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Abstract—Chronic kidney disease (CKD) is a major global 

health burden, characterized by a progressive decline in renal 

function over time. Compared with reliance on physiological 

data, we adopt lifestyle factors for risk prediction. In patients 

with diabetes, chronic hyperglycemia further predisposes to 

glomerular hyperfiltration and renal injury. In this study, we 

utilized AutoGluon, an automated machine learning (AutoML) 

framework, to improve prediction of CKD risk in diabetic 

patients. The platform also provides a user-friendly graphical 

user interface (GUI), which simplifies workflow and improves 

efficiency. The dataset was obtained from BIRDEM General 

Hospital in Bangladesh and included 22 key features for model 

training, encompassing demographic variables (e.g., gender, 

body mass index [BMI]), comorbidities, and lifestyle factors 

(including diet, physical activity, smoking, and water intake), as 

well as urinary status. We compared three models—AutoGluon, 

XGBoost, and TabPFN—evaluating their performance using 

metrics such as accuracy, area under the ROC curve (ROC-

AUC), precision, and recall. The results demonstrated that 

AutoGluon and TabPFN outperformed XGBoost. Specifically, 

the F1-scores were 0.8948, 0.9642, and 0.8718, respectively; 

recall values were 0.8264, 0.9617, and 0.9267; precision values 

were 0.9755, 0.9666, and 0.8231; accuracy values were 0.9813, 

0.9648, and 0.8638; and ROC-AUC values were 0.9778, 0.9648, 

and 0.8638. Despite the superior numerical performance of 

TabPFN, its interpretability was limited. Notably, it suggested 

that longer duration of diabetes reduced the likelihood of CKD, 

a finding that is contradicted established clinical knowledge. 

Therefore, AutoGluon was selected as the primary predictive 

model. These findings highlight AutoGluon’s potential to 

support early intervention and disease prevention in clinical 

practice. 
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I. INTRODUCTION 

Chronic kidney disease (CKD) results from a sustained 
lose in renal function and is commonly manifested by 
symptoms such as edema, hypertension, and anemia [1]. 
Populations with diabetes mellitus (DM), gout, obesity, or 
high-salt dietary habits are at elevated risk for kidney disease. 

As diabetes progresses, it induces systemic complications, 
and prolonged hyperglycemia impairs renal function [2]. 
Chronic hyperglycemia damages tubuloglomerular feedback, 
leading to dilation of the afferent arteriole. Simultaneously, 
activation of the RAAS system enhances the effect of 
angiotensin II on the efferent arteriole. This dual mechanism 
results in persistent glomerular hyperfiltration, which, over 
time, contributes to renal damage and increases the risk of 
subsequent complications. As renal injury is irreversible, 
patients in the early stages can only slow disease progression 
through pharmacological and dietary interventions, whereas 
those in the advanced stages often require long-term 
hemodialysis or await kidney transplantation. Implementing 
preventive measures at an early stage can substantially 
mitigate disease progression. 

In Taiwan, the prevalence of chronic kidney disease in 
2022 was approximately 11% (2.6 million individuals) [3]. 
Among patients with diabetes, about 33% develop kidney 
disease within 10 years. Both figures are higher compared to 
neighboring countries, including Korea, Japan, and China. 
Projections suggest that by 2027, the prevalence will rise to 
12.4% (3 million individuals). The annual total expenditure of 
the National Health Insurance is estimated to increase from 
NT$51.96 billion in 2022 to NT$62.18 billion in 2027. As 
kidney transplantation remains uncommon at present, patients 
with kidney disease largely depend on pharmacological 
treatment and renal replacement therapies (hemodialysis and 



peritoneal dialysis). This situation is expected to impose a 
substantial burden on the National Health Insurance system, 
potentially affecting the allocation of healthcare resources for 
other patients. 

The application of artificial intelligence (AI) in the 
management of chronic kidney disease (CKD) has been 
expanding rapidly, with applications ranging from early 
disease detection, risk stratification, prognosis prediction, and 
automated image analysis (e.g., ultrasound or pathology) to 
personalized treatment planning and clinical decision support 
systems. Beyond their applications, previous studies have 
shown that AI models deliver tangible benefits in CKD care—
enhancing patient prognosis, enabling more personalized 
treatment strategies, and improving the efficiency of 
healthcare resource allocation [4]. 

