0.99, and precision—recall AUC 0f 0.99. This
study successfully presented a novel and highly accurate
method for predicting CKD onset risk in individuals with type
1 diabetes.

Compared to aforementioned studies, which primarily
relied on laboratory data, our approach exclusively employs
lifestyle features for risk prediction. This strategy not only
reduces the cost associated with data acquisition but also
facilitates patient self-monitoring, thereby lowering the
frequency of clinical visits and alleviating the healthcare
burden. Moreover, the predictive is no longer restricted to
individuals with type 1 or type 2 diabetes.

Prediction based on laboratory data has reached a
relatively mature stage, and in our study, we employed three
widely used machine learning models that are well-suited for
lifestyle tabular data—AutoGluon [8], TabPFN [9], and
XGBoost [10]—and compared their predictive performance
as well as their decision-making mechanisms. Among these,
AutoGluon, an automated machine learning (AutoML)
framework, demonstrated particularly strong predictive
accuracy when applied to lifestyle tabular data, yielding
results that were closely aligned with clinical judgment. The
main contributions of this work are as follows:

e To the best of our knowledge, this is the first study
to predict CKD risk solely from lifestyle-related
features by systematically benchmarking popular
tabular learning models.

e Providing a patient-oriented self-assessment tool
for risk prediction, simultaneously reduces
healthcare expenditures associated with laboratory
measurements.

¢ Expanding the prediction scope beyond type 1 and
type 2 diabetes patients, thereby increasing its
potential public health applicability.

e The design of GUI enables seamless
interaction and promotes system accessibility.

user

II. DATA AND METHODOLOGY

The methodology of this study comprises six main stages.
The first stage is Exploratory Data Analysis (EDA), aimed at
understanding the dataset, particularly its lifestyle-related
tabular features and classification structure. The second stage
involves data preprocessing, where raw data are cleaned and
transformed for modeling readiness. The third and fourth
stage focuses on model training and evaluation performances,
identifying the most suitable model. The fifth stage will utilize
SHAP analysis to check the features’ clinical credibility; if the
results are inconsistent, an alternative model will be applied.
At the final stage, the best-performing model is integrated into
a GUI for simpler manipulation. The overall workflow is
shown in Fig. 1.
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Fig. 1. Block Diagram of the Proposed Method

A.  Data Collection, Description, and Exploratory data
analysis

The dataset utilized in this study was obtained from
BIRDEM General Hospital in Dhaka, Bangladesh, under the
supervision of Dr. Rafi Nazrul from the Department of
Nephrology, and was approved by the Ethical Review
Committee of the Diabetic Association of Bangladesh [11].
The dataset consists of 4,000 records, covering 400 DM
patients and includes 22 features such as gender, occupational
type, family history of diabetes, and data collected over the
past 10 years on BMI, comorbidities, lifestyle factors
(including diet, physical activity, smoking, and water intake),
urinary status, urinary infection and daily caloric intake.
Among the variables, Diabetic Year, Age, BMI, and Calorie
Intake were treated as numerical features, while the others
were categorical, as presented in TABLE 1. The dataset is
highly imbalanced, with 386 cases of CKD and 3,614 non-
CKD cases out of 4,000 records.

TABLE L FEATURES IN THE DATASET AND THEIR

DESCRIPTION
L. Statistics
Feature description -
Mean +std | variance
Job 1-normal, 2-intermediate, 1.28 + 0.60 036
3-heavy
Family Background of

Diabetes 1-yes, 0-no 0.42 +0.49 0.24
Diabetic Year Years since first diagnosis | 9.27 + 6.48 42.04
Age Years 50.88 £ 10.95 119.95

BMI kg/m’ 24.59 +3.77 14.24

Follow Suggested Diet 1-yes, 0-no 0.77 £ 0.42 0.18

Regularly Take Oral Anti-

diabetic Medicine 1-yes, 0-no 0.75+£0.43 0.19

Take Insulin 1-yes, 0-no 0.55+0.50 0.25

Hypertension 1-yes, 1-no 0.29+£0.45 0.21

Heart Disease 1-yes, 2-no 0.24+043 0.18

1-7 to 9 hours of sleep,
Sleep 0-abnormal sleep time 0.59+049 0.24
. 1-more than 2 liters/day,
Water Consumption O-less than 2 liters/day 0.91+0.29 0.08
Smoke 1-yes, 0-no 0.14+0.34 0.12
I-more than 30 minutes per
Walk Regularly day, 0-less than 30 minutes| 0.64 + 0.48 0.23
per day
Urination without
Urination Properly | discomfort, obstruction, or| g5, 3¢ 0.13
medical issues, (1-yes, 0-
no)

