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Abstract—This paper proposes a monocular depth 

estimation algorithm dedicated for intelligent unmanned 

vehicles, aiming to achieve both high accuracy and low 

computational cost. The proposed model delicately integrates 

Convolutional Neural Network (CNN) and  Transformer for 

a low-complexity depth estimation. Experiment results show 

that this work outperforms existing compact models in terms 

of parameter count and computational complexity. It requires 

only 1.5 million parameters and 1.9 billion floating point 

operations (FLOPs), while delivering superior performance 

on multiple standard evaluation metrics. Consequently, this 

work enables real-time depth estimation to be more feasible 

in edge AI devices, such as intelligent unmanned vehicles.  
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I. INTRODUCTION  

In the fields of unmanned aerial vehicles (UAVs) and 
autonomous driving, depth maps are widely used to 
represent the three-dimensional structure of scenes. 
Therefore, to obtain depth information in a low-cost manner 
is a critical issue. Common depth acquisition methods 
include stereo vision, LiDAR, and monocular depth 
estimation. Although stereo vision can directly estimate 
depth from disparity between two cameras, it also suffers 
from unreliable accuracy at long distances and constraints. 
In addition, the baseline distance between the two cameras 
especially on smaller devices, seriously limiting depth 
resolution. LiDAR systems offer long-range measurement 
capabilities [1], typically up to around 100 meters, and can 
extend this range by increasing the emission power. 
However, this technology requires active laser emission, 
which leads to considerable power consumption in its 
functional modules. In contrast, monocular depth estimation 
predicts depth from a single image, resulting in lower 
hardware costs and greater applicability. As a result, it 
attracts considerable research effort in recent years. 

Fig. 1 illustrates a monocular depth estimation 
application scenario. First, a single RGB image is captured 
using a monocular camera, and an AI model is then 
employed to estimate the depth map for each pixel in the 
image. With the depth information obtained, the system can 
estimate the relative distance between objects in the scene 
and the camera, thereby enabling a wide range of perception 
and control tasks. Building upon this capability, researchers 
have explored diverse applications. For instance, a 
lightweight drone was designed to achieve obstacle 
avoidance using only a monocular camera, eliminating the 
need for additional depth sensors. That makes it suitable for 
resource-constrained environments [2]. In the context of  

autonomous driving, Instance Clustering Guidance has been 
introduced to enhance monocular depth estimation accuracy, 
improving the vehicle’s ability to avoid dynamic obstacles 
such as pedestrians and other cars [3]. Similarly, in mobile 
robotics, depth estimation has been integrated with object 
tracking to enable robots to follow humans and navigate 
safely in complex environments, relying solely on RGB 
images [4]. Moreover, monocular vision has also been 
applied to robotic manipulation, where a four degree of 
freedom (4 DoF) robotic arm leverages depth estimation to 
measure distances between itself and surrounding objects 
[5]. These examples collectively highlight the versatility of 
monocular depth estimation and its potential to support 
intelligent perception in a variety of real-world scenarios. 

However, for all of these applications, endurance is a key 
consideration. For example, small drones or mobile robots 
require energy-relay and energy-saving strategies to extend 
operation time during long-term or continuous patrol. 
Therefore, when designing such systems, it is generally 
necessary to develop lightweight models with low 
parameter counts and FLOPs to reduce computational load 
and power consumption. Meanwhile, the accuracy of depth 
estimation should be also acceptable. 

Recently, an increasing number of computer vision tasks 
have leveraged hybrid architectures that combine 
Convolutional Neural Networks (CNNs) with Transformers 
[6], aiming to simultaneously capture local details and long-
range global dependencies. For instance, the Convolution-
Enhanced Image Transformer (CeiT) integrates 
convolutional operations into the Transformer structure and 
achieves strong performance on various ImageNet 
benchmarks [7][8]. Similarly, CoAtNet unifies depthwise  

 

Fig. 1. Monocular Depth Estimation Scenario Diagram 



convolution with self-attention, yielding high accuracy in 
large-scale image classification tasks [9]. In the medical 
domain, TransUNet incorporates the strengths of both 
Transformers and U-Net, enabling effective performance 
across diverse medical image analysis applications [10]. 
These advances collectively highlight the complementary 
nature of CNNs and Transformers, which has gradually 
evolved into a significant research direction in computer 
vision. 