In addition, AI has also been applied to the prediction of 
complication risks among CKD patients. For instance, one 
study employed Least Absolute Shrinkage and Selection 
Operator (LASSO) regression analysis to identify eight key 
predictive factors—including age, history of hypertension, 
gender, use of antiplatelet agents, high-density lipoprotein 
(HDL) levels, serum sodium concentration, 24-hour urinary 
protein levels, and estimated glomerular filtration rate 
(eGFR)—to estimate the risk of cardiovascular disease (CVD) 
in patients with CKD [5]. Such approaches facilitate the early 
identification of high-risk individuals and enable timely 
interventions. 

In recent years, a growing number of studies have 
proposed and documented methods for predicting CKD risk 
among patients with diabetes. 
One such study focused on patients with type 2 diabetes 
mellitus [6], utilizing logistic regression (LR) and 
incorporating seven routinely available clinical features: age, 
body mass index (BMI), eGFR, serum creatinine, albumin, 
glucose, and hemoglobin A1c (HbA1c). The LR model 
demonstrated strong performance, achieving an area under the 
receiver operating characteristic curve (AUC) of 0.79. When 
the same set of features was used in a random forest (RF) 
model, the AUC increased to 0.83. Furthermore, the study 
evaluated the commercially available KidneyIntelX model, 
emphasizing the importance of external validation and model 
calibration for clinical deployment. The authors also 
recommended the development of more broadly applicable 
and interpretable AI models, underscoring the value of using 
routine laboratory data to enhance generalizability and avoid 
limitations due to test-specific requirements. The study also 
proposed integrating such models into electronic health record 
(EHR) systems to facilitate the effective transfer of knowledge 
into clinical decision-making processes. 

Another study concentrated on patients with type 1 
diabetes mellitus [7], using a diverse set of features—
including albumin excretion rate (AER), estimated serum 
creatinine (eSCR), eGFR, HbA1c, duration of insulin-
dependent diabetes mellitus (IDDM), age, and alcohol 
consumption—to evaluate twelve machine learning models, 
including LR, RF, XGBoost, and multilayer perceptron 
(MLP). In contrast to prior studies that primarily focused on 
predicting end-stage renal disease (ESRD), this work 
introduced an innovative approach to predict the overall ten-
year risk of CKD development in type 1 diabetic patients. The 
authors proposed an advanced heterogeneous ensemble model, 
termed STK, which exhibited exceptional predictive 
performance: mean accuracy of 0.97, specificity of 0.98, 

sensitivity/recall of 0.96, precision of 0.98, F1-score of 0.97, 
Kappa and Matthews correlation coefficient (MCC) scores of 
0.94, AUROC of 0.99, and precision–recall AUC of 0.99. This 
study successfully presented a novel and highly accurate 
method for predicting CKD onset risk in individuals with type 
1 diabetes. 

Compared to aforementioned studies, which primarily 
relied on laboratory data, our approach exclusively employs 
lifestyle features for risk prediction. This strategy not only 
reduces the cost associated with data acquisition but also 
facilitates patient self-monitoring, thereby lowering the 
frequency of clinical visits and alleviating the healthcare 
burden. Moreover, the predictive is no longer restricted to 
individuals with type 1 or type 2 diabetes. 

Prediction based on laboratory data has reached a 
relatively mature stage, and in our study, we employed three 
widely used machine learning models that are well-suited for 
lifestyle tabular data—AutoGluon [8], TabPFN [9], and 
XGBoost [10]—and compared their predictive performance 
as well as their decision-making mechanisms. Among these, 
AutoGluon, an automated machine learning (AutoML) 
framework, demonstrated particularly strong predictive 
accuracy when applied to lifestyle tabular data, yielding 
results that were closely aligned with clinical judgment. The 
main contributions of this work are as follows: 

• To the best of our knowledge, this is the first study 
to predict CKD risk solely from lifestyle-related 
features by systematically benchmarking popular 
tabular learning models. 

• Providing a patient-oriented self-assessment tool 
for risk prediction, simultaneously reduces 
healthcare expenditures associated with laboratory 
measurements. 

• Expanding the prediction scope beyond type 1 and 
type 2 diabetes patients, thereby increasing its 
potential public health applicability. 

• The design of GUI enables seamless user 
interaction and promotes system accessibility. 