Urinary Infection 1-yes, 0-no 0.24+0.43 0.18

Taking Pain Killer 1-yes, 1-no 0.29 £ 0.46 0.21
Calorie Intake Daily calories intake 1‘;5131'75% | 447545

B.  Data Preprocessing

The data preprocessing pipeline in this study involved
several steps to ensure model compatibility and enhance
learning performance. First, the categorical feature "Gender"
was encoded using binary values, with female assigned as 0
and male as 1. Second, the features "Zarda use" and "Betel
Leaf use" were removed, as such substances are not
commonly consumed in Taiwan and were deemed irrelevant
to the study objectives. Additionally, variables including
height, weight, and average weight were excluded due to their
high correlation with BMI, which was already presented in the
dataset. This step was taken to prevent multicollinearity. In
terms of data transformation, 16 categorical variables were
processed through label encoding to ensure the machine
learning models could interpret categorical information
effectively. Meanwhile, the three continuous features were
standardized to a uniform scale to prevent model bias caused
by differences in magnitude. For dataset partitioning, the data
was split into training and testing sets using an 80:20 ratio.
However, given the highly imbalanced nature of the dataset—
with a predominance of categorical features and only three
continuous variables—Synthetic Minority Over-sampling
Technique for Nominal and Continuous data (SMOTENC)
[12] was employed for sample augmentation. SMOTENC
generates synthetic minority class samples by considering
both numerical and categorical variables, thereby alleviating
class imbalance while preserving feature structure. This
approach ensured consistency in the distribution of both
training and testing sets, ultimately enhancing the accuracy
and robustness of the model during training.



C.  Experiment

In this study, we employed AutoGluon, developed by
Amazon Web Services, to conduct model training [13].
AutoGluon simplifies the processes of model selection,
training, and deployment, thereby improving the efficiency
and usability of the machine learning pipeline. Additionally,
it integrates stacking and bagging strategies to enable robust
ensemble learning, enhancing predictive performance while
maintaining computational efficiency.

In addition to AutoGluon, we independently trained two
widely used machine learning models for comparative
analysis. TabPFN, a transformer-based probabilistic model, is
designed to process entire tabular datasets end-to-end during
both training and inference. It demonstrates strong
adaptability to structured tabular data, which is particularly
well-suited to our case, as our dataset consists of lifestyle-
related tabular features rather than continuous laboratory
measurements commonly used in conventional medical Al

On the other hand, XGBoost is a gradient-boosted decision
tree model that is naturally well-suited for binary
classification tasks and aligns well with the binary nature of
most of our input features. It has been extensively applied in
healthcare risk prediction and is frequently adopted as a
baseline for evaluating emerging models. Therefore, TabPFN
and XGBoost were selected as baseline models for
performance comparison against AutoGluon. A detailed
comparison of the predictive performance across all models is
provided in the following section.

D.  Integration Best Model to GUI

Fig. 2 illustrates the main functions of the GUI developed
in this study. The left panel serves as the input area, where
diabetic patients can enter relevant feature values and obtain
model predictions by clicking the “Run test” button. The right
panel displays two types of visual information: (1) the
predicted probability of CKD occurrence for the current test,

and (2) a probability trend chart of historical diagnostic results.

Different risk levels are highlighted with color coding to
facilitate interpretation by clinical staff and to support
subsequent treatment decisions.
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Fig. 2. GUI designed for Al-Based CKD. Input and Execution Result page

III. RESULT AND DISCUSSION

Table II and Fig. 3 present the comparative analysis of
multiple machine learning models applied to CKD prediction,
evaluated using five key performance metrics. The results
indicate that TabPFN achieved the highest scores in ROC
AUC (0.9950), Fl-score (0.9642), and Recall (0.9617),
demonstrating its strong capability in identifying true positive

cases. In contrast, AutoGluon outperformed other models in
terms of Accuracy (0.9813) and Precision (0.9755), reflecting
its effectiveness in minimizing false positives while
maintaining overall classification accuracy.

TABLE II. MODEL PERFORMANCE COMPARISON
AutoGluon TabPFN XGBoost
Accuracy 0.9813 0.9648 0.8638
ROC AUC 0.9778 0.995 0.9436
F1_Score 0.8948 0.9642 0.8718
Precision 0.9755 0.9666 0.8231
Recall 0.8264 0.9617 0.9267

Overall, both AutoGluon and TabPFN exhibited excellent
and consistent performance across all evaluation metrics,
highlighting their strengths in handling classification tasks in
the risk-prediction domain. By comparison, although
XGBoost also demonstrated reasonable predictive power, its
performance varied more noticeably across different metrics,
indicating relatively lower stability.