Inspired by these approaches, this work designed a 
monocular depth estimation model based on CNN and 
Transformer. It is trained with a self-supervised learning 
method using image reconstruction error as the learning 

signal. Hence, it is unnecessary to pay more  expensive and 
difficult burdens to obtain ground truth depth labels. This 
work can reduce the number of parameters while 
maintaining model accuracy. With this work, an efficient 
depth estimation can be feasible especially for resource-
constrained edge devices. 

The remainder of this paper is organized as follows. The 
proposed methodology is reported in Section II. Experiment 
results and discussion are presented in Section III. Finally, 
conclusions are given in Section IV. 

II. PROPOSED METHODOLOGY 

Generally, edge devices are often deployed under 
resource-limited conditions, and thereby a lightweight 
backbone network is required. Balancing performance and 
model size becomes a critical issue. Fig. 2 shows the overall 
architecture of proposed model, which is a hybrid of CNN 
and Transformer. An encoder is used to learn and extract 
multiscale features. Then, a decoder generates inverse depth 
maps at different resolutions, accompanied by a PoseNet 
module for pose estimation. Subsequently, a reconstructed 
target image is produced, and self-supervised learning is 
applied to compute the loss and optimize the model. Each 
module is sequentially reported in the following subsections. 

A. Encoder 

To effectively capture features at different levels, this 
work adopts the same four-stage multi-scale feature 
aggregation strategy as Lite-Mono [11], enhancing feature 
richness and decoding performance. The encoder first takes 
a single image of resolution 𝐻 ×𝑊 and puts it into stage 1. 
Through downsampling and a 3×3 convolution, it extracts 
features resulting in a feature map of size 𝐻 2⁄ ×𝑊 2⁄ × 𝐶1. 
These features are then concatenated with a pooled version 
of the input image and fed into stage 2. In stage 2, 
downsampling is applied again, producing a feature map of 
size𝐻 4⁄ ×𝑊 4⁄ × 𝐶2. Several improved Bottleneck  

 

Fig. 2. Overall Architecture 

 

Fig. 3. Improved Bottleneck Convolutions 



Convolutions [12] are then used to learn features, followed 
by the application of an X-SE Block module which 
combines Cross-Covariance Attention (XCA) [13] and 
Squeeze-and-Excitation (SE) [14], strengthening inter-
channel interactions and selective emphasis on important 
features. Stage 3 and stage 4 employ the same approach, 
generating feature maps sized 𝐻 8⁄ ×𝑊 8⁄ × 𝐶3  and 
𝐻 16⁄ ×𝑊 16⁄ × 𝐶4, respectively. 

Depthwise separable convolution is a lightweight 
strategy that decomposes a standard convolution into 
depthwise convolution and pointwise convolution. 
Depthwise convolution performs spatial convolution 
independently on each input channel, resulting in the same 
number of output channels as input channels without mixing 
information across channels during computation.  

Although this design greatly reduces computational cost, 
it also has a limitation as follows. It restricts the free 
expansion of channel numbers during feature extraction, 
thereby limiting the model’s representational capacity. 
Performing convolution only in a low-dimensional space 
can reduce computational cost but insufficient channels may 
degrade semantic feature representation. 

To balance computational efficiency and feature 
expressiveness, this paper employs the Bottleneck 
Convolutions proposed in MobileNetV2 for local feature 
extraction. Specifically, a 1×1 convolution first expands the 
channel dimension to extract richer semantic features. Then, 
Depthwise Convolution performs feature extraction in the 
high-dimensional space. Finally, another 1×1 convolution 
maps the features back to the original dimension, combining 
the feature maps produced across channels. The module’s 
output is added to its input via a residual connection and 
passed to subsequent network layers. Additionally, we 
replace the activation function from ReLU to GELU[15]. 
Since ReLU assigns zero for all inputs less than zero, it may 
discard certain useful negative-valued features. In contrast, 
GELU preserves part of the negative information in a 
smooth manner, enabling the model to better exploit the 
input features. More detail of this architecture is shown in 
Fig. 3. 

