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Abstract—This paper proposes a monocular depth
estimation algorithm dedicated for intelligent unmanned
vehicles, aiming to achieve both high accuracy and low
computational cost. The proposed model delicately integrates
Convolutional Neural Network (CNN) and Transformer for
a low-complexity depth estimation. Experiment results show
that this work outperforms existing compact models in terms
of parameter count and computational complexity. It requires
only 1.5 million parameters and 1.9 billion floating point
operations (FLOPs), while delivering superior performance
on multiple standard evaluation metrics. Consequently, this
work enables real-time depth estimation to be more feasible
in edge Al devices, such as intelligent unmanned vehicles.

Keywords—Monocular Depth Estimation, Self-Supervised
Learning, Convolutional Neural Network, Transformer.

I. INTRODUCTION

In the fields of unmanned aerial vehicles (UAVs) and
autonomous driving, depth maps are widely used to
represent the three-dimensional structure of scenes.
Therefore, to obtain depth information in a low-cost manner
is a critical issue. Common depth acquisition methods
include stereo vision, LiDAR, and monocular depth
estimation. Although stereo vision can directly estimate
depth from disparity between two cameras, it also suffers
from unreliable accuracy at long distances and constraints.
In addition, the baseline distance between the two cameras
especially on smaller devices, seriously limiting depth
resolution. LiDAR systems offer long-range measurement
capabilities [1], typically up to around 100 meters, and can
extend this range by increasing the emission power.
However, this technology requires active laser emission,
which leads to considerable power consumption in its
functional modules. In contrast, monocular depth estimation
predicts depth from a single image, resulting in lower
hardware costs and greater applicability. As a result, it
attracts considerable research effort in recent years.

Fig. 1 illustrates a monocular depth estimation
application scenario. First, a single RGB image is captured
using a monocular camera, and an Al model is then
employed to estimate the depth map for each pixel in the
image. With the depth information obtained, the system can
estimate the relative distance between objects in the scene
and the camera, thereby enabling a wide range of perception
and control tasks. Building upon this capability, researchers
have explored diverse applications. For instance, a
lightweight drone was designed to achieve obstacle
avoidance using only a monocular camera, eliminating the
need for additional depth sensors. That makes it suitable for
resource-constrained environments [2]. In the context of
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Fig. 1. Monocular Depth Estimation Scenario Diagram

autonomous driving, Instance Clustering Guidance has been
introduced to enhance monocular depth estimation accuracy,
improving the vehicle’s ability to avoid dynamic obstacles
such as pedestrians and other cars [3]. Similarly, in mobile
robotics, depth estimation has been integrated with object
tracking to enable robots to follow humans and navigate
safely in complex environments, relying solely on RGB
images [4]. Moreover, monocular vision has also been
applied to robotic manipulation, where a four degree of
freedom (4 DoF) robotic arm leverages depth estimation to
measure distances between itself and surrounding objects
[5]- These examples collectively highlight the versatility of
monocular depth estimation and its potential to support
intelligent perception in a variety of real-world scenarios.

However, for all of these applications, endurance is a key
consideration. For example, small drones or mobile robots
require energy-relay and energy-saving strategies to extend
operation time during long-term or continuous patrol.
Therefore, when designing such systems, it is generally
necessary to develop lightweight models with low
parameter counts and FLOPs to reduce computational load
and power consumption. Meanwhile, the accuracy of depth
estimation should be also acceptable.

Recently, an increasing number of computer vision tasks
have leveraged hybrid architectures that combine
Convolutional Neural Networks (CNNs) with Transformers
[6], aiming to simultaneously capture local details and long-
range global dependencies. For instance, the Convolution-
Enhanced Image Transformer (CeiT) integrates
convolutional operations into the Transformer structure and
achieves strong performance on various ImageNet
benchmarks [7][8]. Similarly, CoAtNet unifies depthwise
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Fig. 2. Overall Architecture
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Fig. 3. Improved Bottleneck Convolutions

convolution with self-attention, yielding high accuracy in
large-scale image classification tasks [9]. In the medical
domain, TransUNet incorporates the strengths of both
Transformers and U-Net, enabling effective performance
across diverse medical image analysis applications [10].
These advances collectively highlight the complementary
nature of CNNs and Transformers, which has gradually
evolved into a significant research direction in computer
vision.