II. DATA AND METHODOLOGY 

The methodology of this study comprises six main stages. 
The first stage is Exploratory Data Analysis (EDA), aimed at 
understanding the dataset, particularly its lifestyle-related 
tabular features and classification structure. The second stage 
involves data preprocessing, where raw data are cleaned and 
transformed for modeling readiness. The third and fourth 
stage focuses on model training and evaluation performances, 
identifying the most suitable model. The fifth stage will utilize 
SHAP analysis to check the features’ clinical credibility; if the 
results are inconsistent, an alternative model will be applied. 
At the final stage, the best-performing model is integrated into 
a GUI for simpler manipulation. The overall workflow is 
shown in Fig. 1. 



 

Fig. 1. Block Diagram of the Proposed Method 

A. Data Collection, Description, and Exploratory data 

analysis 

The dataset utilized in this study was obtained from 
BIRDEM General Hospital in Dhaka, Bangladesh, under the 
supervision of Dr. Rafi Nazrul from the Department of 
Nephrology, and was approved by the Ethical Review 
Committee of the Diabetic Association of Bangladesh [11]. 
The dataset consists of 4,000 records, covering 400 DM 
patients and includes 22 features such as gender, occupational 
type, family history of diabetes, and data collected over the 
past 10 years on BMI, comorbidities, lifestyle factors 
(including diet, physical activity, smoking, and water intake), 
urinary status, urinary infection and daily caloric intake. 
Among the variables, Diabetic Year, Age, BMI, and Calorie 
Intake were treated as numerical features, while the others 
were categorical, as presented in TABLE I. The dataset is 
highly imbalanced, with 386 cases of CKD and 3,614 non-
CKD cases out of 4,000 records. 

TABLE I.  FEATURES IN THE DATASET AND THEIR 

DESCRIPTION 

 

B. Data Preprocessing 

The data preprocessing pipeline in this study involved 
several steps to ensure model compatibility and enhance 
learning performance. First, the categorical feature "Gender" 
was encoded using binary values, with female assigned as 0 
and male as 1. Second, the features "Zarda use" and "Betel 
Leaf use" were removed, as such substances are not 
commonly consumed in Taiwan and were deemed irrelevant 
to the study objectives. Additionally, variables including 
height, weight, and average weight were excluded due to their 
high correlation with BMI, which was already presented in the 
dataset. This step was taken to prevent multicollinearity. In 
terms of data transformation, 16 categorical variables were 
processed through label encoding to ensure the machine 
learning models could interpret categorical information 
effectively. Meanwhile, the three continuous features were 
standardized to a uniform scale to prevent model bias caused 
by differences in magnitude. For dataset partitioning, the data 
was split into training and testing sets using an 80:20 ratio. 
However, given the highly imbalanced nature of the dataset—
with a predominance of categorical features and only three 
continuous variables—Synthetic Minority Over-sampling 
Technique for Nominal and Continuous data (SMOTENC) 
[12] was employed for sample augmentation. SMOTENC 
generates synthetic minority class samples by considering 
both numerical and categorical variables, thereby alleviating 
class imbalance while preserving feature structure. This 
approach ensured consistency in the distribution of both 
training and testing sets, ultimately enhancing the accuracy 
and robustness of the model during training. 

Feature description Statistics 
Mean ± std variance 

Job

 
1-normal, 2-intermediate, 

3-heavy

 
1.28 ± 0.60

 
0.36

 
Family Background of 

Diabetes

 
1-yes, 0-no

 
0.42 ± 0.49

 
0.24

 
Diabetic Year

 
Years since first diagnosis

 
9.27 ± 6.48

 
42.04

 
Age

 
Years

 
50.88 ± 10.95

 
119.95

 
BMI

 
kg/m

2 24.59 ± 3.77

 
14.24

 
Follow Suggested Diet

 
1-yes, 0-no

 
0.77 ± 0.42

 
0.18

 Regularly Take Oral Anti-

diabetic Medicine

 
1-yes, 0-no

 
0.75 ± 0.43

 
0.19

 
Take Insulin

 
1-yes, 0-no

 
0.55 ± 0.50

 
0.25

 
Hypertension

 
1-yes, 1-no

 
0.29 ± 0.45

 
0.21

 
Heart Disease

 
1-yes, 2-no

 
0.24 ± 0.43

 
0.18

 
Sleep

 
1-7 to 9 hours of sleep,  

0-abnormal sleep time

 
0.59 ± 0.49

 
0.24

 
Water Consumption

 
1-more than 2 liters/day,  

0-less than 2 liters/day

 
0.91 ± 0.29

 
0.08

 
Smoke

 
1-yes, 0-no

 
0.14 ± 0.34

 
0.12

 
Walk Regularly

 
1-more than 30 minutes per 

day, 0-less than 30 minutes 

per day

 
0.64 ± 0.48

 
0.23

 
Urination Properly

 