Fig. 4 shows the proposed X-SE Block. To overcome 
the limitation of convolutional operations that primarily 
capture local information, it incorporates Cross-Covariance 
Attention (XCA), which enhances feature representation by 

capturing global dependencies across channels. Given an 
input feature map 𝑋  of size 𝐻 ×𝑊  with 𝐶  channels, it is 
linearly projected into three distinct components: 
queries(𝑄 = 𝑋𝑊𝑄), keys (𝐾 = 𝑋𝑊𝐾), and values (𝑉 =
𝑋𝑊𝑉), where 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉  are weight matrices. The 

Cross-Covariance Attention is then applied to enhance the 
input features 𝑋, as formulated in (1): 

𝑋′ = 𝑋𝐶𝐴(𝑄, 𝐾, 𝑉) + 𝑋 (1) 

where, 𝑋𝐶𝐴(𝑄, 𝐾, 𝑉)  is derived by multiplying the 
transposed key matrix 𝐾𝑇 with the query matrix 𝑄. It adopts 
Softmax function to generate attention weights, and then 
multiplies these weights with the values matrix 𝑉 , as 
expressed in (2): 

𝑋𝐶𝐴(𝑄, 𝐾, 𝑉) = 𝑉 ∙ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑇 ∙ 𝑄) (2) 

Furthermore, this work integrates the Squeeze-and-
Excitation (SE) mechanism to enhance the model’s 
responsiveness to critical channels. In the Squeeze stage, 
global average pooling is applied to the feature maps to 
generate a descriptor vector that represents the overall 
information of each channel. In the Excitation stage, a fully 
connected layer first reduces the dimension from 𝐶 to 𝐶 𝑟⁄ , 
where r denotes the reduction ratio. This is followed by a 
ReLU activation to enhance non-linear representation. 
Another fully connected layer then expands the dimension 
back from 𝐶 𝑟⁄  to 𝐶, and then, a sigmoid function is applied 
to obtain the weights of each channel. Finally, each channel 
feature is multiplied by its corresponding weight, thereby 
strengthening important channels while suppressing 
redundant ones. 

B.  Decoder 

This work adopts a decoder architecture as Lite-Mono, 
using bilinear upsampling to progressively enlarge feature 
maps, and fuse features from the corresponding encoder 
layers at each stage. Subsequently, inverse depth maps are 
output at 1/4, 1/2, and full resolutions. 

C. PoseNet 

This work chooses ResNet18 as the PoseNet, similar to 
[11][16][17], taking three consecutive frames as input to 
predict the six degrees of freedom (6-DoF) relative pose 
among the three frames.  

D. Self-Supervised Learning 

Self-supervised learning enables training in the absence 
of ground truth depth annotations. Instead, we use image 
reconstruction as the supervisory signal, following [11] and 
[16]. Training is performed by projecting images into 
adjacent views and minimizing their photometric 
reprojection loss. Similar to [11] and [16], this work uses an 
edge-aware smoothness loss to encourage smoother inverse 
depth predictions. 

 First, the reconstructed target image 𝐼𝑡
′ from the target 

image 𝐼𝑡 is obtained as: 

𝐼𝑡
′ = 𝜃(𝐼𝑠, 𝐾, 𝑇𝑡→𝑠, 𝐷𝑡) (3) 

where 𝜃 denotes the reconstruction function. 𝐼𝑠 is the source 
image, which can be the previous or next frame to 𝐼𝑡. 𝐾 is 
the camera intrinsic matrix. 𝑇𝑡→𝑠  is the relative pose 
estimated by the PoseNet. 𝐷𝑡  is the depth predicted by the 
network. Following [11] and [16], this work introduces the 
photometric reprojection loss 𝐿𝑟𝑒 composed of an  𝐿1 loss 
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and Structural Similarity Index Measure (SSIM): 