Inspired by these approaches, this work designed a
monocular depth estimation model based on CNN and
Transformer. It is trained with a self-supervised learning
method using image reconstruction error as the learning

signal. Hence, it is unnecessary to pay more expensive and
difficult burdens to obtain ground truth depth labels. This
work can reduce the number of parameters while
maintaining model accuracy. With this work, an efficient
depth estimation can be feasible especially for resource-
constrained edge devices.

The remainder of this paper is organized as follows. The
proposed methodology is reported in Section II. Experiment
results and discussion are presented in Section III. Finally,
conclusions are given in Section IV.

II. PROPOSED METHODOLOGY

Generally, edge devices are often deployed under
resource-limited conditions, and thereby a lightweight
backbone network is required. Balancing performance and
model size becomes a critical issue. Fig. 2 shows the overall
architecture of proposed model, which is a hybrid of CNN
and Transformer. An encoder is used to learn and extract
multiscale features. Then, a decoder generates inverse depth
maps at different resolutions, accompanied by a PoseNet
module for pose estimation. Subsequently, a reconstructed
target image is produced, and self-supervised learning is
applied to compute the loss and optimize the model. Each
module is sequentially reported in the following subsections.

A. Encoder

To effectively capture features at different levels, this
work adopts the same four-stage multi-scale feature
aggregation strategy as Lite-Mono [11], enhancing feature
richness and decoding performance. The encoder first takes
a single image of resolution H X W and puts it into stage 1.
Through downsampling and a 3x3 convolution, it extracts
features resulting in a feature map of size H/2 X W /2 x C;.
These features are then concatenated with a pooled version
of the input image and fed into stage 2. In stage 2,
downsampling is applied again, producing a feature map of
sizeH /4 X W /4 X C,. Several improved Bottleneck
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Fig. 4. Proposed X-SE Block

Convolutions [12] are then used to learn features, followed
by the application of an X-SE Block module which
combines Cross-Covariance Attention (XCA) [13] and
Squeeze-and-Excitation (SE) [14], strengthening inter-
channel interactions and selective emphasis on important
features. Stage 3 and stage 4 employ the same approach,
generating feature maps sized H/8 X W /8 X C; and
H/16 X W /16 X C,, respectively.

Depthwise separable convolution is a lightweight
strategy that decomposes a standard convolution into
depthwise convolution and pointwise convolution.
Depthwise convolution performs spatial convolution
independently on each input channel, resulting in the same
number of output channels as input channels without mixing
information across channels during computation.

Although this design greatly reduces computational cost,
it also has a limitation as follows. It restricts the free
expansion of channel numbers during feature extraction,
thereby limiting the model’s representational capacity.
Performing convolution only in a low-dimensional space
can reduce computational cost but insufficient channels may
degrade semantic feature representation.

To balance computational efficiency and feature
expressiveness, this paper employs the Bottleneck
Convolutions proposed in MobileNetV2 for local feature
extraction. Specifically, a 1x1 convolution first expands the
channel dimension to extract richer semantic features. Then,
Depthwise Convolution performs feature extraction in the
high-dimensional space. Finally, another 1x1 convolution
maps the features back to the original dimension, combining
the feature maps produced across channels. The module’s
output is added to its input via a residual connection and
passed to subsequent network layers. Additionally, we
replace the activation function from ReLU to GELU[15].
Since ReLU assigns zero for all inputs less than zero, it may
discard certain useful negative-valued features. In contrast,
GELU preserves part of the negative information in a
smooth manner, enabling the model to better exploit the
input features. More detail of this architecture is shown in
Fig. 3.

Fig. 4 shows the proposed X-SE Block. To overcome
the limitation of convolutional operations that primarily
capture local information, it incorporates Cross-Covariance
Attention (XCA), which enhances feature representation by

capturing global dependencies across channels. Given an
input feature map X of size H X W with C channels, it is
linearly projected into three distinct components:
queries(Q = XW,), keys (K = XWy), and values (V =
XWy), where Wy, Wy, and W, are weight matrices. The
Cross-Covariance Attention is then applied to enhance the
input features X, as formulated in (1):

X' =XCA(Q,K,V) + X (1)

where, XCA(Q,K,V) is derived by multiplying the
transposed key matrix K7 with the query matrix Q. It adopts
Softmax function to generate attention weights, and then
multiplies these weights with the values matrix V', as
expressed in (2):