Urination without 

discomfort, obstruction, or 

medical issues, (1-yes, 0-

no)

 

0.85 ± 0.36

 
0.13

 
Urinary Infection

 
1-yes, 0-no

 
0.24 ± 0.43

 
0.18

 
Taking Pain Killer

 
1-yes, 1-no

 
0.29 ± 0.46

 
0.21

 
Calorie Intake

 
Daily calories intake

 
1453.70 ± 

211.55

 
44754.5

 



C. Experiment 

In this study, we employed AutoGluon, developed by 
Amazon Web Services, to conduct model training [13]. 
AutoGluon simplifies the processes of model selection, 
training, and deployment, thereby improving the efficiency 
and usability of the machine learning pipeline. Additionally, 
it integrates stacking and bagging strategies to enable robust 
ensemble learning, enhancing predictive performance while 
maintaining computational efficiency. 

In addition to AutoGluon, we independently trained two 
widely used machine learning models for comparative 
analysis. TabPFN, a transformer-based probabilistic model, is 
designed to process entire tabular datasets end-to-end during 
both training and inference. It demonstrates strong 
adaptability to structured tabular data, which is particularly 
well-suited to our case, as our dataset consists of lifestyle-
related tabular features rather than continuous laboratory 
measurements commonly used in conventional medical AI. 

On the other hand, XGBoost is a gradient-boosted decision 
tree model that is naturally well-suited for binary 
classification tasks and aligns well with the binary nature of 
most of our input features. It has been extensively applied in 
healthcare risk prediction and is frequently adopted as a 
baseline for evaluating emerging models. Therefore, TabPFN 
and XGBoost were selected as baseline models for 
performance comparison against AutoGluon. A detailed 
comparison of the predictive performance across all models is 
provided in the following section. 

D. Integration Best Model to GUI 

Fig. 2 illustrates the main functions of the GUI developed 
in this study. The left panel serves as the input area, where 
diabetic patients can enter relevant feature values and obtain 
model predictions by clicking the “Run test” button. The right 
panel displays two types of visual information: (1) the 
predicted probability of CKD occurrence for the current test, 
and (2) a probability trend chart of historical diagnostic results. 
Different risk levels are highlighted with color coding to 
facilitate interpretation by clinical staff and to support 
subsequent treatment decisions. 

 

Fig. 2. GUI designed for AI-Based CKD. Input and Execution Result page 

III. RESULT AND DISCUSSION 

Table II and Fig. 3 present the comparative analysis of 
multiple machine learning models applied to CKD prediction, 
evaluated using five key performance metrics. The results 
indicate that TabPFN achieved the highest scores in ROC 
AUC (0.9950), F1-score (0.9642), and Recall (0.9617), 
demonstrating its strong capability in identifying true positive 

cases. In contrast, AutoGluon outperformed other models in 
terms of Accuracy (0.9813) and Precision (0.9755), reflecting 
its effectiveness in minimizing false positives while 
maintaining overall classification accuracy. 

TABLE II.  MODEL PERFORMANCE COMPARISON 

 

Overall, both AutoGluon and TabPFN exhibited excellent 
and consistent performance across all evaluation metrics, 
highlighting their strengths in handling classification tasks in 
the risk-prediction domain. By comparison, although 
XGBoost also demonstrated reasonable predictive power, its 
performance varied more noticeably across different metrics, 
indicating relatively lower stability. 

In summary, TabPFN and AutoGluon demonstrated 
superior and stable predictive capabilities for assessing CKD 
development risk among diabetic patients. These models show 
strong potential for further development and implementation 
in future research and clinical applications. 

 

Fig. 3. Model Performance of AutoGluon, TabPFN, and XGBoost 

Despite the outstanding predictive performance 
demonstrated by both TabPFN and AutoGluon, a critical 
limitation remains in their lack of interpretability. These 
models are often regarded as “black boxes” due to their 
reliance on complex feature interactions and data correlations 
rather than on transparent and intuitive rules. This opacity may 
undermine trust and adoption in clinical settings, where 
understanding the reasoning behind model predictions is 
essential for effective decision-making. 

To address this limitation, we employed Shapley Additive 
Explanations (SHAP) [14], a method grounded in cooperative 
game theory, to fairly attribute the contribution of each input 
feature to the model’s output. Through SHAP analysis, we 
were able to quantify and interpret the influence of individual 
features on CKD risk predictions, thereby enhancing the 
transparency of the model’s decision-making process and 
aligning it with the expectations of clinical practitioners. 