𝐿𝑟𝑒(𝐼𝑡 , 𝐼𝑡
′) =

𝛼

2
∙ 1 − 𝑆𝑆𝐼𝑀(𝐼𝑡 , 𝐼𝑡

′) 

+(1 − 𝛼) ∙ ‖𝐼𝑡 − 𝐼𝑡
′‖1 

(4) 

where 𝛼=0.85 [16]. We also use the per-pixel minimum 

reprojection loss 𝐿𝑃 [16] to handle pixels outside the field 
of view and occluded regions: 

𝐿𝑃(𝐼𝑠, 𝐼𝑡) = min
𝐼𝑠∈[−1,1]

𝐿𝑟𝑒(𝐼𝑡 , 𝐼𝑡
′) (5) 

Additionally, a binary mask 𝜇 [16] is applied to filter out 
pixels in the frame sequence whose appearance remains 
unchanged: 

𝜇 = min
𝐼𝑠∈[−1,1]

𝐿𝑟𝑒(𝐼𝑠, 𝐼𝑡) > min
𝐼𝑠∈[−1,1]

𝐿𝑟𝑒 (𝐼𝑡, 𝐼𝑡
′) (6) 

As in [11] and [16], an edge-aware smoothness loss 𝐿𝑆 is 
used to encourage smoother inverse depth predictions: 

𝐿𝑆 = |𝜕𝑥𝑑𝑡
∗|𝑒−|𝜕𝑥𝐼𝑡| + |𝜕𝑦𝑑𝑡

∗|𝑒−|𝜕𝑦𝐼𝑡| (7) 

where 𝑑𝑡
∗ = 𝑑𝑡 𝑑𝑡⁄  is the mean-normalized inverse depth. 

The final loss 𝐿 is computed by combining the losses across 
multiple scales: 

𝐿 =
1

3
∑ (𝜇𝐿𝑃 + 𝜆𝐿𝑆)

𝑠∈{1,
1
2
,
1
4
}

 
(8) 

where 𝑠 denotes the different output scales of the decoder, 
and 𝜆 is the weight for the smoothness loss, set to 1𝑒−3 as 
indicated in [11]. 

III. EXPERIMENT RESULTS AND DISCUSSION 

A. Dataset 

This experiment uses the KITTI [18] dataset and adopt 
the Eigen splits [19] for training and evaluation. The dataset 
consists of a total of 39,180 monocular triplets for training, 
4,424 for validation, and 697 for testing. 

B. Implementation Details  

This work is  implemented using PyTorch and trained 
on a single NVIDIA 3090 GPU for 30 epochs with a batch 
size of 12. The optimizer is AdamW [20], with an initial 
learning rate of  1𝑒−4. To accelerate convergence, we first 
pre-train the backbone on the ImageNet1K dataset [8] for 
100 epochs. The pre-training is conducted using Distributed 
Data Parallel (DDP) with 2 GPUs, where each GPU uses a 
batch size of 256. 

To ensure good generalization performance, we adopt 
the same data augmentation strategies as [11][16]. 
Specifically, each augmentation is applied with a 50% 
chance: including horizontal flipping, random saturation 
adjustment (±0.2), random brightness adjustment (±0.2), 
random contrast adjustment (±0.2), and hue jitter (±0.1). 

TABLE I. Results after evaluation on the KITTI dataset (resolution: 640×192) 

Method 
Depth Error(↓) Depth Accuracy(↑) 

Abs Rel Sq Rel RMSE RMSE log 𝜹𝟏 <1.25 𝜹𝟐 <𝟏. 𝟐𝟓𝟐 𝜹𝟑 <𝟏. 𝟐𝟓𝟑 

R-MSFM3[22] 0.114 0.815 4.712 0.193 0.876 0.959 0.981 

R-MSFM6[22] 0.112 0.806 4.704 0.191 0.878 0.960 0.981 

Lite-mono-small[11] 0.110 0.802 4.671 0.186 0.879 0.961 0.982 

Lite-mono-tiny[11] 0.110 0.837 4.710 0.187 0.880 0.960 0.982 

Ours 0.109 0.792 4.648 0.184 0.882 0.961 0.983 

TABLE II. Results after evaluation on the KITTI dataset (resolution: 1024×320) 