XCA(Q,K,V) =V - Softmax(KT - Q) ©)

Furthermore, this work integrates the Squeeze-and-
Excitation (SE) mechanism to enhance the model’s
responsiveness to critical channels. In the Squeeze stage,
global average pooling is applied to the feature maps to
generate a descriptor vector that represents the overall
information of each channel. In the Excitation stage, a fully
connected layer first reduces the dimension from C to C /7,
where r denotes the reduction ratio. This is followed by a
ReLU activation to enhance non-linear representation.
Another fully connected layer then expands the dimension
back from C/r to C, and then, a sigmoid function is applied
to obtain the weights of each channel. Finally, each channel
feature is multiplied by its corresponding weight, thereby
strengthening important channels while suppressing
redundant ones.

B. Decoder

This work adopts a decoder architecture as Lite-Mono,
using bilinear upsampling to progressively enlarge feature
maps, and fuse features from the corresponding encoder
layers at each stage. Subsequently, inverse depth maps are
output at 1/4, 1/2, and full resolutions.

C. PoseNet

This work chooses ResNet18 as the PoseNet, similar to
[11][16][17], taking three consecutive frames as input to
predict the six degrees of freedom (6-DoF) relative pose
among the three frames.

D. Self-Supervised Learning

Self-supervised learning enables training in the absence
of ground truth depth annotations. Instead, we use image
reconstruction as the supervisory signal, following [11] and
[16]. Training is performed by projecting images into
adjacent views and minimizing their photometric
reprojection loss. Similar to [11] and [16], this work uses an
edge-aware smoothness loss to encourage smoother inverse
depth predictions.

First, the reconstructed target image I,” from the target
image I, is obtained as:

It’ = G(IS'K'Tt—)S!Dt) (3)

where 8 denotes the reconstruction function. I is the source
image, which can be the previous or next frame to I;. K is
the camera intrinsic matrix. Ty is the relative pose
estimated by the PoseNet. D, is the depth predicted by the
network. Following [11] and [16], this work introduces the
photometric reprojection loss L,., composed of an L, loss



TABLE I. Results after evaluation on the KITTI dataset (resolution: 640x192)

Depth Error(]) Depth Accuracy(7)

Method Abs Rel Sq Rel RMSE RMSE log 5, <1.25 8, <1.257 85 <1.25°
R-MSFM3[22] 0.114 0.815 4.712 0.193 0.876 0.959 0.981
R-MSFM6[22] 0.112 0.806 4.704 0.191 0.878 0.960 0.981

Lite-mono-small[11] 0.110 0.802 4.671 0.186 0.879 0.961 0.982
Lite-mono-tiny[11] 0.110 0.837 4.710 0.187 0.880 0.960 0.982
Ours 0.109 0.792 4.648 0.184 0.882 0.961 0.983

TABLE II. Results after evaluation on the KITTI dataset (resolution: 1024x320)
Depth Error(]) Depth Accuracy(?)
Method
Abs Rel Sq Rel RMSE RMSE log 8, <1.25 8, <1.25? 85 <1.253

R-MSFM3[22] 0.112 0.773 4.581 0.189 0.879 0.960 0.982
R-MSFM6[22] 0.108 0.748 4.470 0.185 0.889 0.963 0.982
Lite-mono-small[11] 0.103 0.757 4.449 0.180 0.894 0.964 0.983
Lite-mono-tiny[11] 0.104 0.764 4.487 0.180 0.892 0.964 0.983
Ours 0.107 0.764 4.524 0.183 0.887 0.963 0.983

and Structural Similarity Index Measure (SSIM):

! a !
Lee(lp, 1) = E 1—SSIM(, 1) 4)
(A —a) -l =1l
where a=0.85 [16]. We also use the per-pixel minimum

reprojection loss Lp [16] to handle pixels outside the field
of view and occluded regions:

LpUs, 1) = Isér[l—i?,l] Lye(It, 1) %)
Additionally, a binary mask p [16] is applied to filter out
pixels in the frame sequence whose appearance remains
unchanged:

=, min Ly 1) > min Leo (I, 1)) (6)
As in [11] and [16], an edge-aware smoothness loss Lg is
used to encourage smoother inverse depth predictions:

Ls = |0,d;|e19x"! + 9, d;|e10x"el (7)

where d; = d; /Et is the mean-normalized inverse depth.
The final loss L is computed by combining the losses across
multiple scales:

(uLp + ALg) ®)

where s denotes the different output scales of the decoder,
and 2 is the weight for the smoothness loss, set to 1e~3 as
indicated in [11].