This interpretability mechanism enables clinicians and 
experts to cross-validate model outputs with their domain 
expertise, improving the model’s credibility and acceptability 
in real-world medical applications. 

 
AutoGluon TabPFN XGBoost 

Accuracy 0.9813 0.9648 0.8638 

ROC AUC 0.9778 0.995 0.9436 

F1_Score 0.8948 0.9642 0.8718 

Precision 0.9755 0.9666 0.8231 

Recall 0.8264 0.9617 0.9267 



SHAP value plots of the AutoGluon model represents that 
the most important feature was BMI (Fig. 4(a)). A higher BMI 
generally indicates excess body weight, which imposes a 
greater metabolic burden and consequently elevates the risk of 
developing CKD [15]. The second priority feature was 
Diabetic Year. A longer disease duration implies prolonged 
exposure to hyperglycemia, thereby increasing the risk of 
renal impairment [16]. The third priority feature was Age. As 
patients grow older, physiological decline increases their 
susceptibility to kidney disease [17]. The fourth feature is 
Urinary Infection [18]. Pyelonephritis caused by bacterial 
infection can result in inflammation and fibrosis of the renal 
parenchyma, ultimately leading to a progressive decline in 
renal function, and the risk of infection is particularly elevated 
among patients with diabetes [19]. The relative contribution 
of each feature has been shown in Fig. 4(b). Generally, 
AutoGluon achieved robust performance across key clinical 
indicators, underscoring its potential value for early 
prevention. 

 

(a) AutoGluon SHAP splot 

 

(b) AutoGluon’s feature contribution bar plot 

 

(c) TabPFN SHAP plot 

Fig. 4. SHAP summary plot 

It is noteworthy that although TabPFN achieved 
outstanding overall predictive performance, SHAP analysis 
revealed that its feature importance rankings were often 
inconsistent with established clinical experience (Fig. 4(c)). 
Such discrepancies are difficult to accept in medical contexts, 
thereby limiting the model’s clinical credibility. In contrast, 
AutoGluon not only demonstrated strong predictive accuracy 
but also produced feature attribution results that aligned 
closely with clinical knowledge. This consistency underscores 
its greater applicability in predicting and preventing CKD risk 
among diabetic patients, positioning AutoGluon as the most 
suitable model in this study. 

Overall, the SHAP summary plots highlighted the relative 
importance and interactions of individual features during 
AutoGluon model training. These findings are consistent with 
existing literature on the associations between clinical features, 
diabetes, and its complications, thereby further validating the 
robustness and reliability of the model’s predictions and 
supporting its feasibility for clinical application. 

IV. CONCLUSION 

In this study, we proposed a machine learning–driven 
framework for predicting CKD risk in diabetic patients using 
lifestyle features as the primary input variables. Among the 
models evaluated, AutoGluon consistently outperformed 
other approaches in terms of predictive accuracy and precision, 
while also providing clinically coherent feature attributions 
through SHAP analysis. This combination of robust predictive 
capability and transparent interpretability highlights 
AutoGluon’s potential as a trustworthy and clinically 
meaningful decision support tool. 

By emphasizing lifestyle-related features as the core 
predictors, our framework departs from the conventional 
reliance on laboratory-based indicators and demonstrates the 
feasibility of a non-invasive, cost-effective, and patient-
centered approach to risk stratification. This innovation not 



only reduces healthcare costs and alleviates the demand on 
clinical resources but also aligns with the growing emphasis 
on preventive medicine, precision health strategies, and 
patient empowerment. 

Looking forward, future work will involve expanding 
training to larger, more demographically diverse cohorts, 
integrating complementary clinical and biochemical markers, 
and performing rigorous multi-center external validation to 
establish real-world applicability. Beyond technical 
improvements, embedding this framework into digital health 
ecosystems and mobile health platforms offers an opportunity 
to bridge the gap between predictive analytics and everyday 
clinical practice, thereby fostering equitable access to 
advanced decision-support tools across healthcare settings. 

Ultimately, this research advances the field of explainable 
artificial intelligence in medicine by providing both 
methodological novelty and clinically relevant impact. It 
contributes to the paradigm shift toward proactive disease 
prevention, precision medicine, and patient engagement, 
while also offering valuable insights for healthcare policy and 
resource optimization in the management of diabetes-
associated CKD. 
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