Method 
Depth Error(↓) Depth Accuracy(↑) 

Abs Rel Sq Rel RMSE RMSE log 𝜹𝟏 <1.25 𝜹𝟐 <𝟏. 𝟐𝟓𝟐 𝜹𝟑 <𝟏. 𝟐𝟓𝟑 

R-MSFM3[22] 0.112 0.773 4.581 0.189 0.879 0.960 0.982 

R-MSFM6[22] 0.108 0.748 4.470 0.185 0.889 0.963 0.982 

Lite-mono-small[11] 0.103 0.757 4.449 0.180 0.894 0.964 0.983 

Lite-mono-tiny[11] 0.104 0.764 4.487 0.180 0.892 0.964 0.983 

Ours 0.107 0.764 4.524 0.183 0.887 0.963 0.983 



C. Evaluation Results on Dataset 

The proposed model is evaluated on the KITTI dataset 
using images with resolutions of 640×192 and 1024×320. 
The evaluation follows the metrics proposed in [21]. The 
metrics are divided into two categories: Depth Error (the 
lower, the better) and Depth Accuracy (the higher, the 
better). Depth Error includes four indicators: Absolute 
Relative Error (Abs Rel), Squared Relative Error (Sq Rel), 
Root Mean Squared Error (RMSE), and RMSE log. Depth 
Accuracy is measured by the thresholds 𝛿1 <1.25, 
𝛿2 <1.252,  𝛿3 <1.253. 

Experiment results are shown in TABLE I and TABLE 
II. At a resolution of 640×192, we compared our model with 
other sophisticated models. The results show that this work 
can achieve better performance across all metrics. 
Compared with R-MSFM3 [22], our model performed 
better in every metric, and even when compared to the larger 
R-MSFM6 [22], this work still reaches better performance. 
Furthermore, compared to the more advanced small models 
in recent years—Lite-Mono-small [11] and Lite-Mono-tiny 
[11], this work achieved lower depth error and higher depth 

accuracy, while also keeping smaller model size than all of 
the above models. 

At a resolution of 1024×320, this model is also superior 
to those of R-MSFM3. Although slightly inferior to R-
MSFM6, Lite-Mono-small and Lite-Mono-tiny, but our 
approach just requires lower parameter counts and less 
FLOPs, exhibiting higher computation-efficiency. Fig. 5 
shows the visualization results. Although this work 
demands fewer parameters, the generated depth maps can 
still clearly depict object contours. 

D. Model Complexity Analysis 

Fig. 6 compares the model complexity of our method 
with other approaches, focusing on the number of 
parameters and FLOPs. The top three charts individually 
show the parameter counts of the encoder, decoder, and the 
entire model. The bottom three charts are for the FLOPs of 
the encoder, decoder, and the entire model, respectively. 

From the bar charts, it can be seen that our encoder has 

about 1.3M parameters, which is less than both Lite-Mono-

small and Lite-Mono-tiny. Although it is slightly larger 

 

Fig. 5.  Visualization results. 

 

Fig. 6. Model Complexity Comparison 



than R-MSFM3 and R-MSFM6, our decoder adopts a Lite-

Mono-like architecture, which contains significantly fewer 

parameters compared to R-MSFM3 and R-MSFM6. 
Overall, the proposed model achieves the least 

parameters of about 1.5M, approximately 40% less than 
Lite-Mono-small and about 60% fewer than R-MSFM6. In 
terms of FLOPs, this model reaches about 1.9G, around 
60% lower than Lite-Mono-small and up to 94% lower than 
R-MSFM6. 

IV. CONCLUSION 

In this paper, a lightweight model architecture is 
proposed. Experimental results show that this model 
requires only 1.5M parameters and 1.9G FLOPs. Both are 
significantly lower than those of other competitive small-
scale models. Moreover, this model demonstrates superior 
performance on various metrics. Due to its lightweight 
design and low computational burdens, our approach has 
strong deployment potential on resource-constrained edge 
devices. Compared with large-scale models, this work is 
more efficient to be implemented on hardware especially for 
real-time depth estimation. 
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