III. EXPERIMENT RESULTS AND DISCUSSION

A. Dataset

This experiment uses the KITTI [18] dataset and adopt
the Eigen splits [19] for training and evaluation. The dataset
consists of a total of 39,180 monocular triplets for training,
4,424 for validation, and 697 for testing.

B. Implementation Details

This work is implemented using PyTorch and trained
on a single NVIDIA 3090 GPU for 30 epochs with a batch
size of 12. The optimizer is AdamW [20], with an initial
learning rate of 1e~*. To accelerate convergence, we first
pre-train the backbone on the ImageNet1K dataset [8] for
100 epochs. The pre-training is conducted using Distributed
Data Parallel (DDP) with 2 GPUs, where each GPU uses a
batch size of 256.

To ensure good generalization performance, we adopt
the same data augmentation strategies as [11][16].
Specifically, each augmentation is applied with a 50%
chance: including horizontal flipping, random saturation
adjustment (£0.2), random brightness adjustment (£0.2),
random contrast adjustment (£0.2), and hue jitter (£0.1).
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Fig. 6. Model Complexity Comparison

C. Evaluation Results on Dataset

The proposed model is evaluated on the KITTI dataset
using images with resolutions of 640x192 and 1024x320.
The evaluation follows the metrics proposed in [21]. The
metrics are divided into two categories: Depth Error (the
lower, the better) and Depth Accuracy (the higher, the
better). Depth Error includes four indicators: Absolute
Relative Error (Abs Rel), Squared Relative Error (Sq Rel),
Root Mean Squared Error (RMSE), and RMSE log. Depth
Accuracy is measured by the thresholds &; <1.25,
8, <1.252, 55 <1.255.

Experiment results are shown in TABLE I and TABLE
II. Ataresolution of 640x192, we compared our model with
other sophisticated models. The results show that this work
can achieve better performance across all metrics.
Compared with R-MSFM3 [22], our model performed
better in every metric, and even when compared to the larger
R-MSFM6 [22], this work still reaches better performance.
Furthermore, compared to the more advanced small models
in recent years—Lite-Mono-small [11] and Lite-Mono-tiny
[11], this work achieved lower depth error and higher depth

accuracy, while also keeping smaller model size than all of
the above models.

At a resolution of 1024x320, this model is also superior
to those of R-MSFM3. Although slightly inferior to R-
MSFMS6, Lite-Mono-small and Lite-Mono-tiny, but our
approach just requires lower parameter counts and less
FLOPs, exhibiting higher computation-efficiency. Fig. 5
shows the visualization results. Although this work
demands fewer parameters, the generated depth maps can
still clearly depict object contours.

D. Model Complexity Analysis

Fig. 6 compares the model complexity of our method
with other approaches, focusing on the number of
parameters and FLOPs. The top three charts individually
show the parameter counts of the encoder, decoder, and the
entire model. The bottom three charts are for the FLOPs of
the encoder, decoder, and the entire model, respectively.

From the bar charts, it can be seen that our encoder has
about 1.3M parameters, which is less than both Lite-Mono-
small and Lite-Mono-tiny. Although it is slightly larger



than R-MSFM3 and R-MSFMS6, our decoder adopts a Lite-
Mono-like architecture, which contains significantly fewer
parameters compared to R-MSFM3 and R-MSFM6.

Overall, the proposed model achieves the least
parameters of about 1.5M, approximately 40% less than
Lite-Mono-small and about 60% fewer than R-MSFM6. In
terms of FLOPs, this model reaches about 1.9G, around
60% lower than Lite-Mono-small and up to 94% lower than
R-MSFM6.

IV. CONCLUSION

In this paper, a lightweight model architecture is
proposed. Experimental results show that this model
requires only 1.5M parameters and 1.9G FLOPs. Both are
significantly lower than those of other competitive small-
scale models. Moreover, this model demonstrates superior
performance on various metrics. Due to its lightweight
design and low computational burdens, our approach has
strong deployment potential on resource-constrained edge
devices. Compared with large-scale models, this work is
more efficient to be implemented on hardware especially for
real-time depth estimation.
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