In summary, TabPFN and AutoGluon demonstrated
superior and stable predictive capabilities for assessing CKD
development risk among diabetic patients. These models show
strong potential for further development and implementation
in future research and clinical applications.

noma gt

Accuracy ROC AUC F1 Score Precision Recall

-GG W 1BPEN MR XGHOOST

Fig. 3. Model Performance of AutoGluon, TabPFN, and XGBoost

Despite the outstanding predictive performance
demonstrated by both TabPFN and AutoGluon, a critical
limitation remains in their lack of interpretability. These
models are often regarded as “black boxes” due to their
reliance on complex feature interactions and data correlations
rather than on transparent and intuitive rules. This opacity may
undermine trust and adoption in clinical settings, where
understanding the reasoning behind model predictions is
essential for effective decision-making.

To address this limitation, we employed Shapley Additive
Explanations (SHAP) [14], a method grounded in cooperative
game theory, to fairly attribute the contribution of each input
feature to the model’s output. Through SHAP analysis, we
were able to quantify and interpret the influence of individual
features on CKD risk predictions, thereby enhancing the
transparency of the model’s decision-making process and
aligning it with the expectations of clinical practitioners.

This interpretability mechanism enables clinicians and
experts to cross-validate model outputs with their domain
expertise, improving the model’s credibility and acceptability
in real-world medical applications.



SHAP value plots of the AutoGluon model represents that
the most important feature was BMI (Fig. 4(a)). A higher BMI
generally indicates excess body weight, which imposes a
greater metabolic burden and consequently elevates the risk of
developing CKD [15]. The second priority feature was
Diabetic Year. A longer disease duration implies prolonged
exposure to hyperglycemia, thereby increasing the risk of
renal impairment [16]. The third priority feature was Age. As
patients grow older, physiological decline increases their
susceptibility to kidney disease [17]. The fourth feature is
Urinary Infection [18]. Pyelonephritis caused by bacterial
infection can result in inflammation and fibrosis of the renal
parenchyma, ultimately leading to a progressive decline in
renal function, and the risk of infection is particularly elevated
among patients with diabetes [19]. The relative contribution
of each feature has been shown in Fig. 4(b). Generally,
AutoGluon achieved robust performance across key clinical
indicators, underscoring its potential value for early
prevention.
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Fig. 4. SHAP summary plot

It is noteworthy that although TabPFN achieved
outstanding overall predictive performance, SHAP analysis
revealed that its feature importance rankings were often
inconsistent with established clinical experience (Fig. 4(c)).
Such discrepancies are difficult to accept in medical contexts,
thereby limiting the model’s clinical credibility. In contrast,
AutoGluon not only demonstrated strong predictive accuracy
but also produced feature attribution results that aligned
closely with clinical knowledge. This consistency underscores
its greater applicability in predicting and preventing CKD risk
among diabetic patients, positioning AutoGluon as the most
suitable model in this study.

Overall, the SHAP summary plots highlighted the relative
importance and interactions of individual features during
AutoGluon model training. These findings are consistent with
existing literature on the associations between clinical features,
diabetes, and its complications, thereby further validating the
robustness and reliability of the model’s predictions and
supporting its feasibility for clinical application.

IV. CONCLUSION

In this study, we proposed a machine learning—driven
framework for predicting CKD risk in diabetic patients using
lifestyle features as the primary input variables. Among the
models evaluated, AutoGluon consistently outperformed
other approaches in terms of predictive accuracy and precision,
while also providing clinically coherent feature attributions
through SHAP analysis. This combination of robust predictive
capability and transparent interpretability highlights
AutoGluon’s potential as a trustworthy and clinically
meaningful decision support tool.

By emphasizing lifestyle-related features as the core
predictors, our framework departs from the conventional
reliance on laboratory-based indicators and demonstrates the
feasibility of a non-invasive, cost-effective, and patient-
centered approach to risk stratification. This innovation not



only reduces healthcare costs and alleviates the demand on
clinical resources but also aligns with the growing emphasis
on preventive medicine, precision health strategies, and
patient empowerment.

Looking forward, future work will involve expanding
training to larger, more demographically diverse cohorts,
integrating complementary clinical and biochemical markers,
and performing rigorous multi-center external validation to
establish  real-world applicability. Beyond technical
improvements, embedding this framework into digital health
ecosystems and mobile health platforms offers an opportunity
to bridge the gap between predictive analytics and everyday
clinical practice, thereby fostering equitable access to
advanced decision-support tools across healthcare settings.

Ultimately, this research advances the field of explainable
artificial intelligence in medicine by providing both
methodological novelty and clinically relevant impact. It
contributes to the paradigm shift toward proactive disease
prevention, precision medicine, and patient engagement,
while also offering valuable insights for healthcare policy and
resource optimization in the management of diabetes-
associated CKD.
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